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Executive Summary 
This document focuses on some key problems of cybersecurity, privacy preservation and trust 

improvement in the domain of IoT systems, and presents the technical solutions developed 
in WP5 of the IoT-NGIN project to tackle these problems. 

The work in WP5 has already been reported on in the earlier deliverables of the work 

package, so this deliverable now summarises and builds on top of the earlier documents. 
More specifically, in the deliverables D5.1 [D5.1] and D5.3 [D5.3], the requirements from the 

use cases in the IoT-NGIN project were identified and analysed to determine the best 
features and properties for the technical solutions to be developed in WP5. The State-of-the-

Art technological solutions in the field of local model poisoning attacks for on-device 
machine learning, protecting the devices from adversarial access, multi-ledger operations, 
semantic interoperability practices for Digital Twins, and Self-Sovereign Identities were then 

analysed and, finally, the documents provided a high-level description of the solutions that 
were to be developed within WP5. Deliverables D5.2 [D5.2] and D5.4 [D5.4] then reported on 

the first versions of the developed solutions. 

This document now presents a description of the final solutions. Specifically,  

1. a GAN-based dataset generator for the creation of poisoned datasets that assist 

addressing attacks against IoT and Federated Learning systems 

2. a Malicious Attack Detector (MAD) that facilitates the detection of cyberthreats and 

attacks against an IoT system 

3. An IoT Vulnerability Crawler (IVC) that monitors IoT nodes and detects vulnerabilities 

4. a Moving Target Defense (MTD) Honeypot Framework that deploys the honeypots 

dynamically 

5. Semantic Twins that enable semantic descriptions of Digital Twins and the related real-

world entities 

6. a Decentralised Interledger Bridge (DIB) that enables transactions across different 

distributed ledgers (DLTs) 

7. a privacy-preserving Verifiable Credential based decentralised on-device access 

control solution for constrained IoT Devices 

8. a QR (Quick Response) code and GS1 (Global Standards 1) Digital Link based 

discovery mechanisms  

The verification results of these solutions will be reported in the upcoming Deliverable D6.3 
and the validation results from the IoT-NGIN Living Labs will be reported in Deliverable D7.4. 
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1 Introduction  
The expanding use of IoT solutions has enabled many new services, but has also raised a 

range of new cybersecurity, privacy, and trust challenges. Ubiquitous IoT makes it possible to 
have a much more accurate and up-to-date situational awareness, but this can pose major 
privacy issues to the individuals, whose actions are being observed with this technology. 

Furthermore, individuals themselves are deploying more IoT devices and are in some cases 
even making the collected data available to a wider audience to enable new services, but 

at the same time also potentially raising privacy issues. Also, the increasing variety of IoT 
devices makes it harder to secure all the different types of devices against the many types 

of attackers ranging from individuals all the way to some governmental actors. Finally, for the 
audience utilising the data, a key question is which IoT devices and data to trust in this 
abundance of options. 

Work Package 5 has developed 8 solutions to address the problems: 

1. a GAN-based dataset generator for the creation of poisoned datasets that assist 

addressing attacks against IoT and Federated Learning systems 

2. a Malicious Attack Detector (MAD) that facilitates the detection of cyberthreats and 

attacks against an IoT system 

3. An IoT Vulnerability Crawler (IVC) that monitors IoT nodes and detects vulnerabilities 

4. a Moving Target Defense (MTD) Honeypot Framework that deploys the honeypots 

dynamically 

5. Semantic Twins that enable semantic descriptions of Digital Twins and the related real-

world entities 

6. a Decentralised Interledger Bridge (DIB) that enables transactions across different 

distributed ledgers (DLTs) 

7. a privacy-preserving Verifiable Credential based decentralised on-device access 

control solution for constrained IoT Devices 

8. a QR (Quick Response) code and GS1 (Global Standards 1) Digital Link based 

discovery mechanisms  

For each of the solutions, the requirements and  the State-of-the-Art of the technology were 
described in the first two reports  D5.1 and D5.3 [D5.1, D5.3] and the first versions of the 
solutions were then detailed in the follow-up reports D5.2 and D5.4 [D5.2, D5.4].  

This document provides a description of the final solution versions. For solutions 1-3, the 

development work was mostly completed and reported already in D5.2, so solutions 1-4 are 

discussed together in Section 3 to highlight how they interoperate. For solutions 5-8, there are 
more changes to report, so they receive multiple Sections (4-6) to first describe the individual 
solutions and then a Section (7) detailing how they can be used collaboratively.  

The work will continue in WP6, which will report on the verification of the solutions in D6.3, and 

in WP7, which will report on the validation of the solution in the Living Labs in D7.4. 
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1.1 Intended audience 
This document is intended for the following groups of people: 

● Technical people interested in IoT systems, threat mitigation, decentralised 

applications, digital identity management, and Digital Twin interactions can find 

detailed solutions and some initial results in use cases. 

● Solution designers and policymakers may find the document helpful to understand 

what kind of services the different technical solutions enable, which level of trust and 
privacy protection can be provided, and what standard ways for semantic 

interoperability are possible. 

● Internal users within the IoT-NGIN project can find useful resources on the components 

or architecture solutions that are being made available in WP5, so that the use of 

developed components is made easier. 

1.2 Relations to other activities 
This document describes the technical solutions from WP5, and can, thus, provide guidelines 

to other work packages in the project on best practices in these fields. The following IoT-NGIN 
documents provide further information about the related project activities, which can be 

useful to extend the knowledge in this document.  Architectural elements used in the IoT-
NGIN project are described in Deliverable D1.2 [D1.2]. Deliverable D6.2 [D6.2] describes the 

architecture instantiations in each Living Lab (LL), as well as initial versions of the use case 
applications and initial testing and evaluation results. Deliverable D7.3 [D7.3] provides 

intermediate results about Living Labs use cases, including the components developed in 
WP5. The upcoming WP7 documents will also report on the use of WP5 solutions in the IoT-
NGIN Open Calls and upcoming WP8 documents will cover the dissemination and 

exploitation of the solutions. 

1.3 Document overview 
The rest of the document is organised as follows. 

Section 2 gives an overview on the discussed technologies and how they interact.  

Section 3 describes Early Attack Detection and Mitigation solutions (Solutions 1-4). 

Section 4 defines the concept of a Semantic Twin (Solution 5). 

Section 5 covers the Decentralised Interledger Bridge (DIB) solution (6). 

Section 6 presents two different Self Sovereign Identities solutions based on the use case 

requirements within the project (Solutions 7-8). 

Section 7 describes how the solutions 5-8 mesh together to provide a comprehensive solution 

as depicted in the Installer app being developed in WP7 

Section 8 briefly discusses how the solutions will be verified and validated in the upcoming 

deliverables. 

Section 9 concludes the report. 
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2 Overview of IoT cybersecurity and data 
privacy and trust in IoT-NGIN 
WP5 has developed altogether 8 solutions for addressing some key IoT cybersecurity, privacy, 

and trust problems. Of these, Solutions 1-4 focus mostly on cybersecurity while Solutions 5-8 

focus more on privacy and trust. This section first presents how Solutions 1-4 complement 
each other and does then the same for Solutions 5-8.  

2.1 Mitigation of poisoning attacks and early 

attack detection 
In next-generation systems, AI solutions will be increasingly bound to IoT and edge nodes as 

AI solutions proliferate closer to the edge. While this enables more flexibility and reduced 
latency, the limited scope of knowledge any single node can generate over time means 

that the node’s intelligence should be supported by sharing knowledge and experience with 
its peers. Federated Learning (FL) enables collaborative training amongst (federated) peers, 
allowing knowledge exchange while still protecting the privacy of the peers. It is realised by 

exchanging the parameters of ML models trained locally at each node, without disclosing 
the node’s data to its peers. Although FL caters for data privacy and sovereignty, it can still 

suffer from malicious activity either due to compromised nodes or during model exchange. 
To address this, privacy preservation techniques in FL have been investigated within IoT-NGIN 

deliverables D3.1 [D3.1], D3.2 [D3.2] and D3.3 [D3.3], which aim to eliminate the impact of 
compromised input on the final machine learning (ML) model parameters. 

But how can the attacks be detected or prevented in the first place? As part of WP5 work, 

the focus was on the detection and mitigation of attacks that may happen against IoT nodes 
participating in an FL system. The conceptual representation of the FL cybersecurity tools 

developed in IoT-NGIN is illustrated in Figure 2.1 (the IoT-NGIN solutions 1-4 appear in blue, 
while external entities are illustrated in grey colour). In this setup, the FL system (composed of 
a set of Real devices) is the one being protected from network or FL-specific attacks that try 

to compromise its operation. The Real devices have corresponding Digital Twin, which in IoT-
NGIN is supported by WP4 IoT Device Indexing and IoT Device Access Control components 

(see IoT-NGIN deliverable D6.2 for details [D6.2]), and may also have Semantic Twins 
(covered later in this document). In this setting, WP5 FL cybersecurity tools take over the 

threat detection, monitoring, and mitigation processes for on-device FL systems. 

As existing device vulnerabilities constitute opportunities for potential attackers, the IoT 

Vulnerability Crawler (IVC) (Solution 3) is responsible for scanning for potential vulnerabilities 

in networked devices, which may offer an entry point to "undesired visitors”. The list of 
vulnerabilities is, of course, not static, but rather needs to be continuously updated. Therefore, 

IVC integrates OWASP ZAP [ZAP], which includes the classifications for the identified 
vulnerabilities of both the WASC Threat Classification [WASC], as well as MITRE’s Common 

Weakness Enumeration [MITRE]. IVC also integrates the log4j_scan [LOG4J]. However, it 

should be mentioned that it follows a flexible plugin-based design which allows for easy 
integration of additional scanning tools. IVC has been described in detail in D5.2 [D5.2]. 
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Figure 2.1 – Attack detection and mitigation in FL systems (Solutions 1-4, shown in blue). 

Moreover, the identified vulnerabilities are further exploited in our approach in order to 
monitor the attack activity related to these vulnerabilities. Specifically, the MTD Honeypots’ 

Framework (Solution 4) enables this by deploying a honeypot which leaves this vulnerability 
open for potential attackers. The monitored attack activity may provide new insights to the 

evolution of attacks and reveal new attack patterns, which would be relevant to the 
underlying IT/OT setup. The MTD Honeypots’ Framework has been detailed and analysed in 
D5.2, while its role in early attack detection within IoT-NGIN is analysed in Section 3. 

The GAN-based Dataset Generator (GDG) (Solution 1) assists in ‘instructing’ the FL system on 

how to detect and mitigate attacks against the FL nodes, both on the network level as well 

as on FL-specific attacks. At the network level, GDG is able to learn and generate datasets, 
which can then be used for training attack detection models. On the other hand, GDG is 

able to emulate sophisticated attacks in which the poisoned nodes act maliciously from the 
beginning while still imitating benign nodes as much as possible. This consistent behaviour 
makes the detection of the malicious behaviour harder compared to nodes that initially 

behave completely benignly and only after some time start behaving maliciously, as the 
change of behaviour is easier to detect. This functionality has been also exploited for the 

development of appropriate attack detection and mitigation processes. The full version of 
GDG has been detailed in D5.2. 

The detection and mitigation of FL-specific attacks are implemented in the latest version of 

the Malicious Attack Detector (MAD) (Solution 2). In its first version (detailed in D5.2), it was 
focused on the detection of network level attacks. In this deliverable, the detection of 
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sophisticated data and model poisoning attacks during FL training is now also possible. 

Further, MAD now incorporates mitigation for such attacks, which is based on identifying the 
poisoned nodes and excluding their contribution from the final model in FL training. This 

technique leads to robust FL training, even when 40% of the nodes act maliciously [Psy2023]. 
The new version of the MAD component is presented in Section 3. 

2.2 IoT data privacy and trust 
Much of the cybersecurity and privacy work in WP5 tasks T5.3-5 focuses on the IoT-device 

Triplet shown in the centre of Figure 2.2. The Triplet consists of a real-world entity (in this case, 

an IoT device), the Digital Twin (DT) that exposes the device's capabilities on the network, 
and the Semantic Twin (ST) that semantically describes the other two. When the real-world 
entity is something other than an IoT device (e.g. a shopping mall or a person), the Triplet 

can also be called an Entity Triplet, but in IoT-NGIN the focus is mostly on Triplets with IoT 
devices. 

  

            Figure 2.2 – The IoT-device Triplet -related technologies developed in WP5. 

To support the IoT-device Triplet, WP5 has developed multiple solutions, as shown in blue in 

the figure. First, the Semantic Twin (Solution 5) is a novel concept of providing a structured 
semantic description of the Triplet. The core element is describing the capabilities of the IoT 

device and Digital Twin and where they can be accessed. This information can then be 
complemented with many other types of information, e.g. the licensing of the services and 
where access could be purchased, information about the validity of the services through, 

e.g. 3rd-party certification, etc. To make this semantic information as machine-readable and 
interoperable as possible, the information is organised based on ontologies, particularly 

Smart Applications REFerence ontology (SAREF) ontologies that are aimed for IoT use cases. 
The Semantic Twin is detailed in Section 4. 

Another solution developed in WP5 is a Decentralised Interledger Bridge (DIB) (Solution 6) 

that allows us to link distributed ledgers (DLTs) and blockchains with atomic transactions. 
There are multiple interledger solutions, but most of them only focus on financial transactions 

or have limitations on the types of DLTs/blockchains they support as described more in detail 
in Deliverable D5.3 [D5.3]. IoT-NGIN has focused on a bridging-type interledger, which 

supports a broad range of ledgers and is agnostic of the transaction type, so it can be used 
with almost any type of application. Specifically, the work builds on an existing centralised 

bridging solution, which provides suitable functionality and interfaces, but suffers from the 
limitations of a centralised solution, namely higher trust requirement on the party running the 
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bridge and lower resiliency. IoT-NGIN has, therefore, developed a decentralised version of 

the technology, the Decentralised Interledger Bridge (DIB) described in Section 5, which 
allows us to overcome these limitations by utilising the same decentralisation approach as 

the DLTs and blockchains themselves rely on. With the interledger, e.g. the Semantic Twins 
can now rely on multiple ledgers to provide a shared immutable history in a cost-effective 
manner. 

To improve the privacy of the people utilising the Triplet, our work leveraged Decentralised 

Identifiers (DIDs), an identifier technology that follows the Self-Sovereign Identity (SSI) 

principles. An SSI identity owner should be able to generate and use as many anonymous 
identifiers as they need to protect their privacy, e.g. to prevent correlation attacks resulting 

from the same identifier being used in multiple contexts (discussed in IoT-NGIN deliverable 
D5.4 [D5.4]). We also utilise another SSI-technology, Verifiable Credentials (VCs), to carry 
information about the trustworthiness of different parties (discussed in [D5.4]) and to 

implement decentralised access control solutions (Solution 7 detailed in Section 6.1). The use 
of DIDs and VCs has been previously explored mostly in the context of people and 

organisations, but here we are focusing on their use for (constrained) things (IoT devices) and 
the related twin, in order to bring the privacy and trust benefits also to this application area.  

To make the use of Semantic and Digital Twins convenient, we are also exploring using 

digitally signed QR codes and GS1 Digital Links as a convenient and secure way to discover 
the Twins related to a particular IoT device (Solution 8) as detailed in Section 6.2. These types 

of new usability-oriented solutions are required to enable wide-scale usage of Twin-based 
solutions. 

Finally, to illustrate how these solutions work synergistically, a demo of IoT device 

configuration is being developed in WP7 as detailed in Section 7. It will deploy Solutions 5-8 
in the Jätkäsaari Living Lab to demonstrate how we can improve cybersecurity and protect 

users’ privacy in an easy-to-use manner. 
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3 Early attack detection and mitigation  
This section summarises the motivations behind Solutions 1-4, provides an update on final 

versions of the solutions, and explains in more detail how the solutions collaborate in early 
attack detection and mitigation. 

3.1Malicious Attack Detector 
IoT-NGIN introduces a number of cybersecurity tools that aim to shield Federated Learning 

systems from malevolent behaviours. These tools are designed to face common threats that 

are observed within the federated learning framework. IoT-NGIN has introduced the first 
version of the Malicious Attack Detector (MAD) in the deliverable D5.2. This detector is an 
advanced tool that can identify and block malicious activities within the federated learning 

system. In this document we introduce the label flipping mitigation technique that aims to 
eradicate the effects of such attacks. This technique relies on the assumption that the 

federated server has a small, clean dataset and can train the global model for a few rounds 
locally after the federated training process has ended. Together with the label flipping 

mitigation technique, MAD now provides an extra layer of protection against cyber threats, 
thereby enhancing the overall security of the federated learning environment. 

3.1.1 Motivation for MAD 
Federated learning systems are prone to several attacks due to their distributed nature. The 

attacks could, for instance, either alter the local data or the local model of a client to inject 
a specific pattern, degrade global model accuracy, or prevent the global model from 
converging etc. If successful, these attacks are catastrophic for a federated learning system 

and can completely alter its behaviour and performance. Also, vanilla federated learning 
setups don’t include security measures against such attacks and are, therefore, deemed 

extremely vulnerable. Without proper security measures, the potential risks and negative 
impact of these attacks can quickly escalate. Thus, it is crucial to implement effective 

detection and mitigation strategies to safeguard the integrity and confidentiality of the data 
and to ensure the proper functioning of the federated learning system. 

Even though there are numerous types of attacks within the federated learning framework, 

in this work we focus on label-flipping attacks launched from the clients. More specifically, 
we simulate the attacks described in section 5 “Poisoning attacks in FL System” of deliverable 

5.2. There, the malicious clients train a GAN on the local dataset and then subsequently use 
it to produce synthetic images. These images are then labelled to facilitate each attack 
accordingly. Here we focus on 2 main types of label-flipping attacks: (i) Model degradation 

attack where the malicious clients aim to reduce the classification accuracy of the global 
model and (ii) Targeted label attack where the malicious clients aim to inject some diseased 

grape leaves as healthy into the global model. 

Our earlier work, presented in D5.2, proved that Model degradation and Label flipping 

attacks can be successful in a classic federated learning setup, highlighting the need for 
effective countermeasures. To this end, we have experimented with various established 
federated learning techniques and assessed their robustness against these attacks. This 

allows us to identify approaches that can effectively mitigate the impact of label-flipping 
attacks. Furthermore, in the present document we introduce a simple yet effective additional 
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defence mechanism named label-flipping mitigation that can improve the alleviation of 

label-flipping attacks in federated learning systems. This mechanism can help to enhance 
the overall security of federated learning and reduce the potential for malicious attacks. By 

the proposed defense mechanism with the well-established federated learning defenses, we 
can help make federated learning more resilient against backdoor attacks and better 
protect the privacy of users' data.    

3.1.2 Description of the MAD solution 
In the deliverable D5.2 we introduced a machine learning-based system designed to detect 

and prevent cyber-attacks. The system uses a combination of supervised and unsupervised 
learning algorithms to analyse network traffic and identify potential malicious activities in 

real-time. The supervised learning component of Malicious Attack Detector (MAD) (solution 
2) is trained on a dataset of known attacks, enabling it to recognize patterns and behaviours 

associated with specific types of attacks. The unsupervised learning component of MAD is 
used to identify new or unknown attacks by analysing the behaviour of network traffic and 

identifying anomalies. Once MAD identifies a potential attack, it can take action to prevent 
it, such as blocking traffic from the source IP address. The system is designed to be scalable 
and can be deployed on large networks to provide comprehensive protection against a 

wide range of cyber threats. 

This subsection describes the technical details of the implementation for some commonly 

used federated learning defenses and the proposed mitigation. In more detail, we present 
the common federated defences that are employed in the literature, details of our 

approach, used metrics and federated training setup. 

GAN-driven federated attacks 

In the previous deliverable D5.2 we introduced 2 novel GAN-based attacks using synthetic 

generated images. The malicious clients jointly trained a GAN to create realistic images and 
thereafter launched label flipping attacks. The goal was to confuse the global model 

resulting in general or specific misclassifications. The GAN model used for image generation 
is shown in Figure 3.1. 

 

Figure 3.1 –  GAN used for the Image generation of the malicious clients. 
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The dataset we used is publicly available and consists of grapevine leaf images with 

common diseases (e.g., Leaf blight, Esca)1. Based on the local dataset of each client, the 
malicious clients were able to train this GAN to generate realistic grapevine leaf images. 

Consequently, these images were given wrong labels and were mixed with the local client 
dataset. This led to the deterioration of the global model’s accuracy because it was trained 
on local datasets that have label-image inconsistencies. Experiments in our previous work 

demonstrate that these attacks are effective and achieve their corresponding goal resulting 
in a poisoned global model. Thus, these experiments indicate the need for a defence to filter 

the malicious updates and restore the performance of the model. 

A detailed visual description of the whole federated learning process with the 

malicious/benign clients can be viewed on Figure 3.1. 

 

 Figure 3.2 – Overview of the poisoning attack and aggregation mechanism within the 

federated learning framework. 

Here, we see that a federated learning system can contain both benign and malicious 

clients. In our simulation, the malicious client uses the local dataset to produce a poisoned 
dataset, which is later added to the original local data. Implementing this strategy, the 

malevolent participant can inject the desired behaviour into the global model (e.g., 
misclassify healthy images as suffering from Leaf blight) through the synthetic images. We see 
that the federated server gathers all the updates from the clients and then using a defence 

mechanism attempts to filter the malevolent ones. Next, the aggregated model is given to 
the clients for the next federated learning round. 

FL defences in MAD 

To battle the aforementioned attacks, we validated a number of federated defences. These 

defences are variations of the aggregation rule and, in general, try to filter out malicious 

clients by viewing the model updates sent from the clients. The basic assumption is that the 
model updates generated by malicious clients differ significantly compared to the benign 

ones’. This difference can be investigated in the parameter space, and one can measure 

 

1 https://data.mendeley.com/datasets/tywbtsjrjv/1  

https://data.mendeley.com/datasets/tywbtsjrjv/1
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the distance between model parameters separately or between whole models (the sum of 

model parameters). To measure this difference, common distances are the Euclidean 
distance, cosine distance, etc. Thus, we test our attacks against the defences of:  

• Median aggregation  

• Trimmed mean aggregation (with known number of malicious participants)  

• Krum aggregation  

The first two defences operate at the parameter level and treat each parameter separately. 

Thus, they can result in a partially poisoned global model where some parameters are 

aggregated using only benign updates and other parameters using both benign and 
malicious updates. On the other hand, Krum treats each model separately, and thus, in a 

federated round, it is possible for a completely poisoned local model to be selected as the 
global one. 

Label flipping mitigation 

Here we present a novel approach aimed at bolstering the defence against potential 
attacks in the federated learning system. Our method relies on the assumption that the server 

possesses a limited dataset consisting of pristine, labelled images, and can continue to train 
the model for a few more rounds after the client training phase. This technique serves to 
mitigate any malicious activity and rectify the model's performance. To elaborate further on 

the implementation details, we continue training the global model for an additional R = 5 
rounds on the server following the conclusion of the federated learning process. This 

extended training period allows the server to refine the model's performance further, thereby 
minimising the impact of any potential attacks that may have occurred during the federated 

learning phase. 

Metrics 

The confusion matrix is a table used to evaluate the performance of a classification model 

by comparing the predicted and actual class labels. In the case of multiclass classification, 
the confusion matrix is a square matrix with dimensions equal to the number of classes. Each 

row in the matrix represents the instances in a predicted class, while each column represents 
the instances in an actual class. 

The entries in the confusion matrix correspond to the number of instances that were classified 

correctly or incorrectly. The diagonal entries represent the number of instances that were 
classified correctly for each class, while the off-diagonal entries represent the misclassified 

instances. The sum of the entries in each row gives the total number of instances predicted 
in that class, while the sum of the entries in each column gives the total number of instances 
in the actual class. 

An example of a confusion matrix for a classification of 4 classes can be seen on Table 3.1. 
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Table 3.1 – Confusion matrix outcomes of multiclass classification. 

Classes A B C D 

A +correct values -wrong values -wrong values -wrong values 

B -wrong values +correct values -wrong values -wrong values 

C -wrong values -wrong values +correct values -wrong values 

D -wrong values -wrong values -wrong values +correct values 

Multiclass classification accuracy is a metric used to evaluate the overall performance of a 

classification model with multiple output classes. It measures the portion of correctly classified 

instances out of all instances in the dataset. Mathematically, let TP, FP, TN, and FN be the 
number of true positives, false positives, true negatives, and false negatives, respectively. Let 

k be the number of output classes. The accuracy metric can be expressed as: 

  

where TP + TN represents the total number of instances that were classified correctly, and TP 
+ FP + TN + FN represents the total number of instances in the dataset. 

3.1.3 Results 
This section presents a comprehensive overview of the experiments carried out to validate 

the proposed label-flipping mitigation approach. To assess the robustness of common 

federated learning aggregation algorithms, we evaluated the effectiveness of the two data 
poisoning attacks mentioned earlier. Specifically, we first test the secure aggregation 
techniques against these attacks and present differences compared to the federated 

average case. Next, we add the proposed solution on top of these defences and compare 
results. 

In this section we describe the implementation details of the federated learning process. We 

created a classic federated scenario consisting of multiple clients and a server that operates 
as the aggregator. We also divided the clients into malicious and benign and assumed that 

the malicious participants collaborate and launch a concurrent attack. Moreover, each 
client (malicious or benign) has the same number of samples, which are all independent and 

identically distributed. We also use a simple convolutional neural network as the global 
model which is not pretrained. Parameters for this process can be seen in Table 3.2. 
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Table 3.2 – Parameters of the federated training process. 

Parameter  Value 

Learning rate  0.001 

Local rounds 5 

Federated rounds 50 

Bening clients 70% 

Malicious clients 30% 

Batch size 32 

 

Model degradation attack 

In this case, a GAN is deployed on the malicious nodes with the intention of causing global 

model performance degradation. The adversary uses a GAN trained with all four classes. 

Using this model, the attacker generates samples of all four classes and later distributes these 
samples to the compromised nodes. Subsequently, each malicious node randomly assigns a 

class label to the generated images. Each local model will be trained on images that 
resemble the original ones but have random labels, which is something that confuses the 
classifier. It is noted that the poisoned dataset was created before the training process and 

is available at the beginning of the training procedure. 

Experimental results evaluating the model degradation attack for the cases in which there is 

no defence or some of the three defence mechanisms can be seen in Figure 3.3. Firstly, the 
blue line shows the case of no attack, where the FL system contains only benign nodes, and 

the aggregation is a federated average to be used as a baseline. The green line shows the 
accuracy of the proposed attack for the case of federated average aggregation as the 
training procedure progresses. Regarding the other four classes, the only thing that changes 

is the aggregation algorithm. Orange is median aggregation, red is Krum aggregation, and 
purple is trimmed mean. Specifically, we can see that there is a difference of around 25-30% 

in accuracy between the case in which no attack is realised and the case in which an attack 
has materialised with no defence in place. Moreover, regarding the defences, the model 

accuracy is improved when some defence mechanisms are adopted compared to the case 
of no defences. However, the improvement is approximately 5, 7, 5 percentage points for 
the median, Krum, and trimmed mean approaches, respectively. The low improvement in all 

three cases implies that these mechanisms fail to effectively identify the malicious nodes and 
that the poisoned updates are significantly infiltrating the global model. It is worth noting that 

in the case of the trimmed mean defence, we have assumed that the parameter n (number 
of malicious clients) is known beforehand, and thus, the defence should be more powerful. 
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Nevertheless, all three approaches consistently achieve an accuracy value below that of 

the global model, with the difference ranging from 5 to 20 percentage points. We thus 
assume that this kind of attack is stealthy mostly because the poisoning procedure closely 

resembles the training procedure and that the malicious nodes have both a poisoned and 
a clean dataset. 

 

Figure 3.3 – Accuracy of the classification model with different defence mechanisms. 

Targeted label attack 

In this case the test scenario includes 70% benign clients and 30% malicious. All benign clients 

have the same amount of data (images). The malicious clients generate images of a specific 
disease class, namely the leaf blight class, and then flip the label of the synthetic images to 
the one corresponding to healthy ones. The goal is to trick the model into classifying leaf 

blight images as healthy. This is indeed a targeted label attack, and the results could be 
catastrophic for a classification model. 

 



 

H2020 -957246 - IoT-NGIN  

 
D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust 

 

26 of 72 

  

  

 

  

Figure 3.4 – Confusion matrices for the targeted label attack with different defences. 

Results of the experiments conducted for evaluating the targeted label attack with the three 

or no defence mechanisms adopted are depicted in Figure 3.4. First, comparing the case 
with no defences to the case in which there is no attack, the attack appears to be successful 

for both the tasks of stealth and targeted label attacking. Specifically, this attack results in a 
model that greatly misclassifies leaf blight as healthy, but achieves similar accuracy 
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regarding the classification task for the other classes. In particular, 58% of leaf blight images 

have been categorised as healthy compared to 2.5% for the case of no attack. Regarding 
the effectiveness of the defences, they slightly improve the accuracy of this specific label. 

Specifically, with any of the defence mechanisms applied, the misclassification of leaf blight 
as healthy is approximately 51%. This happens since these methods are performed at the 
parameter level and not for the whole model. This happens because a specific set of 

parameters (e.g., biases of the last layer) may be easily identified as poisoned by the 
defences. However, viewing the results, we can assume that this set is small compared to the 

total number of parameters, and the bulk of the poisoned parameters are incorporated into 
the global model. Hence, it is obvious that these methods fail to select only benign client 

models, and the attack is deemed a success. 

Mitigation 

The results of the proposed mitigation approach are presented in Figure 3.5 the targeted 

label attack and Table 3.3 concerning the model degradation attack. 

 

Figure 3.5 – Confusion Matrix after applying the proposed mitigation technique. 

In the case of the targeted label attack, the method successfully mitigates the effects of the 

attack, as evidenced by the model no longer misclassifying leaf blight images as healthy. 
Additionally, the results for the other classes remain unchanged, indicating that the attack 
reduces the accuracy of different classes, and the attack is indeed targeted, as the 

accuracy of other labels remains relatively stable. 

Table 3.3 – Test set accuracy for the case of with/without mitigation. 

Mitigation Accuracy 

yes 62% 

no 50% 

In the case of the model degradation attack, the proposed method quickly alleviates the 

effects of the attack, with the model achieving the accuracy of a non-attacked model 
within only five additional rounds. This result represents a substantial improvement of 
approximately 12%. Overall, these findings demonstrate the effectiveness of the proposed 



 

H2020 -957246 - IoT-NGIN  

 
D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust 

 

28 of 72 

method in mitigating backdoor attacks while remaining simple and easy to implement. 

However, it is important to note that the approach relies on the assumption that the central 
server has access to a small dataset of clean labels, which may not always be feasible in 

real-world applications. 

3.2 Moving Target Defense Honeypots 
Moving Target Defense (MTD) Honeypots (solution 4) is an additional defence mechanism 

that was developed in order to alleviate an increasing number of threats that target IoT and 
FL systems and ecosystems. 

3.2.1 Motivation for MTD Honeypots 
MTD Honeypots framework constitutes a honeypot-based technical solution that also 

incorporates dynamic configuration capabilities. The term “Moving Target Defense” suggests 
the dynamic shifting of a system’s exposed resources in a continuous manner. In the IoT-NGIN 

project, the MTD term refers to the ability of the framework to alter the provided functionality 
and network configuration based on some input. 

The abovementioned capability is considered an effective countermeasure against 

contemporary cyberattacks. This is because the honeypots that are deployed in an IoT 
network are constantly changing their associated network and system configurations, which 

in turn makes the established honeypots hard to be detected by an adversary. At the same 
time, the MTD Honeypots framework succeeds in decreasing the attackers’ knowledge over 

an IoT system. 

Furthermore, Honeypots is a cybersecurity solution that capitalises on a manufactured attack 

surface which exposes a specific set of vulnerabilities that aim to attract cybercriminals’ 

attention. These measures allow for the legitimate targets to escape some of the adversarial 
attention. In addition, Honeypots can also be utilised for gathering intelligence about the 

identity, motivation and relevant attack patterns used by the attackers. 

MTD Honeypot framework is designed to work with the Vulnerability Crawler (VC) (solution 3) 

which is able to scan IoT networks and provide the results to the MTD Honeypots solution in  
order to drive the deployment of the most appropriate, and thus, effective honeypots.  

3.2.2 Description of the MTD Honeypots solution 
IoT-NGIN developed Honeypots framework utilises the IP randomization MTD technique in 

order to change the network properties of the attack surface exposed by the deployed 
honeypots. This section provides a summary of MTD Honeypots technical design as the 
detailed description was already provided in D5.2. Moreover, this section contains the 

descriptions of the additional updates that were applied to the developed framework. In 
short, this includes the incorporation of additional Honeypot tools and the creation of a HELM 

Chart that provides for easy installation. The high-level overview of the MTD Honeypots 
framework is presented in figure 3.6 below. 
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Figure 3.6 – IoT-NGIN MTD Honeypot framework overview. 

The heart of the developed MTD Honeypots framework is the Honeypot Manager (HM). HM 

interfaces with the VC and periodically queries for vulnerabilities that are identified in the 
target system. Based on this information the HM then selects the most appropriate honeypots 
that will be deployed in the IoT network. In addition, the volume of the vulnerabilities that 

have been detected by the VC suggest the number of honeypots’ instances that should be 
deployed in order to create a strong enough attack surface. 

The available Honeypot solutions are stored in the Honeypot Registry (HR). HR contains the 

list of the available honeypots and the associated meta-data that describes the set of 

vulnerabilities that can be exposed by each honeypot. Initially a limited number of honeypot 
solutions were included in the HR, namely Cowries and Log4Pot. However, as the 
development proceeded we opted to extend the available honeypot tools and to include 

two additional honeypot solutions, the ddospot and Dionaea.  

● Cowrie2 is a versatile honeypot and can be considered either as medium or as a high 

interaction SSH and Telnet honeypot designed to log brute force attacks and the shell 
interaction performed by the attacker. 

● Log4Pot is3 a honeypot that can detect the Log4Shell vulnerability (CVE-2021-44228). 

Log4Pot is able to listen on various ports for Log4Shell exploitation and detect 
exploitation requests observed in the request line and headers. 

 

2 https://github.com/cowrie/cowrie  

3 https://github.com/thomaspatzke/Log4Pot  

https://github.com/cowrie/cowrie
https://github.com/thomaspatzke/Log4Pot
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● DDoSPot4 is a honeypot "platform" for tracking and monitoring UDP-based Distributed 

Denial of Service (DDoS) attacks. 

● Dionaea5 is a low-interaction honeypot that captures attack payloads and malware. 

Dionaea is meant to be a nepenthes successor, embedding python as scripting 
language, using libemu to detect shellcodes, supporting IPv6 and TLS. 

Honeypot Deployer (HD) collects this information and subsequently creates the required 

workflows that aim to deploy and configure the necessary honeypots. HD was developed 
capitalising on the ArgoWorkflows CD framework. 

Then, the necessary honeypots are deployed and the Honeypot Logs Collector (HLC) is 

responsible for collecting the logs that are generated by the honeypot instances. The logs 

capture information that describe the adversaries’ activity within the honeypots and also 
include the attackers’ connection details. These logs are stored in a database. 

Finally, the Honeypot IP Randomization (HIPR) module facilitates the enforcement of the IP 

randomization technique for the deployed honeypots. Once the initial honeypot instances 
are deployed, they get a random IP address assigned to each one of them. This IP address 

is pulled by the available IP pool that the Kubernetes cluster uses for the deployed resources. 
HIPR is a job scheduler which works closely with Kubernetes Load Balancer. The purpose for 
this tool is to periodically execute jobs that change the IP addresses of the deployed 

honeypot instances. 

This MTD technique effectively prevents the attacker from identifying the honeypots, and 

thus, significantly lowers the possibility of the adversary to blacklist the exposed IPs that are 
assigned to the honeypots, keeping the legitimate part of the IoT network secure. 

The installation guidelines for successfully deploying the IoT-NGIN MTD Honeypots framework 

have been described in D5.2 section 8.3. The source code of the MTD Honeypots framework 
is available through the GitLab repository of the project6. Moreover, a HELM Chart has been 

defined for the Honeypot framework, which greatly simplifies the deployment process. The 
corresponding installation steps are described within the Readme that resides in the 

aforementioned repository. 

In this section we demonstrated the developed mitigation method that was able to mitigate 

common federated learning GAN-based attacks. This method relied on the assumption of 
having a small dataset on the aggregator which could be used to retrain the global model 
after the federated learning training had completed. Results showed that our methodology 

was able to remedy the results of the attacks achieving a 12% boost in accuracy. Moreover, 
we have completed the presentation of the early attack detection and mitigation 

cybersecurity tools by incorporating an overview of the MTD Honeypots design and 
implementation, highlighting also the tool’s latest technical updates. 

 

 

4 https://github.com/aelth/ddospot  

5 https://github.com/DinoTools/dionaea  

6https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/mtd-

honeypot-framework  

https://github.com/aelth/ddospot
https://github.com/DinoTools/dionaea
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/mtd-honeypot-framework
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/mtd-honeypot-framework
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4 Semantic Twins 
This section describes the Semantic Twin (ST) solution, which is used to describe the Real-world 

entities (e.g. IoT devices) and their Digital Twins (DTs) in a machine-readable manner as 
shown in Figure 4.1. The following subsections describe the motivation for building Semantic 
Twins and the details of the Semantic Twin solution. 

 

Figure 4.1 – A Semantic Twin describes a real-world entity and its Digital Twin forming an (entity) 

Triplet. The real-world entity may be a physical device, but also a more abstract real-world entity, 

such as an organisation. 

4.1. Motivation for Semantic Twins 
Recent years have brought us smart entities that consist of a physical entity and its Digital 

Twin (DT). However, DTs are currently not defined well enough to easily build scalable 
applications on top of them. Legacy Digital Twins are also missing the basic components 

needed for data privacy and trust, something the IoT devices themselves also often crave.  

The following subsections discuss issues in IoT systems and Digital Twins, lay out requirements 

for Semantic Twins, and describe the role of Semantic Twins. 

4.1.1 Issues in IoT systems and Digital Twins 
Legacy IoT devices are configured in a myriad of ways. While this approach has worked well 

for isolated use cases, it has not enabled IoT devices to act in a properly networked manner. 

Three important root causes are:  

● IoT devices are (in most cases) constrained in technical capabilities (e.g. limited 

computation capability, communication bandwidth, and power resources).  

● IoT devices require a high degree of security and trustworthiness due to being able to 

create damage in the real world. 



 

H2020 -957246 - IoT-NGIN  

 
D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust 

 

32 of 72 

● The lack of scalable technical solutions for traversing between the physical and digital 

worlds (e.g. conveniently accessing sensor data while being physically close to the 
sensor). 

Most of the technical constraints can be overcome with the usage of Digital Twin solutions, 

but achieving an adequate level of security and trustworthiness in a networked environment 
still requires new solutions. Digital identity solutions can be leveraged to solve some of the 

trustworthiness issues, but others need further types of arrangements, such as suitable data 
management architectures. 

Digital Twins are virtual counterparts of real-world things. From there on, the definitions 

diverge according to the underlying use case. The Digital Twin concept originated from the 

product lifecycle management domain in engineering and was adopted as a metaphor for 
a simulation model that is connected to a real-world machine. Simultaneously, the IoT 
domain developed concepts and solutions, such as digital agents and sensing technologies, 

that would later be integrated into the Digital Twin concept. Furthermore, many other digital 
technologies such as artificial intelligence and augmented reality have been associated 

with Digital Twins, making the concept fruitful ground for misunderstandings. 

For the purpose of this document, we define a Digital Twin as a collection of software services 

that are related to a real-world entity. Some of the software services may be accessible 

through the public internet, others only in an isolated network and running on local machines. 
All of these services may provide value for people dealing with the corresponding real-world 

entity, but there are no conventions on how to deal with these heterogeneous solutions. 

4.1.2 The role of Semantic Twins 
Semantic Twins are being developed in the IoT-NGIN project as a general solution for adding 

metadata to Digital Twins and real-world entities. While Digital Twins are complex digital 

services that can accomplish almost any digital task, Semantic Twins give context and 
meaning to Digital Twins and real-world entities by providing information about the services 

of real-world entities and their Digital Twins in a unified human and machine-readable 
format.  

Digital Twins consist of digital services that are related to the real-world entity. These services 

can be very diverse, such as a cloud-based IoT platform, simulation model, database, or an 
artificial intelligence agent. These services are also implemented in diverse ways and may 

be accessible in the cloud or only as local software that is run without internet access. The 
Semantic Twin needs to be able to provide its services in all of these situations. 

Semantic Twin is a solution for improving interoperability and they aim to make the 

integration of Digital Twins and their real-world counterparts more structured and efficient. 
To achieve this goal, Semantic Twins consist of three main components as shown in Figure 

4.2: Twin ID, twin document, and semantic descriptions, which are further detailed in section 
4.3. The Twin ID enables the identification of the Semantic Twin, and therefore, the ST-DT-

entity triplet, and this identification can be linked to the real-world entity and Digital Twin 
services through the descriptions. For example, an external service may access the database 

service of a Digital Twin via the Twin ID and the semantic description of that service.  
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Figure 4.2 - A detailed look into an entity triplet, showing the basic features of a Semantic Twin and 

how it describes the Real-world entity and the Digital Twin. 

As an example case, twin documents have been used in machine-to-machine 

communication in a simulated factory, where machines accessed the communication 
details and relationship descriptions of other machines from their twin documents to fulfil a 

logistics-related task [Mat2022]. This approach, however, assumes that all parties are trusted, 
limiting its applicability only to environments to where access is restricted from the outside. In 

the long term, Semantic Twins can help create a global network of Digital Twins. We call this 
network the Digital Twin Web due to the intended analogy to the World Wide Web as further 
explained in [Aut2021a]. However, in this wider open environment, the related trust and 

privacy issues require more advanced solutions as discussed later in this document. 
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4.2 Description of the Semantic Twin solution 

 

Figure 4.3 – Example composition of a system of systems that uses different features of Semantic 

Twins. 

The functional architecture of a system that uses the Semantic Twin solution is shown in Figure 
4.3. The twin document is the central component of the Semantic Twin, providing the main 

body of information. Other components in the green box provide various services for 
enhancing discoverability and trustworthiness of the solution.  

From the user perspective, the Semantic Twin journey starts from (1) the discovery of an 

identifier, which in this case is the GS1 Digital Link. It can be discovered via a QR code on the 
physical device or as a text string around the internet. The GS1 Digital Link (2) resolves via the 
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Domain Name System (DNS) to a GS1 Digital Link Resolver, which (3a) by default resolves to 

the twin document server, but may also (3b) resolve to a DID resolver when read with 
specially made software. The DID can then (3c) provide additional validation for the twin 

document. (4) The public part of the twin document is then sent to the user. If the user holds 
the appropriate credentials, they can also (5) read the private part of the twin document 
and modify it, and execute operations via an access management proxy server that (6) 

redirects the requests to the twin document. 

The user reads the twin document that describes the methods to access an IoT cloud service 

and a locally run simulation software. The user decides to (7) access the IoT cloud service 
with a (delegated) credential. Then, the user (8) accesses a simulation in a local environment 

with another credential that requires no internet access. 

To have a shared immutable history for the twin documents, (9) the twin documents are 

hashed and the hash is stored in a fast distributed ledger, which already provides a good 

level of confidence on the history. (10) At longer time intervals, the hashes are then grouped 
and stored (with salt to preserve privacy as discussed in Section 4.1.2) to a more secure 

ledger via a Decentralised Interledger Bridge (DIB) to further increase the confidence 
through this more secure ledger.  

As demonstrated by the description of the architecture, the main services of the Semantic 

Twin solution are: 

● Provide a description document of the real entity and its Digital Twin services. 

● Provide a resolvable ID for the entity triplet.  

● Provide validation of the twin document. 

● Manage access to the document and potentially to the device and Digital Twin. 

● Verify the history of the twin document, in both fast and secure methods. 

The three main topics, twin document, discoverability and trustworthiness, and semantic 

descriptions, of the Semantic Twin solution are further described in the following subsections. 

4.2.3 Twin document 
A twin document (Digital Twin description document) is a text document that describes a 

Digital Twin and its real-world counterpart. A twin document is supposed to be the initial 

source of information about a real-world entity in all use cases. As the document is text-
based, any dynamic materials are added as links or interface descriptions.  

The distinction between a twin document and a semantic description is that a twin 

document provides the overall format, and semantic descriptions are the actual contents 

written in that format. Hence, a twin document is kind of a shell for more detailed information. 

We currently use unstandardized formats for twin documents because no standard format 

fulfils enough requirements to be useful enough for the intended purposes. Unstandardized 

formats can be used in limited experiments and applications, but in the long term, a 
standardised format is required to achieve most of the benefits of Semantic Twins. Currently, 

the strongest candidates for twin document format are: 

● Asset Administration Shell (AAS) [AAS]  
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● Web of Things Thing Description (WoT-TD) [WoT-TD] 

● Digital Twin Definition Language (DTDL) [DTDL] 

● Next Generation Service Interfaces-Linked Data API (NGSI-LD) [NGSI-LD] 

Those were compared by [Jac2020]. We currently balance between the solutions, but have 
decided to use JSON-LD as the format of our twin documents. We added support for JSON-
LD to the open-source twin document hosting software “Twinbase” [Twinbase] and 

developed the Semantic Twin ontology in a format that supports JSON-LD. The general 
concept of the twin document was introduced by [Ala2021] and a method to distribute them 

was introduced by [Aut2021b]. To be clear, the term twin document refers to the overall 
concept and not any specific style of implementation. 

4.2.2 Discoverability and trustworthiness 
The discoverability and trustworthiness of Semantic Twins are achieved with various 

identifier/identity and distributed ledger solutions. Discoverability is implemented with a “Twin 
ID” concept, whereas trustworthiness is a more complex combination of Twin ID and other 

solutions such as Verifiable Credentials (VCs) for third-party information, with a special focus 
on distributed ledgers to provide an immutable history for the ST. 

The term “Twin ID” refers both to the identifier and identity solutions of Semantic Twin systems. 

We use both of these terms because they are conceptually different and have different 
technical implementations, but still either of those might be needed depending on the use 

case. Some Semantic Twin use cases may require a full-fledged identity solution with 
advanced features, such as verifiable credentials, whereas other cases might require 

anonymity and therefore use temporary identifiers for privacy reasons. Also, depending on 
the use case, separate IDs may be needed for each Digital Twin service as well as the real-
world entity. In addition to one-way linking from a Semantic Twin to a Digital Twin, it may also 

be beneficial to implement a bidirectional linking. For example, a Digital Twin service may 
update its own description in the Semantic Twin to keep it up to date, or a Digital Twin service 

may use the credentials administered by the Semantic Twin to access restricted information 
in other Digital Twins. 

Three main methods of Twin IDs have been identified: a plain URL, a GS1 Digital Link, and 

DIDs of different methods. Twin ID technologies are still under development, and we use 
simplified solutions to get started immediately. A baseline solution for a Twin ID is to use a 

dedicated URL as an identifier for a twin so that the URL is redirected to the corresponding 
twin document. This however does not allow more granular features that the use of GS1 

Digital Links and DIDs enable. GS1 Digital Links enable several redirects from one URL, and 
DIDs enable e.g. short-lived identifiers and the assignment of a verifiable credential that can 
be used to access various services.  However, simple URL redirections are readily available 

on the internet for free, whereas GS1 Digital Links require hosting or paying for a server, and 
DIDs require that the user holds and uses cryptographic keys correctly. These may not be 

obstacles for organisations with strong research and development capabilities, but may 
hinder at least short-term adoption in more production-oriented organisations. The initial 

versions of the Twin ID concept and the Digital Twin identifier registry along with their initial 
PoC implementations with URLs were described by [Aut2021b]. 

Trustworthiness can be increased via Twin ID solutions on various levels. Trusting a plain URL or 

GS1 Digital Link requires that the DNS itself and the holder of the domain are trustworthy. 
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Additional trust can be established by signing URLs or documents with DIDs, although this 

requires that the user knows and trusts the signer. DIDs can also create decentralised chains 
of trust through the use of verifiable credentials. The chains can be used e.g. for delegating 

access management rights to a system through a chain of organisations. The VCs can also 
be used to issue trustworthy third-party statements about the ST, DT and/or the real-world 
entity. For instance, a certification authority can issue a statement that a specific IoT device 

has been correctly installed and calibrated, and therefore, produces trustworthy data. 

Distributed Ledger Technologies (DLTs) can be used to provide immutable history for twin 

documents by storing each version of the twin document to the DLT. This makes it easy to 
check the contents of each version and when they were created simply from the DLT. 

However, a twin document can be quite large, so storing the whole document to the DLT is 
not necessary for the immutable history, we can simply calculate a hash of each version and 
store only the hash. This saves a lot of space and costs on the DLT, but requires the twin 

documents themselves to remain available elsewhere for verification. An additional benefit 
of only storing a hash is that the contents of the twin document are not exposed publicly, but 

the existence of the hash at a certain time in the ledger proves that the twin document (with 
that specific contents) existed at that point of time. The trustworthiness of the DLTs varies and 
usually correlates with the costs of using that ledger: a lower degree of trustworthiness can 

be achieved by storing the hash to a fast and cheap ledger, whereas a high degree of 
trustworthiness requires storing the hashes to a globally known secure (and usually also 

expensive) ledger. A convenient solution is to leverage an interledger solution to achieve a 
high level of trust while keeping the cost low, as detailed in Section 5. There we can also use 

a nonce (salt) in the hashing process to prevent tracking of twin documents across ledgers 
for improved privacy. 

4.2.4 Semantic descriptions 
Semantic descriptions are the contents of twin documents. The use of globally shared 

ontologies makes the twin documents machine-readable across different implementations 
and is a key factor in enabling interoperability of real-world data across services. 

For example, a visualisation software for city data can fetch the details of a data interface 

of a sensor device via a Semantic Twin, so that the user only needs to insert the Twin ID of the 
sensor to the visualisation software. Thanks to the semantic descriptions, the software will 

know the type of the sensor and visualise it in the correct way: a radar will be shown as a 
radar in the correct location and the observations of the radar will be included in the 

visualisation automatically. 

A problem with using globally accepted ontologies for the semantic descriptions of twin 

documents in practice is that they do not currently cover enough use cases with high enough 

precision. Ontologies may also be difficult to find and many of them are not documented in 
a way that would enable fast adoption by people who are not deeply familiar with the 

conventions of the semantics field. In some cases, it may be necessary to create a new 
ontology, but the creation and publishing of them requires even more profound 

understanding of the conventions. We attempt to ease the barrier for adoption by 
introducing an ontology dedicated to Semantic Twins, described in the next section. 
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4.2.5 SSI API to Semantic Twin 
To prove the technical feasibility of the overall Semantic Twin approach, we implemented 

the access management proxy server (the IAA proxy detailed in Section 6.1) shown in Figure 
4.3. We use a research originated open-source software Twinbase [Twinbase] as a twin 
document server. However, the only method to modify twin documents in the original version 

of Twinbase is by Git operations. Hence, we developed first a wrapper server that transforms 
HTTP-based CRUD (Create, Read, Update, Delete) requests to Git operations. That wrapper 

server however needs an access management solution, for which we leveraged the access 
control proxy from T5.4 that allows us to use delegated VCs for access management. We call 
the combination of these two servers the Twinbase SSI API as shown in Figure 4.4. The 

Twinbase SSI API is the implementation of the conceptual SSI API to Semantic Twin. The source 
code for Twinbase SSI API can be found in GitHub [TB-SSI-API]. 

 

 

Figure 4.4 – Technical implementation of SSI API for Semantic Twins. Orange arrows depict the 

process of updating access requirements. 

The process of using SSI API to Semantic Twin is as follows. 

● 0. Owner of a semantic twin configures the SSI API for a selected semantic twin hosting 

server. 

● 1. Owner gives credentials to an installer technician to access and/or modify the 

semantic twin, 
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● 2. The installer sends a CRUD request to the SSI API, which forwards the request to the 

semantic twin. 

● 3. The semantic twin returns the results to SSI API, which forwards them to the installer. 

To allow a user friendly and efficient process, a credential app and installer app should be 
used when communicating with the SSI API. These apps are, however, use case specific and 
were not developed as part of the semantic twin solution. However, a demo installer app is 

being prepared as part of the Smart City LL in WP7. 

The SSI API dynamically determines the required user privileges according to information 

found from the semantic twins. In the current implementation, the SSI API reads the semantic 
twin document to check if the Neighbourhood7 class of SAREF extension for Smart City 

ontology [SAREF4CITY] is defined under the location8 class of WGS84 Geo Positioning 
vocabulary [WGS84voc]. If a neighbourhood is found, the SSI API mandates that anyone who 
wants to access that semantic twin has to hold a credential to access that specific 

neighbourhood. 

The motivation for the SSI API comes from the IoT devices configuration demo described in 

Section 7.1, although the SSI API also works as a general method for privacy-preserving 
access control for semantic twins in any use case, where the owner and user can use apps 
that handle the use of identities and credentials. 

4.2.6 Semantic Twin DLT integration 
To anchor the history of semantic twins in a reliable way, the semantic twin solution was 

integrated to a DLT. To preserve privacy while taking advantage of the reliability of a public 

ledger, only hashes are stored in the ledger. This approach also lowers the costs of using the 
ledger. 

The DLT integration was implemented to the Twinbase software. Twinbase generates hashes 

for the twin documents and pushes the hashes to a ledger. The Twinbase user interface also 
provides a button to verify if the document has been anchored in a ledger, showing the 

name of the target ledger and the time when the hash was stored. 

 

Figure 4.5 – User interface showing the button to validate a document (a) and the result of the 

validation (b). 

 

7 https://saref.etsi.org/saref4city/Neighbourhood  

8 http://www.w3.org/2003/01/geo/wgs84_pos#location  

https://saref.etsi.org/saref4city/Neighbourhood
http://www.w3.org/2003/01/geo/wgs84_pos#location


 

H2020 -957246 - IoT-NGIN  

 
D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust 

 

40 of 72 

The source code of the Twinbase with DLT integration can be found on GitHub [TwinbaDLT]. 

Instead of storing the hash directly to a public ledger, which may be so expensive that the 

benefit does not outweigh the costs, the hash of multiple twin documents may also be stored 

in a smart contract in a private ledger, which at suitable intervals combines the hashes and 
sends an event to an interledger, which transfers the hash to a smart contract in a public 
ledger. This public ledger can be used to validate a single twin document. This way, the user 

can enjoy the cost-efficiency of a private ledger while also taking advantage of the reliability 
of a public ledger where necessary. 

The DLT integration for semantic twins is, in addition to the general benefits of anchoring the 

history, motivated by the Smart Factory use case. It is typical that powertrain operators need 

to make some configuration changes for powertrain components. For example, some 
parameter changes are typical when a process is to be optimised. Normally these kinds of 
changes mean behavioural changes in powertrain operation. It is obvious that there should 

be a way how these changes will be implemented in the digital version of the product as 
well. In some cases digital twins are used to simulate behaviours of real world entities. 

The proposal for a regulation on cybersecurity requirements for products with digital 

elements, known as the Cyber Resilience Act, requires that mentioned changes in digital twin 
documents must be documented in the proper way [Cyber2022]. The idea is that all the 

changes can be tracked from semantic twin document history, and the operator can check 
what software version was used and what was the parameter setting. 

4.3 The twinschema.org Semantic Twin ontology 
One primary goal for the Semantic Twins is to enhance interoperability in the domain of 

Digital Twins. Semantic technologies are a key enabler for interoperability of heterogeneous 

data and information exchange. This goal is achieved by creating a specialised ontology for 
the domain of semantic twins. Semantic technologies and ontologies were already 

introduced in [D5.3] and [D5.4]. Therefore, only a brief summary is given here. 

The "Ontologies" and "Vocabularies'' are exchangeable in this context and can be defined 

as follows: Vocabularies define the concepts and relationships (also referred to as “terms”) 
used to describe and represent an area of concern [Ont2022]. Ontologies focus on providing 
the vocabulary and the relations for a domain. They seldom incorporate information about 

individuals and instances of the classes, unless these incorporate some fundamental truth in 
the respective domain. Thus, the primary use case of an ontology is to provide knowledge 

about the relations and to define annotation points for actual data. The latter is then known 
as "linked data", and is for instance used by websites to give search engines more in-depth 

knowledge about their content. 

Semantic Twins build upon this concept by using an ontology created for semantic twins to 

provide meaning to the data in a digital twin document. This way, algorithms can infer 

information about the twin and the real-world entity and new use-cases like the exchange 
of twins or the automatic aggregation of heterogeneous data are possible. 

In [D5.4] the semantic twin ontology was already presented, and didn't require major 

overhauls for this final version. In the following we will summarise the basic concepts in the 
ontology, explain the changes since the initial version and describe the development 

procedures for future enhancements. 
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Figure 4.6 – Main Classes in the Semantic Twin Ontology. 

Semantic Twins describe the essential information about a Digital Twin, namely the identity 

and owner of the Digital Twin, its real-world counterpart, access rights and terms of use, and 
relations to other Digital Twins. The main classes forming the Semantic Twin Ontology can be 

seen in Figure 4.6, where we find a central SemanticTwinDescription class containing relations 
to the relevant classes covering the aspects of the Semantic Twin. The class 

SoftwareServiceDescription describes the Digital Twin, whereas RealEntityDescription 
describes the physical counterpart. It can be observed that these have a described relation 

to a generic class, which can be set as a superclass to classes coming from other ontologies, 
which are focusing on their special domain. Thus, the Semantic Twin ontology can be used 
as a link between these ontologies. The different meta information of the Digital Twin do have 

their respective classes that reuse standard ontology classes where possible (e.g., the friend-
of-a-friend (FOAF) ontology or the DBpedia ontology). Figure 4.7 uses a fictional example of 

a powertrain by the partner ABB to illustrate the use of the ontology. 

Since the previous version, the most significant changes to the ontology were the usage of 

owl:dataProperty, which is meant to "connect individuals with literals" [OWL-W3]. These allow 

us to specify types of literal data, such as strings or integers, to be connected to individuals 
in the ontology. In the context of semantic twins, these are especially useful, as e.g., the 

name of a Twin or the human-readable description are such native data types. The 
twinschema.org ontology contains the following dataProperties: DID, Random Number 

TwinName, URL, as well as hasDescription, which contains three subclasses: 
hasCloudServiceDescription, hasRealEntityDescription, and hasSemanticTwinDescription. 
This is separated, as the "Domain" (the classes that the property is assigned to) of these 

properties must differ. Otherwise, a reasoner would conclude that a CloudService and a 
RealEntity are the same thing, as both have a hasDescription property. 
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The ontology can be found at the project's GitLab repository9. We also use Gitlab Pages to 

provide an interactive ontology documentation browser, as is shown in Figure 4.7. This 
documentation is created using the "ontology-browser" plugin from Protégé10. This might be 

enhanced by using another tool for the html generation, but an extensive research on 
available alternatives could not bring up viable alternatives yet, as all results were either 
highly customised, undocumented or outdated. 

 

Figure 4.7 – Application of the ontology to a fictional powertrain example use case.  

 
Figure 4.8 – The Ontology documentation browser on https://ontology.twinschema.org. 

 

9https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/semantic-

twins/semantic-twin-ontology  

10 https://github.com/co-ode-owl-plugins/ontology-browser  

https://ontology.twinschema.org/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/semantic-twins/semantic-twin-ontology
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/semantic-twins/semantic-twin-ontology
https://github.com/co-ode-owl-plugins/ontology-browser
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The ontology for the powertrains in UC8 has been developed as described in previous 

sections. The main elements were taken into account in the solution so that suitability and 
usability of semantic twin approach can be tested. 

However, in reality there are huge amounts of different setups in real applications: e.g. the 

number of main components like motors and drives can be different, depending on 
installations different sensors may be used, and there could be different kinds of users for 

powertrains. This means a lot of different needs and therefore it is not possible to include all 
needed ontologies for powertrain in this exercise. It is important to know what the possibilities 

are when using this kind of approach. At this point it is obvious that semantic twin approach 
is a good framework for UC#8. 

Keeping the different needs in mind, the following aspect merit further consideration in the 

future: 

● How to modify semantic twin document content easily as there are a lot of variations 

in powertrain setups? Manual work should be avoided and user-friendly interfaces 
should be available for operators. 

● What is the automated procedure to add new data to twin documents? 

● What are the required actions to add e.g. a new sensor for the system? 
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5 Decentralised Interledger solution  
This section presents the Decentralised Interledger Bridge (DIB) solution. First, the section 

summarises the need for multi-ledger transactions and how they can be met with a suitable 
interledger solution, the IoT-NGIN requirements for the interledger, and the existing 
interledger approaches. Based on the requirements, the Flexible Interledger Bridge (FIB) 

[Wu2021] developed in the EU Horizon 2020 project SOFIE [SOF2021] was chosen as the basis 
for developing a decentralised solution, the Decentralised Interledger Bridge (DIB). More 

details about available multi-ledger solutions and rationale for selecting the FIB as the basis 
of DIB can be found in IoT-NGIN deliverable D5.3 [D5.3]. The rest of the section details the DIB 

solution, both the original Ethereum DSM version and the more recent High-Throughput Fabric 
DSM version. 

5.1 Motivation for Interledger 
Interledger technologies enable transactions that span two or more distributed ledgers. This 

section summarises why a separate technical solution is required for linking the ledgers, what 

benefits this approach enables, and what requirements a good interledger solution has to 
meet to be able to address the needs of IoT-NGIN. 

5.1.1 Need for multi-ledger transactions 
Distributed Ledger Technologies (DLTs) have been developed for over a decade, and they 

have been widely adopted due to the immutability and transparency provided by the 
decentralised secure storage, the distributed trust ensured by sophisticated consensus 
algorithms, and the automatic execution within the system enabled by features such as 

smart contracts [Zha2019]. According to their individual design goals, different DLTs have a 
varying emphasis, including the accessibility of data on the ledger (i.e., who is allowed to 

read or write on the ledger), the consensus mechanism adopted to reach agreement on 
ledger status, and the range of supported functionalities. 

As DLTs have been deployed to more application areas, it has become clear that no single 

DLT is suitable for all use cases. Sometimes even the requirements of a single complex use 
case can easily exceed the strengths and capabilities of any single DLT. In such situations, 

combining multiple DLTs with different strengths and features can be a beneficial approach 
as it enables new functionality [But2016]. For instance, it might help improve the data integrity 

by utilising a highly trustworthy public ledger, while reducing the cost and latency of a system 
by keeping most of the heavy-lifting business logic in private ledgers. 
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Figure 5.1 – An IoT-based system combining multiple DLTs. 

A typical example are Internet of Things (IoT) systems, where an information sharing 

mechanism across multiple DLTs could help resolve the security, maintenance, and 
authentication issues in an automated manner [Has2019]. As illustrated in Figure 5.1, it is 
typical that IoT devices and services are connected to and backed by private distributed 

ledgers of individual vendors so that, e.g., the devices and equipment for a smart home 
interact with Ledger A, and the automobile sensors and circuits work together with ledger B. 

Then, a public ledger could be used for providing services for authentication and payment, 
and interlinking these three DLTs would enable a more complex (eco)system with additional 

functionality, e.g. payment services could be used with automobile ledgers at electricity 
charging stations. 

5.1.2 Requirements of IoT-NGIN 
The Interledger solution being developed (from here on: interledger) will be used in the IoT-

NGIN project in several ways including Twin Smart Cities, Industry 4.0, and Smart Energy living 
labs, and also the Semantic Twins use case from WP5. Furthermore, the IoT-NGIN architecture 
is expected to introduce many other uses for the interledger beyond the IoT-NGIN project 

itself including the IoT-NGIN open calls. 

More specifically, in the Smart Energy Grid Living Lab the energy marketplace data needs to 

be stored. In WP3, trusted AI is targeted for machine learning: Zero Knowledge Proofs (ZKPs) 
of training datasets and trained machine learning models together with its parameters can 

be automatically stored on DLTs in form of hash values and later utilised for verification by 
third parties to ensure they have not been tampered with, while no actual data is released 
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on the DLTs. Finally, Semantic Twins in WP5 utilise DLTs in a similar pattern, to ensure the 

integrity of twin documents. 

All the above use cases require auditability for logged data, but storing everything in a highly 

trustworthy public ledger would result in high costs and expose all data to potentially prying 
eyes. The low throughput of public ledgers can also become a problem in some cases. 
Storing everything in a private ledger would protect privacy, provide better throughput, and 

slash costs, but would also lack the high level of trust. A solution is to store the data in the 
private ledger and then leverage an interledger to automatically store a hash of the data 

at suitable intervals to the public ledger. To improve privacy, this hash can also be salted by 
adding a random number to the calculation of the hash value to prevent guessing the data 

stored in the public ledger. This way, it is easy to verify whether the data in the private ledger 
has been tampered with while the overall costs are kept significantly lower as the usage of 
the expensive public ledger is reduced drastically. 

Based on these different uses discussed above, 7 key requirements for the interledger solution 

can be identified as listed in Table 5.1 (table 2.1 in D5.3) and are detailed in the following 

text.  

● REQ_IL_NF01: The interledger must be able to support the transfer of different types of 

data (so this excludes e.g. interledger solutions that focus exclusively on value 

transfers). Also, depending on the use, different types of DLTs may be utilised as part 
of the system, so the interledger solution has to be adaptable to different DLTs with 

relative ease. 

● REQ_IL_NF02: The interledger must guarantee that the transactions across the ledgers 

are atomic, i.e. they happen completely on all the involved ledgers or not at all. 

● REQ_IL_NF03: The interledger must provide transparency to the operations so that the 

correct operations of the interledger can be verified based on the data on the 

ledgers. 

● REQ_IL_NF04: The interledger must operate so that non-repudiation for all parties of 

each individual transaction is guaranteed. 

● REQ_IL_NF05: The interledger must be designed so that it can support a large number 

of transactions per second. 

● REQ_IL_NF06: The interledger should minimise the overhead (cost, performance, 

storage etc.) for the application utilising the component for cross-ledger 

communication. 

As detailed in D5.3, a centralised bridging solution, the Flexible Interledger Bridge (FIB) 

[Wu2021] developed in the EU Horizon 2020 project SOFIE, already meets all of the above 
requirements. However, as a centralised solution, it suffers from the known limitations of all 
centralised solution, namely higher trust requirement on the party running the bridge and 

lower resiliency. Therefore, the requirements list include one last requirement: 

● REQ_IL_NF07: The interledger itself must support decentralisation, i.e. that the 

functionality is provided by a consortium of parties so that none of them can 
misbehave in any data transfer (e.g. change data payload, report invalid ledger 

transaction, or reject the transfer) without being detected by others. As a contrast, an 
interledger run by a single party has several limitations: the party has to be trusted by 
all users and it forms a single point of failure that can also pose problems for the 
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resiliency and performance of the solution; a decentralised interledger helps address 

these limitations. 

Table 5.1 - Requirements for the interledger solution [D5.3]. 

ID Requirement Description 

REQ_IL_NF01  

 

Generality  Must support general-purpose data transfers and be easily 
adaptable to different types of distributed ledgers. 

REQ_IL_NF02  Atomicity  Must guarantee atomicity of transactions across the ledgers. 

REQ_IL_NF03 

 

Transparency  Must be transparent enough that the correct operation of all 

transactions can be verified based on the data on the ledgers. 

REQ_IL_NF04  Non-repudiation Must support non-repudiation so that the participants to a 
transaction cannot later deny their actions. 

REQ_IL_NF05  Scalability  Must support a large number of transactions per second. 

REQ_IL_NF06  Efficiency  Should keep the application overhead low. 

REQ_IL_NF07 Decentralisation Must support decentralisation, where the interledger is run by a 

consortium of parties 

5.2 Detailed description of the developed solution 
This section describes the Decentralised Interledger Bridge (DIB) in more detail. The DIB 

implementation has been published as open-source11. 

Compared with its single node predecessor, the decentralised architecture of DIB design 

provides the shared trust among a consortium of participants for interledger transactions, 
while improving the resiliency of the interledger data transfer via redundancy of nodes. To 

achieve a reasonable decentralised architecture for interledger, it is critical to make the 
following assumptions: 

● Endpoints, which typically are smart contracts on DLTs, at both source and destination 

of a data transfer will implement the interfaces required by DIB. 

● All interledger nodes in a consortium (regardless of the party controlling the node) 

have the same access to the endpoints, including both read and write operations. 

● All nodes are equal in the sense that there is no special or admin node with superior 

functionality or access rights. 

 

11https://gitlab.com/h2020-iot-

ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-

dib. 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-dib
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-dib
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-dib
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Figure 5.2 – DIB architecture consisting of nodes (Nx), bridge instances (Bx), and smart contracts 

(SCx). 

The high-level structure of the DIB design is illustrated in Figure 5.2. The architecture consists 

of identical DIB nodes implementing the bridge functionality and a Decentralised State 
Management (DSM) layer in the centre for synchronising the nodes. In the illustration, 

endpoints (typically smart contracts on a distributed ledger) of each connection are ignored 
for simplicity. The Connection Smart Contract (SCx in the figure) on DSM manages 

unidirectional interledger transfers between certain endpoints. 

In this decentralised architecture, the interledger nodes should always have access to the 

DSM layer that is shared among the consortium of partners. The current implementation 
supports use of Ethereum and Hyperledger Fabric for the DSM layer. Ethereum was chosen 
due to wide availability of tools and ease of deployment. However, Ethereum has not been 

designed for a high throughput, therefore Hyperledger Fabric should be used as a DSM layer 
in situations where the high performance is needed. DIB also supports a local state manager 

which resides in the node’s memory for cases where the extra resilience is not necessary and 
a single-node setup is sufficient. The local state manager also has higher performance than 

DSM as it does not have to synchronise the activities with other nodes. 

While all the nodes have access to the DSM layer, only a single node should perform a 

transaction to the endpoint ledgers. Here DIB supports a timeout mechanism to provide extra 

resiliency:  if the node that is supposed to perform an endpoint transaction does not perform 
it within a certain amount of time, which is freely chosen by the deployer of the DSM, another 

node will take over this task. 

There are two alternative versions of the DIB with different emphases. The original Ethereum 

DSM based DIB (described in D5.4 [D5.4]) focuses on active monitoring of the nodes to ensure 
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high trustworthiness and quicker recovery from unfinished transactions, but at the cost of 

lower throughput. The newer High-throughput Fabric DSM based DIB has the opposite priority 
by focusing on throughput at the cost of less active monitoring and slower recovery. 

5.2.1 Data flow of the Decentralised Interledger using 
High-Throughput Hyperledger Fabric DSM 
The downside of the active monitoring in the Ethereum based DIB is that it reduces the 

throughput of the bridge. To address this, an alternative DIB design based on Hyperledger 
Fabric has been developed to emphasise the throughput at the cost of monitoring and 
recovery speed. While the architecture of this Fabric DSM is different, the overall goal is the 

same as with the previous design: to increase the resiliency and trustworthiness of the bridge 
by supporting the collaboration of 1-N nodes that together provide the service, ensure that 

the other nodes have performed their work correctly, and (after the defined timeout) take 
over for failed nodes. 

In the Fabric DSM implementation, the coordination between nodes and the tracking of the 

transfer process is minimised: one node is chosen to independently carry out the complete 
transaction and then write the outcome to the DSM. The other nodes then verify the 

transaction was carried out correctly and indicate their agreement with silence (i.e. they only 
write to the DSM if they disagree with the transaction). Alternatively, if the DSM write about 

the completed transaction fails to materialise within the (relatively long) timeout window, the 
failover node will start the recovery process and take over the transaction.  

This design significantly reduces the time each node has to interact with the DSM and also 

reduces the load on the DSM, which in both designs will be a bottleneck after enough nodes 
have been added to the bridge. As a downside, this Fabric-based DSM does not support 

real-time monitoring of the transfer process, which results in much slower detection of 
anomalies. Further, the transfer timeout needs to be significantly longer than in the Ethereum 

based DIB as the whole transfer process including the client ledger processing all needs to 
be able to complete before the timeout is triggered, so recover from e.g. a node crash will 
take longer.  

Furthermore, the recovery process was re-designed to support the new design where DSM 

doesn't have the intermediate states but the node taking over in a case of failure has to 

figure out the state of the transfer by querying initiator and responder ledgers. Also, the 
verification process was re-designed. Transfer is reported to the DSM layer only at the 

completion of the transfer to minimise the slow down due to the large number of DSM 
transactions. 4) Finally, the technology of the DSM layer was changed from Ethereum to 
Hyperledger Fabric for higher performance, and the different architecture of Hyperledger 

Fabric was utilised in the architecture of the DSM layer operations. 

 

Coordination of the Transfer Process 

In the Fabric-based DIB, each transfer is dedicated to one node, whereas in the previous 

design nodes compete to take the next action in each step of the transfer. The idea of the 

competition is to increase the trustworthiness of the bridge by distributing the responsibility to 
multiple nodes. However, it requires recording every step of the transfer to the DSM layer to 

coordinate the process between the nodes. This dependency to the DSM layer during the 
transfer process makes it a bottleneck of the overall throughput. Thus, in the new design the 
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dependency to the DSM layer was reduced drastically. The transfer is only recorded to the 

DSM layer for auditioning after the transfer is finished. Further, each transfer is dedicated to 
one node to avoid the need to communicate and synchronise between the nodes during 

the transfer. 

This is achieved with a scheduling similar to round robin where nodes take turns to conduct 

transfers. As the new design follows the same principle as previous designs, clients are 

allowed to use arbitrary ids, even colliding ones, and thus the bridge has to generate a 
unique internal id for each transfer. The unique transfer id is generated with a deterministic 

algorithm based on the details of the source transaction, enabling each node to 
independently generate the same id. The transfer is assigned to a node by calculating the 

modulo of the transfer id and the node count, which results in the node id that the transfer 
will be assigned to. As transfers are assigned to nodes by deterministic algorithm, the ids are 
shuffled with a hash function to make it harder for the potentially malicious client to predict 

the node the transfer will be assigned to. The objective is to prevent a denial-of-service (DoS) 
attack where one node would be crashed by crafting transfer of which all would be assigned 

to that node only. The modulo based algorithm that assigns the transfers to nodes requires 
the number of nodes to be known and also the nodes need to have consecutive ids. The 
disappearance of a node will be taken care of by the recovery process, but adding new 

nodes requires updating the node count and ensuring the numbering remains consecutive. 
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Transfer Process (Phases I-III) 

 

Figure 5.3 – Interledger transfer process using Hyperledger Fabric based DSM. 

The transfer process consists of 3 phases as illustrated in Figure 5.3. 

 

Phase I: Receive Transfer 

1. All nodes will receive the InterledgerSending(id, data) event from the source ledger 

(Initiator). 

2. All nodes calculate the unique transfer id with a deterministic algorithm based on the 

details of the source transaction, resulting in the same id in all the nodes. 

3. The function is_my_duty() decides which node will start the transfer process, based on the 

id of the transfer and the id of the node. 

4. Other nodes will internally register the transfer for monitoring the possible timeout in the 

process. 

5. All nodes also store the identifying information of the originating event to the in-memory 

transfer object for later use. 
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Phase II: Send Transfer (node in charge) 

1. The node in charge of the transfer calls interledgerReceive(id, payload) in the responder 

smart contract, where id is the unique id generated in the previous stage and data or 
payload is the content that is being transferred. (id is passed to the functions so that the 

event sent as an acknowledgement can be identified) 

2. Responder smart contract will respond with an event of either 

InterledgerEventAccepted(id) or InterledgerEventRejected(id) depending on whether the 
recipient accepted or rejected the transfer. The response event can be connected to the 

right transfer with the id. 

3. Identifying information of the data sending transaction is stored to the in-memory transfer 

object for later use. 

 

Phase III: Confirm Transfer (node in charge) 

1. The transfer will be acknowledged as committed or aborted to the initiator using 

commit_sending(id) or abort_sending(id, reason) functions in the initiator adapter and 
interledgerCommit(id) or interledgerAbort(id, reason) functions in the initiator smart contract 

respectively, based on the response received in the previous stage from the responder 
ledger. The id is the identifier of the data item in the originating ledger and it was stored in 

the node in the first stage, as mentioned.  

2. Identifying information of the acknowledging transaction is stored to the in-memory 

transfer object for later use. 

3. After the transfer process is completed, it will be recorded to the DSM to indicate whether 

it was successful (committed) or not (aborted), using recordTransfer(transfer) function, where 

the transfer parameter is basically the in-memory transfer object, which represents all the 
critical information of the whole transfer process. Calling recordTransfer() emits 

EventTransferCompleted event if the function is successful, and thus notifies other nodes 
about the completion of the transfer. 

 

Recovery Process 

Recovery process is designed for handling scenarios where the node in charge of 

conducting the transfer doesn't do its job as expected, for instance due to crashing. Similarly 
to the transfer process, the recovery process is also designed so that the nodes don't need 
to communicate with each other to coordinate the process, keeping the synchronisation 

and thus the utilisation of the DSM layer minimal. There is a pre-defined time window for each 
node in which transfer needs to be completed or it will be taken over by the next node. 
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Figure 5.4 – Recovery process of Interledger transfer. 

All nodes continuously scan all the transfers in their registries to detect transfers that have 

timed out. As described earlier, transfer is assigned to a node based on a unique internal 

transfer id and id of the node, but there is also a component that increments over time, more 
precisely over the timeout period, and thus the node selection is rolling. This mechanism 

guarantees that if a node becomes unavailable, responsibility for the transfer will eventually 
be assumed by another node without requiring explicit coordination between the nodes, 
and the transfer will be resumed. 

When the timeout procedure activates, it starts by checking where the process was left 

unfinished and then continues from there as normally, as illustrated in Figure 5.4. 

 

Verification Process (Phase IV) 

To enable auditing, and thus, increase the trustworthiness of the DIB, all transfers are reported 

to the DSM after completion to generate an auditable log of the transfer process, including 
identifying information of each step of the transfer process. When a transfer is reported as 

completed to the DSM, the DSM also informs every node about the completed transfer that 
can be audited, and if flaws are detected, transfer can be flagged by voting for rejection. 
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Compared to the previous design of the DIB, endorsing is signalled by silence to reduce the 

load of the DSM which was the bottleneck of the system. As a result, there is only one voting 
round when the transfer is completed and reported, and in that voting round only rejection 

votes will be cast. This is possible due to a design where there is a time window for voting and 
if no rejection votes are cast during that time period, transfer is considered valid. This strategy 
adds a significant delay to the transfer process finalisation compared to the Ethereum-based 

design, but crucially it enables achieving a higher overall throughput. 

Also, the verification process and the voting process specifically is optimised for the overall 

throughput by utilising Fabric's "parallel" architecture by registering votes with distinct 
composite keys using transfer's id together with node's id and thus write operations of casting 

votes won't conflict. The final number of votes can be counted by running a (range) query 
that retrieves all the votes with a key that starts with transfer id. In other words, votes are 
collected as distinct records that are aggregated on demand. No mutations are done, that 

would require synchronisation of the operations, and thus slow down the process. 

 

The verification process has following steps: 

1. All nodes receive a signal of a completed transfer, EventTransferCompleted event carrying 

all the details of the transfer. All the other nodes, except the one node in charge of the 

transfer, will check that all the steps of the transfer were conducted properly. The initiating 
transaction doesn't need validation as all the nodes receive the content with the originating 

event. 

2. First, the nodes check that correct data was sent to the responder by comparing the 

response to the data payload in the originating event and the recorded data in the DSM. 

3. Then, the nodes also check that the transfer was correctly acknowledged to the initiator 

by getting the acknowledgment event from the responder and checking that the 

corresponding function either interledgerCommit or interledgerAbort was called. 

4. If there are any mismatches, nodes vote for rejection using voteReject(transferID) within a 

pre-configured time window. 

5. After verification, the transfer is cleared from the register. 

5.2.2 Security properties of decentralised Interledger  
The DIB provides decentralisation with the following benefits: 

1. Resiliency and availability. If one DIB node is not available to participate for any reason 

(node is down, lack of network connectivity, etc.), the interledger transactions will be 

successfully completed by other DIB nodes, as long as there is a sufficient number of nodes 
available. Even if one DIB node has already indicated its willingness to perform the 
transaction and then it is not able to do it, another node will take its place after the timeout. 

2. Auditability. The DIB design allows multiple nodes (and parties) to join the DSM layer, which 

keeps track of interledger transactions. Therefore, all parties are able to verify that the 

transactions have been performed correctly. 

However, the DIB cannot prevent malicious node behaviour. Any node that has access to 

the source and destination ledgers can perform malicious transactions directly with these 
ledgers, bypassing the DIB altogether. For example, the malicious node can signal to the 
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source ledger that the transaction has been accepted/rejected immediately, or perform the 

interledgerReceive() transaction on the destination ledger with incorrect data or without the 
corresponding trigger from the source side. However, in these cases DIB still provides 

auditability, if all the nodes that have access to the source and destination ledgers 
participate in the DSM, then the malicious node can be identified by comparing transactions 
on the source, destination, and DSM ledgers. However, the current implementations do not 

try to monitor e.g. for interledgerReceive() transactions without a trigger on the source side, 
but such a functionality could be implemented relatively straightforwardly as no bridge node 

is supposed to interact with that function without a trigger. 

By default a majority of nodes is sufficient to endorse/reject transactions, e.g. if there are 9 

nodes in the DSM then endorsement from 5 of them is enough. This parameter can be freely 
chosen during the deployment of DSM smart contract, however changing it drastically may 
worsen the resiliency or security properties of DIB. E.g., if it is required that 90% of nodes 

endorse DSM transactions, then just having 11% of nodes offline or acting maliciously would 
stall the DIB process since there will not be enough nodes to endorse them. In situations where 

malicious behaviour of DIB nodes is not expected and the availability of individual nodes is 
poor, the sufficient number of endorsements can be significantly below 50% of the nodes. 

5.3 Analysis of DIB features and performance 
The DIB component satisfies all the requirements presented in Table 5.1: 

● DIB supports transfer or any kind of data, instead of just monetary value. (REQ_IL_NF01) 

● DIB provides atomic transactions, the transaction is confirmed/aborted on the Initiator 

ledger depending on the result of the Responder transaction. (REQ_IL_NF02) 

● DIB provides transparency and non-repudiation since all of its actions are recorded to 

the ledgers. (REQ_IL_NF03 and REQ_IL_NF04) 

● DIB component itself does not produce a high overhead and supports a large number 

of transactions. Performance and throughput of ledgers themselves is often the 
limiting factor. (REQ_IL_NF05) 

● Ledger interfaces provided by the DIB component are simple and do not incur 

significant additional cost for the application smart contracts, running the component 
does not incur significant CPU overhead. (REQ_IL_NF06) 

● DIB supports decentralisation as described in this section. (REQ_IL_NF07) 

5.3.1 Initial DIB performance results 

This section presents some initial DIB performance results, the final performance analysis will 
be presented in IoT-NGIN deliverable D6.3. In the DIB deployment there are several potential 

performance bottlenecks: 

● Initiator and Responder ledgers, in many use cases one of these is a public ledger with 

very limited throughput 

● DSM ledger of DIB 

● The DIB component that is written in Python 
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During testing Ethereum ledgers utilising Geth12 software were used as the Initiator and 

Responder ledgers. The testing revealed that the performance of these ledgers is around 20 
transactions per second, which is quite low but understandable since Ethereum has not been 

designed for high throughput. 

The following Table 5.2 presents intermediate test results of Gametoken [Gam2022] 

transactions in the following situations: 

● Transactions performed directly, without DIB component, using a single test script 

● Using DIB with local state manager 

● Using 1-node DIB with Ethereum DSM (Geth) 

● Using 3-node DIB with Ethereum DSM (Geth), with all nodes running on the same server 

● Using 1-node DIB with Hyperledger Fabric DSM 

● Using 3-node DIB with Hyperledger Fabric DSM, with all nodes running on the same 

server 

Table 5.2 - Initial performance results for DIB: Throughput and standard deviation (in parenthesis). 

Scenario Throughput (standard deviation) 

Direct process (no DIB used) 11.64 (0.1302) 

1-node DIB with local state manager 11.22 (0.2748) 

1-node DIB with Ethereum DSM 2.84 (0.0949) 

3-node DIB with Ethereum DSM 4.52 (0.1450) 

1-node DIB with Hyperledger Fabric DSM 11.32 (0.1936) 

3-node DIB with Hyperledger Fabric DSM 21.80 (0.6589) 

Results indicate that in addition to the ledgers, also the DIB component can be a bottleneck, 

and therefore running multiple nodes in parallel increases the performance of both the 
Ethereum and Fabric based DIB, since only one node handles a single transaction. Overall, 

Hyperledger Fabric based DIB that has been optimised for high performance achieves good 
results without significant performance penalty compared to direct process and with 3-node 
setup the performance actually increases, indicating that the DIB component itself is a 

bottleneck. The performance of the DIB component could likely be increased by e.g. adding 
internal parallelism, but such optimisations were not the goal of this proof-of-concept 

implementation. 

 

12 https://geth.ethereum.org/  

https://geth.ethereum.org/
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The next section discusses the differences between using the Ethereum and Hyperledger 

Fabric ledgers for the DSM layer in more detail. 

5.3.2 Ethereum vs. Hyperledger Fabric as the DSM layer 
There are several fundamental differences between the Ethereum and Hyperledger Fabric. 

In the Ethereum ledger all transactions in the block are ordered and executed sequentially 

(the order is decided by the miner), therefore the different transactions within the same block 
may safely modify the same data structures, and the Ethereum DSM implementation takes 

advantage of it.  

In contrast, in Hyperledger Fabric transactions are executed concurrently using the execute-

order-validate (EOV) model to achieve higher throughput. As Hyperledger Fabric doesn't 

force sequential execution, multiple transactions targeting the same key, where at least one 
of the transactions is writing, may cause a conflict. More specifically, a conflict arises, if during 

the time when the transaction is simulated on the peer (i.e. read-set is created) and it's ready 
to be committed, another transaction changes the value of the same key. Thus, the read-

set version will no longer match the version in the orderer, and concurrent transactions will 
fail. This is addressed in the Fabric based DSM by designing each write to use a unique key 
and values are aggregated afterwards if needed. 

Because of these differences, it was decided to optimise the Fabric DSM implementation for 

the maximal performance by reducing the information being written to the DSM. This makes 

detection of errors and misbehavior more difficult and slower, but still possible since all the 
necessary evidence exists in the source and destination ledgers. 

As can be seen from the performance results, the DSM implementation based on  

Hyperledger Fabric is much faster, achieving up to 5 times higher throughput compared to 
Ethereum in these small deployments. 

5.4 Practical use cases of DIB 
DIB can be used in any application requiring transfer of data between ledgers. Example use 

cases include hash transfers to improve accountability and resilience, using ledgers to define 
and enforce access control policies, and using and trading virtual assets. 

5.4.1 Transferring hashes to more secure ledger 
In practical applications most of the ledgers used will be private (e.g. Hyperledger Fabric, 

Quorum, private Ethereum, etc.) since they offer vastly superior privacy, latency, throughput, 

and cost compared to public ledgers. However, immutability of the transactions on the 
private ledger is naturally not as strong as with a public ledger which is run by millions of 
nodes. 

By taking a hash of multiple private ledger transactions (e.g. using a Merkle tree) and storing 

it to the public ledger (such as public Ethereum) would provide strong immutability 

guarantees (after the hash has been stored to the public ledger, it would not be possible to 
modify related private ledger transactions without breaking the hash) while keeping the 
costs low. This operation can be easily automated by DIB: periodically a smart contract on 

the private ledger is called by the application, and it calculates the hash, which is then sent 
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to the public ledger using the DIB process. The frequency of the hash transfer is application 

dependent: higher frequency would decrease the window of vulnerability of transaction 
modifications on the private ledger, but would also increase the costs. 

In addition to the public ledger, the destination ledger for storing hashes can also be a 

private ledger run by a larger number of organisations, therefore offering better security and 
immutability properties. Also, this hierarchy can contain more than 2 layers, so, for instance, 

data from the private ledger can first be hashed to an intermediate ledger run by a larger 
consortium, which then hashes to a public ledger. 

5.4.2 Using ledgers for Access Control 
DIB together with multiple ledgers can be used for purchasing access control tokens in a 

secure and transparent manner [Sir2020], in this case one ledger is used for payments (e.g. 

a public Ethereum) while another one is used to provide access control tokens (e.g. a private 
Ethereum or Hyperledger fabric). The approach guarantees that only those who pay for the 

access will receive the corresponding access control token. 

5.4.3 Trading of Virtual Assets 
Suppose a situation where the virtual asset (e.g. an item in an online game) is backed by the 

ledger (to enforce uniqueness of the item and prevent creation of unlimited copies of it). This 
ledger would be a private ledger (Hyperledger Fabric, Quorum, private Ethereum, etc.) run 

by a gaming company or consortium of gaming companies. 

In order to facilitate trading of the assets, a widely used public ledger (such as public 

Ethereum) is needed. The role of the DIB is to make sure that the asset is active only in one 
ledger simultaneously: either it’s active in the gaming ledger and can be used for the 
gameplay and not traded, or it’s active in the trading ledger in which case it can traded but 

can’t be used for the gameplay [SOF2020]. 
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6 Self-Sovereign Identity Technologies  
The use of SSI technologies for the triplet’s identity and trustworthiness has already been 

discussed in Section 2. This section, therefore, provides details of the two other uses for the SSI 
technologies explored in IoT-NGIN, i.e. Verifiable Credential based decentralised on-device 
access control with constrained IoT Devices and QR code and GS1 Digital Link based 

discovery mechanisms for the Triplet. 

6.1 Verifiable Credential-based Access Control on 

Constrained IoT Devices 
Verifiable Credentials allow flexible and privacy-preserving access control solutions. E.g., 

suppose there is a factory that has outsourced the maintenance to a separate company. 

The technician working for the maintenance company needs to receive temporary access 
to factory premises and to certain machines there, but the factory does not need to learn 

about the technician's real identity or whether the technician is the same as the one who 
visited the factory previously. 

This subsection describes a verifiable credential-based access control solution that can be 

used directly on the constrained devices, i.e. the constrained device such as ESP32 
microcontroller verifies the credentials and enforces the access control policies. The solution 

is also available as open source 13. 

 

Figure 6.1 – Overview of the SSI Access Control component. 

Figure 6.1 provides an overview of how the SSI component can be used to grant and verify 

access to the Resource Server, which can be for example an IoT device. The Resource Owner 

 

13https://gitlab.com/h2020-iot-

ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-

identities  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-identities
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-identities
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-identities
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and Client are identified using Decentralised Identifiers (DIDs). In the first step, the Owner 

configures the Identity, Authentication and Authorisation (IAA) proxy and grants a Verifiable 
Credential (VC) to the Client, which denotes that the Client has a right to access some 

Resource. In the second step the Client uses this credential to contact the IAA proxy or the 
actual IoT device, which will then verify the credential and grant a read or write access to 
the resource as shown in the step 3. In a case of the IAA proxy, it will forward the request to 

the actual Resource Server, which does not need to understand SSI technologies or even 
handle the cryptographic operations. 

In more detail, the credential is encoded as a standard JSON Web Token (JWT) and in order 

to prevent replay attacks, the client also constructs a Demonstrating of Proof-of-Possession 

(DPoP) proof when accessing the resource. Both the credential and the DPoP proof will be 
verified by the IAA proxy or the actual device. 

The SSI component provides the following functionality: 

● Tools for identity and key management, including the creation of credentials 

encoded as JWTs and DPoP proofs. For DID methods, did:self and did:key are 

supported and the Ed25519 EdDSA signature scheme is supported for cryptographic 
signatures. 

● IAA proxy and simple resource server based on existing py-verifier work14. 

● Verifier for ESP32-based embedded devices, which allows full verification of access 

control credentials to be performed on an embedded device. 

The performance on the constrained device is good, the full JWT + DPoP verification 

consisting of two signature verifications takes just 160ms on the low cost ESP32 device. 

Therefore, the whole process of accessing the protected resource takes well below one 
second, which is a sufficient performance from the user experience point of view [Fot2022]. 

6.2 Triplet discovery using QR codes and GS1 

Digital Links 
A GS1 Digital Link15 converts a barcode, either one or bi-dimensional, into a web address that 

contains the information on a product the barcode refers to. GS1 digital links are used to 

discover the locations of the Digital and Semantic Twin of an entity Triplet. 

The discovery protocol begins with a user in front of a barcode, e.g. a QR code, attached 

to a real-world entity, such as an IoT device, and is shown in Figure 6.2. 

 

14 https://github.com/mmlab-aueb/py-verifier 

15 https://github.com/gs1/GS1_DigitalLink_Resolver_CE 

https://github.com/mmlab-aueb/py-verifier
https://github.com/gs1/GS1_DigitalLink_Resolver_CE
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Figure 6.2 – The triplet discovery protocol. 

The QR code encodes the URL and the Global Trade Item Number (GTIN) of the device to 

the GS1 Digital Link Resolver server16. The User scans the QR code with a smartphone using a 

dedicated app that queries the GS1 Digital Link Resolver Server to get either the locations or 
the DIDs of the Digital and Semantic Twins. This differentiation depends on the DID method 
used by the entity triplet: 

● If the DID method is a ledger-based one that allows adding information to a DID into 

the ledger, such as did:ethr, the GS1 Digital Link Resolver server returns the DIDs of the 

Digital and Semantic Twins whose resolution, shown in red arrows in Figure 6.2, gives 
the User their DID documents containing the location parameters; 

● Otherwise, if it is not possible to add data to DIDs, such as in did:key DID method, the 
Resolver server returns the User the location of the Digital and Semantic Twins. 

In either case, the user accesses the digital or the Semantic Twin. The figure shows the user 

accessing the Semantic Twin and getting the Twin Document that allows them to open a 
session with a Twin Application Server and perform operations (depending on their level of 

privilege). 

To guarantee the QR code the User is scanning is the original one, and it has not been 

switched with a malicious one, the QR code could embed the digital signature of the 
organisation that issued it17. This is feasible since a QR code can encode up to 3 KB of data. 
Before accessing the URL encoded in the QR code, the user’s app verifies the signature with 

 

16 https://gs1resolver.iot-ngin.eu/gtin:123456 

17 https://gs1resolver.iot-ngin.eu/gtin:123456&<digital signature> 

https://gs1resolver.iot-ngin.eu/gtin:123456
https://gs1resolver.iot-ngin.eu/gtin:123456&
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the organisation's public key (step 1.1 in the figure). Similarly, the data returned by the GS1 

Digital Link Resolver server is digitally signed and verified by the User (step 3.1 in the figure). 

The code of the GS1 Digital Link Resolver server can be found at Gitlab18. 

 

18https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/qr-

discovery 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/qr-discovery
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/qr-discovery
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7 Integrating the solutions 
The solutions 5-8 can be used together to enable data sovereignty by making IoT data and 

services accessible in a trusted, auditable, and controlled way. Section 7.1 describes a demo 
for the configuration of IoT devices to showcase how the integration of the solutions works. 
Section 7.2 presents the Living Lab use cases that adopt, implement, and validate such 

integrations for all 8 solutions. 

7.1 IoT devices configuration demo  
This demo being prepared in WP7 for the Smart City LL integrates solutions 5-8 to demonstrate 

how to easily discover, protect, and configure the IoT Triplet while protecting the privacy of 
the individual users and providing good user experience through low-latency validation. The 

key actors of the demo use case are illustrated in Figure 7.1. 

The Traffic Department of a City buys IoT Devices from a Manufacturer and wants to install 

them to a Smart City project. The Traffic Department initialises a device and its Digital Twin 
and Semantic Twin with the basic information required to delegate the setup to an external 

Installer Company. Moreover, the Traffic Department creates a QR code for each device, 
embedding a GTIN number that, once resolved by a GS1 Digital Link Resolver server, provides 
the locations to access the device’s Digital Twin and Semantic Twin. 

 

Figure 7.1 – Illustration of the demo.  

The Installer Company employs one or more Installers Employees to go around the city and 

install the devices (and possibly maintain them afterwards). To finalise the installation of a 
device, an Installer Employee accesses the Digital Twin and the Semantic Twin of that device. 

To access them, they require a credential that can be obtained from the Installer Company 
Authorization Server. The Employee scans the QR code on the device with a mobile phone 

application. Once scanned, the QR code redirects the Employee to the Semantic Twin. At 
access request, the server hosting the Semantic Twin, e.g. the Twin document server shown 
in Figure 5.2, begins an access control protocol to know the privileges of the person who is 

requesting the access. With the QR code being accessible to anyone, any citizen of the City 
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could potentially get access to the Semantic Twin to view information about the Device. This 

could be a wanted feature of the Smart City project. 

With this demo, we aim to address the following problems: 

● Discovering the Twins related to an IoT Device; 

● Enabling secure access to the triplet; 

● Trusting the data received by the triplet; 

● Protecting installer’s privacy; 

● Detecting malicious activities on the triplet. 

7.1.1 Demo Description 
The system resulting from the integration of the solutions described in this document is 

structured as follows. 

The Traffic Department, who owns the entity triplets, is responsible for setting up the entries 

for each triplet in the GS1 Digital Link Resolver server and printing the correspondent QR 
codes. Moreover, the Traffic Department issues a VCDept to the Installer Company to 

configure the triplets: this VC has a “delegate” option so that the Installer Company can 
delegate the installation rights to its Employees. 

The Installer Company sets up an Authorization Server that, being delegated by the Traffic 

Department, issues a VCConfig, alongside VCDept, to the Employees to configure the triplets. 

Following the SSI approach, any actor issues or receives VCs from or to their DIDs. Figure 7.2 

shows the DIDs paired to each actor in this demo. Actors such as the Traffic Department, the 
GS1 Digital Link Resolver server, and the Installer Company Authorization server may need to 

attach additional information to their DIDs. Thus they could use a ledger-based DID method. 
Instead, others may only need DIDs as pseudonyms, therefore a non-ledger-based DID 
method would be suitable. 

 

Figure 7.2 – Illustration of the DIDs used by the actors. 

Before configuring the triplets, the Installer Employee generates their DIDEmpl and requests the 

Authorization Server a VCConfig to be issued, alongside VCDept, to the newly generated DID. 
Examples of attributes, or claims, of VCConfig are the type of Devices the Employee will 

configure, their location, and the duration of the validity of the credential (e.g., 24 hours). 
The Installer Company and the Employee need to agree on a common secret parameter or 
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a similar solution to ensure only an Employee of the Installer is able to request such 

credentials. 

When the Employee reaches a Device, scanning the QR code triggers the discovery protocol 

described in Section 6.2. 

When the Employee locates the server hosting the Semantic Twin, they can access it 

following the access control protocol described in Section 6.1. In particular, the Employee 

signs a DPoP with their DIDEmpl and sends it alongside the credentials VCDept and VCConfig to 
an IAA proxy to the Semantic Twin for access control. The IAA proxy checks: 

● The validity period of VCConfig;  

● The attributes in VCConfig match its attributes (and the Employee is not accessing to the 

wrong device);  

● The signature in VCDept is verified by DIDDept;  

● The signature in VCConfig is verified by DIDAuth;  

● Ensure DIDAuth is delegated by VCDept;  

● The signature in DPoP is verified by DIDEmpl.  

If all checks are successful, the proxy allows access to the Semantic Twin to retrieve the Twin 

Document. To make the Twin Document data more trustworthy, the Semantic Twin can sign 
it with its DIDST. Moreover, the security, integrity, and accessibility of the Twin document is 

helped by integrating DLTs and the Interledger component, whose functionality is described 
in Section 4. The protocol is shown in Figure 7.3. 

 

Figure 7.3 – The access control protocol to the Semantic Twin. 

The problems mentioned in this section are addressed as follows: 
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● Discovering the Twins related to an IoT Device: this is solved by the GS1 Digital Link 

Resolver server; 

● Enabling secure access at the triplet: this is solved by the VCs issued by the actors the 

access control protocol executed by the IAA proxy or on-device validation; 

● Trustworthiness of the data received by the triplet: this is solved by applying digital 

signatures to the QR code, to the response data returned by the GS1 Digital Link 

Resolver server, and to the data returned by the Semantic Twin; 

● Protecting installer’s privacy: this is solved by hiding the identity of the Installer 

Employee during access time to the Semantic Twin behind an ephemeral DID; 

● Accountability for malicious activities on the triplet: if a malicious behaviour is 

detected on a Semantic Twin, the Installer Company can link the DID used to access 
the Semantic Twin to the identity of the Employee who used that DID to request the 
VC used to access to the Semantic Twin, and take action. 
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8 Verification and Validation 
Verification results of the solutions 1-8 will be reported in IoT-NGIN deliverable D6.3 - 

Interoperable IoT-NGIN meta-architecture & laboratory evaluation, which is due in June 
2023. 

The components will also be validated in the use cases of four IoT-NGIN living labs as 

described in Table 8.1. These validation results will be reported in the IoT-NGIN deliverable 
D7.4 - IoT-NGIN Living Labs use cases Assessment and Replication guidelines, which is due in 

September 2023. 

Table 8.1 – Use of components in IoT-NGIN living labs. 

IoT-NGIN technology Smart Cities Smart 

Agriculture 

Industry 4.0 Smart 

Energy 

UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10 

Generative Adversarial 

Networks (GAN) based 
dataset generation 

   X     X X 

Malicious Attack 

Detection (MAD) 
   X     X X 

IoT Vulnerability 

Crawler 
X X  X     X X 

Moving Target 

Defences (MTD) 
Network of Honeypots 

   X       

Decentralised 

Interledger Bridge 
X X      X  X 

Privacy preserving Self-

Sovereign Identities 
(SSIs) 

X X X      X X 

Semantic Twins X X X     X X  
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9 Conclusions 
This document discusses the technical solutions from the IoT-NGIN WP5. These 4 to 

cybersecurity solutions for protecting IoT systems performing Federated Learning and 4 
solutions for data sovereignty and privacy problems in the domain of IoT systems.  

Based upon various needs in use cases within the IoT-NGIN project, technical solutions for 

each area were planned and successfully developed. The solutions are: 

1. a GAN-based dataset generator for the creation of poisoned datasets that assist 

addressing attacks against IoT and Federated Learning systems 

2. a Malicious Attack Detector (MAD) that facilitates the detection of cyberthreats and 

attacks against an IoT system 

3. An IoT Vulnerability Crawler (IVC) that monitors IoT nodes and detects vulnerabilities 

4. a Moving Target Defense (MTD) Honeypot Framework that deploys the honeypots 

dynamically 

5. Semantic Twins that enable semantic descriptions of Digital Twins and the related real-

world entities 

6. a Decentralised Interledger Bridge (DIB) that enables transactions across different 

distributed ledgers (DLTs) 

7. a privacy-preserving Verifiable Credential based decentralised on-device access 

control solution for constrained IoT Devices 

8. a QR (Quick Response) code and GS1 (Global Standards 1) Digital Link based 

discovery mechanisms  

The solutions have been packaged for easy deployment to achieve the goals of the work 
package. 

This document also describes a demo being developed in WP7 for the Smart City LL for the 

configuration of IoT devices to showcase how the integration of solutions 5-8 works. 
Altogether 6 out of 10 LL Use Cases need at least two of the technologies that are presented 

in this deliverable, in particular SSI technologies, thus motivating their importance and 
enabling extensive validation of the solutions. 

The verification results of these solutions will be reported in the upcoming Deliverable D6.3 

and the validation results from the IoT-NGIN Living Labs will be reported in Deliverable D7.4.  
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