

© Copyright by the IoT-NGIN Consortium

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 957246

WORKPACKAGE WP5 PROGRAMME IDENTIFIER H2020-ICT-2020-1

DOCUMENT D5.5 GRANT AGREEMENT ID 957246

REVISION V1.0
START DATE OF THE

PROJECT
01/10/2020

DELIVERY DATE 30/4/2023 DURATION 3 YEARS

D5.5

Enhanced IoT
Cybersecurity & Data
Privacy/Trust

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

2 of 72

DISCLAIMER
This document does not represent the opinion of the European Commission, and the European

Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain IoT-NGIN consortium parties,

and may not be reproduced or copied without permission. All IoT-NGIN consortium parties have
agreed to full publication of this document. The commercial use of any information contained in this

document may require a licence from the proprietor of that information.

Neither the IoT-NGIN consortium as a whole, nor a certain party of the IoT-NGIN consortium warrant
that the information contained in this document is capable of use, nor that use of the information is

free from risk, and does not accept any liability for loss or damage suffered using this information.

ACKNOWLEDGEMENT
This document is a deliverable of the IoT-NGIN project. This project has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement Nº

957246.

The opinions expressed in this document reflect only the author’s view and in no way reflect the

European Commission’s opinions. The European Commission is not responsible for any use that may

be made of the information it contains.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

3 of 72

PROJECT ACRONYM IoT-NGIN

PROJECT TITLE Next Generation IoT as part of Next Generation Internet

CALL ID H2020-ICT-2020-1

CALL NAME Information and Communication Technologies

TOPIC ICT-56-2020 - Next Generation Internet of Things

TYPE OF ACTION Research and Innovation Action

COORDINATOR Capgemini Technology Services (CAP)

PRINCIPAL

CONTRACTORS

Atos Spain S.A. (ATOS), ERICSSON GmbH (EDD), ABB Oy (ABB), INTRASOFT

International S.A. (INTRA), Engineering-Ingegneria Informatica SPA (ENG),

Robert Bosch Espana Fabrica Aranjuez SA (BOSCHN), ASM Terni SpA (ASM),
Forum Virium Helsinki (FVH), ENTERSOFT SA (OPT), eBOS Technologies Ltd

(EBOS), Privanova SAS (PRI), Synelixis Solutions S.A. (SYN), CUMUCORE Oy

(CMC), Emotion s.r.l. (EMOT), AALTO-Korkeakoulusäätiö (AALTO), i2CAT
Foundation (I2CAT), Rheinisch-Westfälische Technische Hochschule

Aachen (RWTH), Sorbonne Université (SU)

WORKPACKAGE WP5

DELIVERABLE TYPE REPORT

DISSEMINATION

LEVEL

PUBLIC

DELIVERABLE STATE FINAL

CONTRACTUAL DATE

OF DELIVERY
30/4/2023

ACTUAL DATE OF

DELIVERY
28/4/2023

DOCUMENT TITLE Enhanced IoT Cybersecurity & Data Privacy/Trust

AUTHOR(S)

Dmitrij Lagutin (AALTO) (ed.), Juuso Autiosalo (AALTO), Yki Kortesniemi
(AALTO), Helmi Hirvelä (ABB), Henri Kinnunen (ABB), Dimitrios Skias (INTRA),

Jonathan Klimt (RWTH), Y. Oikonomidis (SYN), Artemis Voulkidis (SYN)

REVIEWER(S) Dimitrios Skias (INTRA),Terpsi Velivassaki (SYN)

ABSTRACT SEE EXECUTIVE SUMMARY

HISTORY SEE DOCUMENT HISTORY

KEYWORDS

cyber security, privacy, distributed ledger technology, interledger, self-

sovereign identity, decentralised identifier, verifiable credential, digital

twin, interoperability, ontology, semantic twin

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

4 of 72

Document History
Version Date Contributor(s) Description

V0.1 6/2/2023 AALTO Template for new document

V0.7 12/04/2023 AALTO, ABB,

INTRA, RWTH, SYN
Partner contributions

V0.9 19/04/2023 AALTO Ready for internal review

V0.95 27/04/2023 AALTO Final version

V1.0 27/04/2023 CAP Final quality check

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

5 of 72

Table of Contents
Document History .. 4

Table of Contents .. 5

List of Figures ... 7

List of Tables .. 9

List of Acronyms and Abbreviations.. 10

Executive Summary ... 12

1 Introduction ... 13

1.1 Intended audience ... 14

1.2 Relations to other activities .. 14

1.3 Document overview ... 14

2 Overview of IoT cybersecurity and data privacy and trust in IoT-NGIN 15

2.1 Mitigation of poisoning attacks and early attack detection .. 15

2.2 IoT data privacy and trust .. 17

3 Early attack detection and mitigation .. 19

3.1Malicious Attack Detector .. 19

3.1.1 Motivation for MAD .. 19

3.1.2 Description of the MAD solution ... 20

3.1.3 Results ... 23

3.2 Moving Target Defense Honeypots .. 28

3.2.1 Motivation for MTD Honeypots ... 28

3.2.2 Description of the MTD Honeypots solution .. 28

4 Semantic Twins .. 31

4.1. Motivation for Semantic Twins .. 31

4.1.1 Issues in IoT systems and Digital Twins .. 31

4.1.2 The role of Semantic Twins .. 32

4.2 Description of the Semantic Twin solution ... 34

4.2.3 Twin document ... 35

4.2.2 Discoverability and trustworthiness .. 36

4.2.4 Semantic descriptions .. 37

4.2.5 SSI API to Semantic Twin .. 38

4.2.6 Semantic Twin DLT integration .. 39

4.3 The twinschema.org Semantic Twin ontology... 40

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

6 of 72

5 Decentralised Interledger solution ... 44

5.1 Motivation for Interledger... 44

5.1.1 Need for multi-ledger transactions .. 44

5.1.2 Requirements of IoT-NGIN ... 45

5.2 Detailed description of the developed solution ... 47

5.2.1 Data flow of the Decentralised Interledger using High-Throughput Hyperledger Fabric

DSM .. 49

5.2.2 Security properties of decentralised Interledger ... 54

5.3 Analysis of DIB features and performance .. 55

5.3.1 Initial DIB performance results ... 55

5.3.2 Ethereum vs. Hyperledger Fabric as the DSM layer .. 57

5.4 Practical use cases of DIB .. 57

5.4.1 Transfering hashes to more secure ledger .. 57

5.4.2 Using ledgers for Access Control .. 58

5.4.3 Trading of Virtual Assets ... 58

6 Self-Sovereign Identity Technologies ... 59

6.1 Verifiable Credential-based Access Control on Constrained IoT Devices 59

6.2 Triplet discovery using QR codes and GS1 Digital Links ... 60

7 Integrating the solutions .. 63

7.1 IoT devices configuration demo ... 63

7.1.1 Demo Description ... 64

8 Verification and Validation ... 67

9 Conclusions ... 68

10 References... 69

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

7 of 72

List of Figures
Figure 2.1 – Attack detection and mitigation in FL systems (Solutions 1-4, shown in blue)... . 16

Figure 2.2 – The IoT-device Triplet -related technologies developed in WP5 17

Figure 3.1 – GAN used for the Image generation of the malicious clients…………………... .. 20

Figure 3.2 – Overview of the poisoning attack and aggregation mechanism within the

federated learning framework………………………………………………………………………... .. 21

Figure 3.3 – Accuracy of the classification model with different defence mechanisms….. .. 25

Figure 3.4 – Accuracy of the classification model with different defence mechanisms….. .. 26

Figure 3.5 – Confusion Matrix after applying the proposed mitigation technique………….... 27

Figure 3.6 – IoT-NGIN MTD Honeypot framework overview……………………………………... ... 29

Figure 4.1 – A Semantic Twin describes a real-world entity and its Digital Twin forming an

(entity) Triplet. The real-world entity may be a physical device, but also a more abstract

real-world entity, such as an organisation………………………………………………………….. .. 31

Figure 4.2 - A detailed look into an entity triplet, showing the basic features of a Semantic

Twin and example composition of a Digital Twin. A Semantic Twin describes the whole

System ... 33

Figure 4.3 – Example composition of a system of systems that uses different features of

Semantic Twins ... 34

Figure 4.4 – Technical implementation of SSI API for Semantic Twins. Orange arrows depict

the process of updating access requirements ... 38

Figure 4.5 – User interface showing the button to validate a document (a) and the result of

the validation (b). .. 39

Figure 4.6 – Main Classes in the Semantic Twin Ontology. .. 41

Figure 4.7 – Application of the ontology to a fictional powertrain example use case. 42

Figure 4.8 – The Ontology documentation browser on https://ontology.twinschema.org 42

Figure 5.1 – An IoT-based system combining multiple DLTs. .. 45

Figure 5.2 – DIB architecture consisting of nodes (Nx), bridge instances (Bx), and smart

contracts (SCx). ... 48

Figure 5.3 – Interledger transfer process using Hyperledger Fabric DSM. 51

Figure 5.4 – Recovery process of Interledger transfer. ... 53

Figure 6.1 – Overview of the SSI Access Control component. .. 59

Figure 6.2 – The triplet discovery protocol. ... 61

Figure 7.1 – Illustration of the demo. ... 63

Figure 7.2 – Illustration of the DIDs used by the actors. .. 64

Figure%204.8%20–%20The%20Ontology%20documentation%20browser%20on%20https:/ontology.twinschema.org42

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

8 of 72

Figure 7.3 – The access control protocol to the Semantic Twin. ... 65

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

9 of 72

List of Tables
Table 3.1 – Confusion matrix outcomes of multiclass classification.. 23

Table 3.2 – Parameters regarding the federated learning training process. 24

Table 3.3 – Test set accuracy for the case of with/without mitigation. 27

Table 5.1 – Requirements for the interledger solution [D5.3]. .. 47

Table 5.2 – Initial performance results for DIB: Throughput and standard deviation (in

parenthesis). ... 56

Table 8.1 – Use of components in IoT-NGIN living labs. .. 67

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

10 of 72

List of Acronyms and Abbreviations
AAS Asset Administration Shell

DIB Decentralised Interledger Bridge

DID Decentralised IDentifier

DLT Distributed Ledger Technology

DNS Domain Name System

DPoP Demonstrating of Proof-of-Possession

DSM Decentralised State Management

DT Digital Twin

DTDL Digital Twins Definition Language

FIB Flexible Interledger Bridge

FL Federated Learning

FOAF Friend-of-a-friend

GDG GAN-based Dataset Generator

GS1 Global Standards 1

IAA Identity, Authentication, and Authorisation

IoT Internet of Things

IVC IoT Vulnerability Crawler

JWT JSON Web Token

ML Machine Learning

MLDT Meta-Level Digital Twin [deprecated]

NGSI-LD Next Generation Service Interfaces-Linked Data API

OData Open Data Protocol

QR Quick Response

SAREF Smart Applications REFerence ontology

SOSA Sensor, Observation, Sample, and Actuator

SSI Self-Sovereign Identities

SSN Semantic Sensor Network

ST Semantic Twin

STA SensorThings API

VC Verifiable Credentials

WoT-TD Web of Things Thing Description

W3C World Wide Web Consortium

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

11 of 72

ZKP Zero-Knowledge Proof

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

12 of 72

Executive Summary
This document focuses on some key problems of cybersecurity, privacy preservation and trust

improvement in the domain of IoT systems, and presents the technical solutions developed
in WP5 of the IoT-NGIN project to tackle these problems.

The work in WP5 has already been reported on in the earlier deliverables of the work

package, so this deliverable now summarises and builds on top of the earlier documents.
More specifically, in the deliverables D5.1 [D5.1] and D5.3 [D5.3], the requirements from the

use cases in the IoT-NGIN project were identified and analysed to determine the best
features and properties for the technical solutions to be developed in WP5. The State-of-the-

Art technological solutions in the field of local model poisoning attacks for on-device
machine learning, protecting the devices from adversarial access, multi-ledger operations,
semantic interoperability practices for Digital Twins, and Self-Sovereign Identities were then

analysed and, finally, the documents provided a high-level description of the solutions that
were to be developed within WP5. Deliverables D5.2 [D5.2] and D5.4 [D5.4] then reported on

the first versions of the developed solutions.

This document now presents a description of the final solutions. Specifically,

1. a GAN-based dataset generator for the creation of poisoned datasets that assist

addressing attacks against IoT and Federated Learning systems

2. a Malicious Attack Detector (MAD) that facilitates the detection of cyberthreats and

attacks against an IoT system

3. An IoT Vulnerability Crawler (IVC) that monitors IoT nodes and detects vulnerabilities

4. a Moving Target Defense (MTD) Honeypot Framework that deploys the honeypots

dynamically

5. Semantic Twins that enable semantic descriptions of Digital Twins and the related real-

world entities

6. a Decentralised Interledger Bridge (DIB) that enables transactions across different

distributed ledgers (DLTs)

7. a privacy-preserving Verifiable Credential based decentralised on-device access

control solution for constrained IoT Devices

8. a QR (Quick Response) code and GS1 (Global Standards 1) Digital Link based

discovery mechanisms

The verification results of these solutions will be reported in the upcoming Deliverable D6.3
and the validation results from the IoT-NGIN Living Labs will be reported in Deliverable D7.4.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

13 of 72

1 Introduction
The expanding use of IoT solutions has enabled many new services, but has also raised a

range of new cybersecurity, privacy, and trust challenges. Ubiquitous IoT makes it possible to
have a much more accurate and up-to-date situational awareness, but this can pose major
privacy issues to the individuals, whose actions are being observed with this technology.

Furthermore, individuals themselves are deploying more IoT devices and are in some cases
even making the collected data available to a wider audience to enable new services, but

at the same time also potentially raising privacy issues. Also, the increasing variety of IoT
devices makes it harder to secure all the different types of devices against the many types

of attackers ranging from individuals all the way to some governmental actors. Finally, for the
audience utilising the data, a key question is which IoT devices and data to trust in this
abundance of options.

Work Package 5 has developed 8 solutions to address the problems:

1. a GAN-based dataset generator for the creation of poisoned datasets that assist

addressing attacks against IoT and Federated Learning systems

2. a Malicious Attack Detector (MAD) that facilitates the detection of cyberthreats and

attacks against an IoT system

3. An IoT Vulnerability Crawler (IVC) that monitors IoT nodes and detects vulnerabilities

4. a Moving Target Defense (MTD) Honeypot Framework that deploys the honeypots

dynamically

5. Semantic Twins that enable semantic descriptions of Digital Twins and the related real-

world entities

6. a Decentralised Interledger Bridge (DIB) that enables transactions across different

distributed ledgers (DLTs)

7. a privacy-preserving Verifiable Credential based decentralised on-device access

control solution for constrained IoT Devices

8. a QR (Quick Response) code and GS1 (Global Standards 1) Digital Link based

discovery mechanisms

For each of the solutions, the requirements and the State-of-the-Art of the technology were
described in the first two reports D5.1 and D5.3 [D5.1, D5.3] and the first versions of the
solutions were then detailed in the follow-up reports D5.2 and D5.4 [D5.2, D5.4].

This document provides a description of the final solution versions. For solutions 1-3, the

development work was mostly completed and reported already in D5.2, so solutions 1-4 are

discussed together in Section 3 to highlight how they interoperate. For solutions 5-8, there are
more changes to report, so they receive multiple Sections (4-6) to first describe the individual
solutions and then a Section (7) detailing how they can be used collaboratively.

The work will continue in WP6, which will report on the verification of the solutions in D6.3, and

in WP7, which will report on the validation of the solution in the Living Labs in D7.4.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

14 of 72

1.1 Intended audience
This document is intended for the following groups of people:

● Technical people interested in IoT systems, threat mitigation, decentralised

applications, digital identity management, and Digital Twin interactions can find

detailed solutions and some initial results in use cases.

● Solution designers and policymakers may find the document helpful to understand

what kind of services the different technical solutions enable, which level of trust and
privacy protection can be provided, and what standard ways for semantic

interoperability are possible.

● Internal users within the IoT-NGIN project can find useful resources on the components

or architecture solutions that are being made available in WP5, so that the use of

developed components is made easier.

1.2 Relations to other activities
This document describes the technical solutions from WP5, and can, thus, provide guidelines

to other work packages in the project on best practices in these fields. The following IoT-NGIN
documents provide further information about the related project activities, which can be

useful to extend the knowledge in this document. Architectural elements used in the IoT-
NGIN project are described in Deliverable D1.2 [D1.2]. Deliverable D6.2 [D6.2] describes the

architecture instantiations in each Living Lab (LL), as well as initial versions of the use case
applications and initial testing and evaluation results. Deliverable D7.3 [D7.3] provides

intermediate results about Living Labs use cases, including the components developed in
WP5. The upcoming WP7 documents will also report on the use of WP5 solutions in the IoT-
NGIN Open Calls and upcoming WP8 documents will cover the dissemination and

exploitation of the solutions.

1.3 Document overview
The rest of the document is organised as follows.

Section 2 gives an overview on the discussed technologies and how they interact.

Section 3 describes Early Attack Detection and Mitigation solutions (Solutions 1-4).

Section 4 defines the concept of a Semantic Twin (Solution 5).

Section 5 covers the Decentralised Interledger Bridge (DIB) solution (6).

Section 6 presents two different Self Sovereign Identities solutions based on the use case

requirements within the project (Solutions 7-8).

Section 7 describes how the solutions 5-8 mesh together to provide a comprehensive solution

as depicted in the Installer app being developed in WP7

Section 8 briefly discusses how the solutions will be verified and validated in the upcoming

deliverables.

Section 9 concludes the report.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

15 of 72

2 Overview of IoT cybersecurity and data
privacy and trust in IoT-NGIN
WP5 has developed altogether 8 solutions for addressing some key IoT cybersecurity, privacy,

and trust problems. Of these, Solutions 1-4 focus mostly on cybersecurity while Solutions 5-8

focus more on privacy and trust. This section first presents how Solutions 1-4 complement
each other and does then the same for Solutions 5-8.

2.1 Mitigation of poisoning attacks and early

attack detection
In next-generation systems, AI solutions will be increasingly bound to IoT and edge nodes as

AI solutions proliferate closer to the edge. While this enables more flexibility and reduced
latency, the limited scope of knowledge any single node can generate over time means

that the node’s intelligence should be supported by sharing knowledge and experience with
its peers. Federated Learning (FL) enables collaborative training amongst (federated) peers,
allowing knowledge exchange while still protecting the privacy of the peers. It is realised by

exchanging the parameters of ML models trained locally at each node, without disclosing
the node’s data to its peers. Although FL caters for data privacy and sovereignty, it can still

suffer from malicious activity either due to compromised nodes or during model exchange.
To address this, privacy preservation techniques in FL have been investigated within IoT-NGIN

deliverables D3.1 [D3.1], D3.2 [D3.2] and D3.3 [D3.3], which aim to eliminate the impact of
compromised input on the final machine learning (ML) model parameters.

But how can the attacks be detected or prevented in the first place? As part of WP5 work,

the focus was on the detection and mitigation of attacks that may happen against IoT nodes
participating in an FL system. The conceptual representation of the FL cybersecurity tools

developed in IoT-NGIN is illustrated in Figure 2.1 (the IoT-NGIN solutions 1-4 appear in blue,
while external entities are illustrated in grey colour). In this setup, the FL system (composed of
a set of Real devices) is the one being protected from network or FL-specific attacks that try

to compromise its operation. The Real devices have corresponding Digital Twin, which in IoT-
NGIN is supported by WP4 IoT Device Indexing and IoT Device Access Control components

(see IoT-NGIN deliverable D6.2 for details [D6.2]), and may also have Semantic Twins
(covered later in this document). In this setting, WP5 FL cybersecurity tools take over the

threat detection, monitoring, and mitigation processes for on-device FL systems.

As existing device vulnerabilities constitute opportunities for potential attackers, the IoT

Vulnerability Crawler (IVC) (Solution 3) is responsible for scanning for potential vulnerabilities

in networked devices, which may offer an entry point to "undesired visitors”. The list of
vulnerabilities is, of course, not static, but rather needs to be continuously updated. Therefore,

IVC integrates OWASP ZAP [ZAP], which includes the classifications for the identified
vulnerabilities of both the WASC Threat Classification [WASC], as well as MITRE’s Common

Weakness Enumeration [MITRE]. IVC also integrates the log4j_scan [LOG4J]. However, it

should be mentioned that it follows a flexible plugin-based design which allows for easy
integration of additional scanning tools. IVC has been described in detail in D5.2 [D5.2].

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

16 of 72

Figure 2.1 – Attack detection and mitigation in FL systems (Solutions 1-4, shown in blue).

Moreover, the identified vulnerabilities are further exploited in our approach in order to
monitor the attack activity related to these vulnerabilities. Specifically, the MTD Honeypots’

Framework (Solution 4) enables this by deploying a honeypot which leaves this vulnerability
open for potential attackers. The monitored attack activity may provide new insights to the

evolution of attacks and reveal new attack patterns, which would be relevant to the
underlying IT/OT setup. The MTD Honeypots’ Framework has been detailed and analysed in
D5.2, while its role in early attack detection within IoT-NGIN is analysed in Section 3.

The GAN-based Dataset Generator (GDG) (Solution 1) assists in ‘instructing’ the FL system on

how to detect and mitigate attacks against the FL nodes, both on the network level as well

as on FL-specific attacks. At the network level, GDG is able to learn and generate datasets,
which can then be used for training attack detection models. On the other hand, GDG is

able to emulate sophisticated attacks in which the poisoned nodes act maliciously from the
beginning while still imitating benign nodes as much as possible. This consistent behaviour
makes the detection of the malicious behaviour harder compared to nodes that initially

behave completely benignly and only after some time start behaving maliciously, as the
change of behaviour is easier to detect. This functionality has been also exploited for the

development of appropriate attack detection and mitigation processes. The full version of
GDG has been detailed in D5.2.

The detection and mitigation of FL-specific attacks are implemented in the latest version of

the Malicious Attack Detector (MAD) (Solution 2). In its first version (detailed in D5.2), it was
focused on the detection of network level attacks. In this deliverable, the detection of

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

17 of 72

sophisticated data and model poisoning attacks during FL training is now also possible.

Further, MAD now incorporates mitigation for such attacks, which is based on identifying the
poisoned nodes and excluding their contribution from the final model in FL training. This

technique leads to robust FL training, even when 40% of the nodes act maliciously [Psy2023].
The new version of the MAD component is presented in Section 3.

2.2 IoT data privacy and trust
Much of the cybersecurity and privacy work in WP5 tasks T5.3-5 focuses on the IoT-device

Triplet shown in the centre of Figure 2.2. The Triplet consists of a real-world entity (in this case,

an IoT device), the Digital Twin (DT) that exposes the device's capabilities on the network,
and the Semantic Twin (ST) that semantically describes the other two. When the real-world
entity is something other than an IoT device (e.g. a shopping mall or a person), the Triplet

can also be called an Entity Triplet, but in IoT-NGIN the focus is mostly on Triplets with IoT
devices.

 Figure 2.2 – The IoT-device Triplet -related technologies developed in WP5.

To support the IoT-device Triplet, WP5 has developed multiple solutions, as shown in blue in

the figure. First, the Semantic Twin (Solution 5) is a novel concept of providing a structured
semantic description of the Triplet. The core element is describing the capabilities of the IoT

device and Digital Twin and where they can be accessed. This information can then be
complemented with many other types of information, e.g. the licensing of the services and
where access could be purchased, information about the validity of the services through,

e.g. 3rd-party certification, etc. To make this semantic information as machine-readable and
interoperable as possible, the information is organised based on ontologies, particularly

Smart Applications REFerence ontology (SAREF) ontologies that are aimed for IoT use cases.
The Semantic Twin is detailed in Section 4.

Another solution developed in WP5 is a Decentralised Interledger Bridge (DIB) (Solution 6)

that allows us to link distributed ledgers (DLTs) and blockchains with atomic transactions.
There are multiple interledger solutions, but most of them only focus on financial transactions

or have limitations on the types of DLTs/blockchains they support as described more in detail
in Deliverable D5.3 [D5.3]. IoT-NGIN has focused on a bridging-type interledger, which

supports a broad range of ledgers and is agnostic of the transaction type, so it can be used
with almost any type of application. Specifically, the work builds on an existing centralised

bridging solution, which provides suitable functionality and interfaces, but suffers from the
limitations of a centralised solution, namely higher trust requirement on the party running the

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

18 of 72

bridge and lower resiliency. IoT-NGIN has, therefore, developed a decentralised version of

the technology, the Decentralised Interledger Bridge (DIB) described in Section 5, which
allows us to overcome these limitations by utilising the same decentralisation approach as

the DLTs and blockchains themselves rely on. With the interledger, e.g. the Semantic Twins
can now rely on multiple ledgers to provide a shared immutable history in a cost-effective
manner.

To improve the privacy of the people utilising the Triplet, our work leveraged Decentralised

Identifiers (DIDs), an identifier technology that follows the Self-Sovereign Identity (SSI)

principles. An SSI identity owner should be able to generate and use as many anonymous
identifiers as they need to protect their privacy, e.g. to prevent correlation attacks resulting

from the same identifier being used in multiple contexts (discussed in IoT-NGIN deliverable
D5.4 [D5.4]). We also utilise another SSI-technology, Verifiable Credentials (VCs), to carry
information about the trustworthiness of different parties (discussed in [D5.4]) and to

implement decentralised access control solutions (Solution 7 detailed in Section 6.1). The use
of DIDs and VCs has been previously explored mostly in the context of people and

organisations, but here we are focusing on their use for (constrained) things (IoT devices) and
the related twin, in order to bring the privacy and trust benefits also to this application area.

To make the use of Semantic and Digital Twins convenient, we are also exploring using

digitally signed QR codes and GS1 Digital Links as a convenient and secure way to discover
the Twins related to a particular IoT device (Solution 8) as detailed in Section 6.2. These types

of new usability-oriented solutions are required to enable wide-scale usage of Twin-based
solutions.

Finally, to illustrate how these solutions work synergistically, a demo of IoT device

configuration is being developed in WP7 as detailed in Section 7. It will deploy Solutions 5-8
in the Jätkäsaari Living Lab to demonstrate how we can improve cybersecurity and protect

users’ privacy in an easy-to-use manner.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

19 of 72

3 Early attack detection and mitigation
This section summarises the motivations behind Solutions 1-4, provides an update on final

versions of the solutions, and explains in more detail how the solutions collaborate in early
attack detection and mitigation.

3.1Malicious Attack Detector
IoT-NGIN introduces a number of cybersecurity tools that aim to shield Federated Learning

systems from malevolent behaviours. These tools are designed to face common threats that

are observed within the federated learning framework. IoT-NGIN has introduced the first
version of the Malicious Attack Detector (MAD) in the deliverable D5.2. This detector is an
advanced tool that can identify and block malicious activities within the federated learning

system. In this document we introduce the label flipping mitigation technique that aims to
eradicate the effects of such attacks. This technique relies on the assumption that the

federated server has a small, clean dataset and can train the global model for a few rounds
locally after the federated training process has ended. Together with the label flipping

mitigation technique, MAD now provides an extra layer of protection against cyber threats,
thereby enhancing the overall security of the federated learning environment.

3.1.1 Motivation for MAD
Federated learning systems are prone to several attacks due to their distributed nature. The

attacks could, for instance, either alter the local data or the local model of a client to inject
a specific pattern, degrade global model accuracy, or prevent the global model from
converging etc. If successful, these attacks are catastrophic for a federated learning system

and can completely alter its behaviour and performance. Also, vanilla federated learning
setups don’t include security measures against such attacks and are, therefore, deemed

extremely vulnerable. Without proper security measures, the potential risks and negative
impact of these attacks can quickly escalate. Thus, it is crucial to implement effective

detection and mitigation strategies to safeguard the integrity and confidentiality of the data
and to ensure the proper functioning of the federated learning system.

Even though there are numerous types of attacks within the federated learning framework,

in this work we focus on label-flipping attacks launched from the clients. More specifically,
we simulate the attacks described in section 5 “Poisoning attacks in FL System” of deliverable

5.2. There, the malicious clients train a GAN on the local dataset and then subsequently use
it to produce synthetic images. These images are then labelled to facilitate each attack
accordingly. Here we focus on 2 main types of label-flipping attacks: (i) Model degradation

attack where the malicious clients aim to reduce the classification accuracy of the global
model and (ii) Targeted label attack where the malicious clients aim to inject some diseased

grape leaves as healthy into the global model.

Our earlier work, presented in D5.2, proved that Model degradation and Label flipping

attacks can be successful in a classic federated learning setup, highlighting the need for
effective countermeasures. To this end, we have experimented with various established
federated learning techniques and assessed their robustness against these attacks. This

allows us to identify approaches that can effectively mitigate the impact of label-flipping
attacks. Furthermore, in the present document we introduce a simple yet effective additional

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

20 of 72

defence mechanism named label-flipping mitigation that can improve the alleviation of

label-flipping attacks in federated learning systems. This mechanism can help to enhance
the overall security of federated learning and reduce the potential for malicious attacks. By

the proposed defense mechanism with the well-established federated learning defenses, we
can help make federated learning more resilient against backdoor attacks and better
protect the privacy of users' data.

3.1.2 Description of the MAD solution
In the deliverable D5.2 we introduced a machine learning-based system designed to detect

and prevent cyber-attacks. The system uses a combination of supervised and unsupervised
learning algorithms to analyse network traffic and identify potential malicious activities in

real-time. The supervised learning component of Malicious Attack Detector (MAD) (solution
2) is trained on a dataset of known attacks, enabling it to recognize patterns and behaviours

associated with specific types of attacks. The unsupervised learning component of MAD is
used to identify new or unknown attacks by analysing the behaviour of network traffic and

identifying anomalies. Once MAD identifies a potential attack, it can take action to prevent
it, such as blocking traffic from the source IP address. The system is designed to be scalable
and can be deployed on large networks to provide comprehensive protection against a

wide range of cyber threats.

This subsection describes the technical details of the implementation for some commonly

used federated learning defenses and the proposed mitigation. In more detail, we present
the common federated defences that are employed in the literature, details of our

approach, used metrics and federated training setup.

GAN-driven federated attacks

In the previous deliverable D5.2 we introduced 2 novel GAN-based attacks using synthetic

generated images. The malicious clients jointly trained a GAN to create realistic images and
thereafter launched label flipping attacks. The goal was to confuse the global model

resulting in general or specific misclassifications. The GAN model used for image generation
is shown in Figure 3.1.

Figure 3.1 – GAN used for the Image generation of the malicious clients.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

21 of 72

The dataset we used is publicly available and consists of grapevine leaf images with

common diseases (e.g., Leaf blight, Esca)1. Based on the local dataset of each client, the
malicious clients were able to train this GAN to generate realistic grapevine leaf images.

Consequently, these images were given wrong labels and were mixed with the local client
dataset. This led to the deterioration of the global model’s accuracy because it was trained
on local datasets that have label-image inconsistencies. Experiments in our previous work

demonstrate that these attacks are effective and achieve their corresponding goal resulting
in a poisoned global model. Thus, these experiments indicate the need for a defence to filter

the malicious updates and restore the performance of the model.

A detailed visual description of the whole federated learning process with the

malicious/benign clients can be viewed on Figure 3.1.

 Figure 3.2 – Overview of the poisoning attack and aggregation mechanism within the

federated learning framework.

Here, we see that a federated learning system can contain both benign and malicious

clients. In our simulation, the malicious client uses the local dataset to produce a poisoned
dataset, which is later added to the original local data. Implementing this strategy, the

malevolent participant can inject the desired behaviour into the global model (e.g.,
misclassify healthy images as suffering from Leaf blight) through the synthetic images. We see
that the federated server gathers all the updates from the clients and then using a defence

mechanism attempts to filter the malevolent ones. Next, the aggregated model is given to
the clients for the next federated learning round.

FL defences in MAD

To battle the aforementioned attacks, we validated a number of federated defences. These

defences are variations of the aggregation rule and, in general, try to filter out malicious

clients by viewing the model updates sent from the clients. The basic assumption is that the
model updates generated by malicious clients differ significantly compared to the benign

ones’. This difference can be investigated in the parameter space, and one can measure

1 https://data.mendeley.com/datasets/tywbtsjrjv/1

https://data.mendeley.com/datasets/tywbtsjrjv/1

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

22 of 72

the distance between model parameters separately or between whole models (the sum of

model parameters). To measure this difference, common distances are the Euclidean
distance, cosine distance, etc. Thus, we test our attacks against the defences of:

• Median aggregation

• Trimmed mean aggregation (with known number of malicious participants)

• Krum aggregation

The first two defences operate at the parameter level and treat each parameter separately.

Thus, they can result in a partially poisoned global model where some parameters are

aggregated using only benign updates and other parameters using both benign and
malicious updates. On the other hand, Krum treats each model separately, and thus, in a

federated round, it is possible for a completely poisoned local model to be selected as the
global one.

Label flipping mitigation

Here we present a novel approach aimed at bolstering the defence against potential
attacks in the federated learning system. Our method relies on the assumption that the server

possesses a limited dataset consisting of pristine, labelled images, and can continue to train
the model for a few more rounds after the client training phase. This technique serves to
mitigate any malicious activity and rectify the model's performance. To elaborate further on

the implementation details, we continue training the global model for an additional R = 5
rounds on the server following the conclusion of the federated learning process. This

extended training period allows the server to refine the model's performance further, thereby
minimising the impact of any potential attacks that may have occurred during the federated

learning phase.

Metrics

The confusion matrix is a table used to evaluate the performance of a classification model

by comparing the predicted and actual class labels. In the case of multiclass classification,
the confusion matrix is a square matrix with dimensions equal to the number of classes. Each

row in the matrix represents the instances in a predicted class, while each column represents
the instances in an actual class.

The entries in the confusion matrix correspond to the number of instances that were classified

correctly or incorrectly. The diagonal entries represent the number of instances that were
classified correctly for each class, while the off-diagonal entries represent the misclassified

instances. The sum of the entries in each row gives the total number of instances predicted
in that class, while the sum of the entries in each column gives the total number of instances
in the actual class.

An example of a confusion matrix for a classification of 4 classes can be seen on Table 3.1.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

23 of 72

Table 3.1 – Confusion matrix outcomes of multiclass classification.

Classes A B C D

A +correct values -wrong values -wrong values -wrong values

B -wrong values +correct values -wrong values -wrong values

C -wrong values -wrong values +correct values -wrong values

D -wrong values -wrong values -wrong values +correct values

Multiclass classification accuracy is a metric used to evaluate the overall performance of a

classification model with multiple output classes. It measures the portion of correctly classified

instances out of all instances in the dataset. Mathematically, let TP, FP, TN, and FN be the
number of true positives, false positives, true negatives, and false negatives, respectively. Let

k be the number of output classes. The accuracy metric can be expressed as:

where TP + TN represents the total number of instances that were classified correctly, and TP
+ FP + TN + FN represents the total number of instances in the dataset.

3.1.3 Results
This section presents a comprehensive overview of the experiments carried out to validate

the proposed label-flipping mitigation approach. To assess the robustness of common

federated learning aggregation algorithms, we evaluated the effectiveness of the two data
poisoning attacks mentioned earlier. Specifically, we first test the secure aggregation
techniques against these attacks and present differences compared to the federated

average case. Next, we add the proposed solution on top of these defences and compare
results.

In this section we describe the implementation details of the federated learning process. We

created a classic federated scenario consisting of multiple clients and a server that operates
as the aggregator. We also divided the clients into malicious and benign and assumed that

the malicious participants collaborate and launch a concurrent attack. Moreover, each
client (malicious or benign) has the same number of samples, which are all independent and

identically distributed. We also use a simple convolutional neural network as the global
model which is not pretrained. Parameters for this process can be seen in Table 3.2.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

24 of 72

Table 3.2 – Parameters of the federated training process.

Parameter Value

Learning rate 0.001

Local rounds 5

Federated rounds 50

Bening clients 70%

Malicious clients 30%

Batch size 32

Model degradation attack

In this case, a GAN is deployed on the malicious nodes with the intention of causing global

model performance degradation. The adversary uses a GAN trained with all four classes.

Using this model, the attacker generates samples of all four classes and later distributes these
samples to the compromised nodes. Subsequently, each malicious node randomly assigns a

class label to the generated images. Each local model will be trained on images that
resemble the original ones but have random labels, which is something that confuses the
classifier. It is noted that the poisoned dataset was created before the training process and

is available at the beginning of the training procedure.

Experimental results evaluating the model degradation attack for the cases in which there is

no defence or some of the three defence mechanisms can be seen in Figure 3.3. Firstly, the
blue line shows the case of no attack, where the FL system contains only benign nodes, and

the aggregation is a federated average to be used as a baseline. The green line shows the
accuracy of the proposed attack for the case of federated average aggregation as the
training procedure progresses. Regarding the other four classes, the only thing that changes

is the aggregation algorithm. Orange is median aggregation, red is Krum aggregation, and
purple is trimmed mean. Specifically, we can see that there is a difference of around 25-30%

in accuracy between the case in which no attack is realised and the case in which an attack
has materialised with no defence in place. Moreover, regarding the defences, the model

accuracy is improved when some defence mechanisms are adopted compared to the case
of no defences. However, the improvement is approximately 5, 7, 5 percentage points for
the median, Krum, and trimmed mean approaches, respectively. The low improvement in all

three cases implies that these mechanisms fail to effectively identify the malicious nodes and
that the poisoned updates are significantly infiltrating the global model. It is worth noting that

in the case of the trimmed mean defence, we have assumed that the parameter n (number
of malicious clients) is known beforehand, and thus, the defence should be more powerful.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

25 of 72

Nevertheless, all three approaches consistently achieve an accuracy value below that of

the global model, with the difference ranging from 5 to 20 percentage points. We thus
assume that this kind of attack is stealthy mostly because the poisoning procedure closely

resembles the training procedure and that the malicious nodes have both a poisoned and
a clean dataset.

Figure 3.3 – Accuracy of the classification model with different defence mechanisms.

Targeted label attack

In this case the test scenario includes 70% benign clients and 30% malicious. All benign clients

have the same amount of data (images). The malicious clients generate images of a specific
disease class, namely the leaf blight class, and then flip the label of the synthetic images to
the one corresponding to healthy ones. The goal is to trick the model into classifying leaf

blight images as healthy. This is indeed a targeted label attack, and the results could be
catastrophic for a classification model.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

26 of 72

Figure 3.4 – Confusion matrices for the targeted label attack with different defences.

Results of the experiments conducted for evaluating the targeted label attack with the three

or no defence mechanisms adopted are depicted in Figure 3.4. First, comparing the case
with no defences to the case in which there is no attack, the attack appears to be successful

for both the tasks of stealth and targeted label attacking. Specifically, this attack results in a
model that greatly misclassifies leaf blight as healthy, but achieves similar accuracy

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

27 of 72

regarding the classification task for the other classes. In particular, 58% of leaf blight images

have been categorised as healthy compared to 2.5% for the case of no attack. Regarding
the effectiveness of the defences, they slightly improve the accuracy of this specific label.

Specifically, with any of the defence mechanisms applied, the misclassification of leaf blight
as healthy is approximately 51%. This happens since these methods are performed at the
parameter level and not for the whole model. This happens because a specific set of

parameters (e.g., biases of the last layer) may be easily identified as poisoned by the
defences. However, viewing the results, we can assume that this set is small compared to the

total number of parameters, and the bulk of the poisoned parameters are incorporated into
the global model. Hence, it is obvious that these methods fail to select only benign client

models, and the attack is deemed a success.

Mitigation

The results of the proposed mitigation approach are presented in Figure 3.5 the targeted

label attack and Table 3.3 concerning the model degradation attack.

Figure 3.5 – Confusion Matrix after applying the proposed mitigation technique.

In the case of the targeted label attack, the method successfully mitigates the effects of the

attack, as evidenced by the model no longer misclassifying leaf blight images as healthy.
Additionally, the results for the other classes remain unchanged, indicating that the attack
reduces the accuracy of different classes, and the attack is indeed targeted, as the

accuracy of other labels remains relatively stable.

Table 3.3 – Test set accuracy for the case of with/without mitigation.

Mitigation Accuracy

yes 62%

no 50%

In the case of the model degradation attack, the proposed method quickly alleviates the

effects of the attack, with the model achieving the accuracy of a non-attacked model
within only five additional rounds. This result represents a substantial improvement of
approximately 12%. Overall, these findings demonstrate the effectiveness of the proposed

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

28 of 72

method in mitigating backdoor attacks while remaining simple and easy to implement.

However, it is important to note that the approach relies on the assumption that the central
server has access to a small dataset of clean labels, which may not always be feasible in

real-world applications.

3.2 Moving Target Defense Honeypots
Moving Target Defense (MTD) Honeypots (solution 4) is an additional defence mechanism

that was developed in order to alleviate an increasing number of threats that target IoT and
FL systems and ecosystems.

3.2.1 Motivation for MTD Honeypots
MTD Honeypots framework constitutes a honeypot-based technical solution that also

incorporates dynamic configuration capabilities. The term “Moving Target Defense” suggests
the dynamic shifting of a system’s exposed resources in a continuous manner. In the IoT-NGIN

project, the MTD term refers to the ability of the framework to alter the provided functionality
and network configuration based on some input.

The abovementioned capability is considered an effective countermeasure against

contemporary cyberattacks. This is because the honeypots that are deployed in an IoT
network are constantly changing their associated network and system configurations, which

in turn makes the established honeypots hard to be detected by an adversary. At the same
time, the MTD Honeypots framework succeeds in decreasing the attackers’ knowledge over

an IoT system.

Furthermore, Honeypots is a cybersecurity solution that capitalises on a manufactured attack

surface which exposes a specific set of vulnerabilities that aim to attract cybercriminals’

attention. These measures allow for the legitimate targets to escape some of the adversarial
attention. In addition, Honeypots can also be utilised for gathering intelligence about the

identity, motivation and relevant attack patterns used by the attackers.

MTD Honeypot framework is designed to work with the Vulnerability Crawler (VC) (solution 3)

which is able to scan IoT networks and provide the results to the MTD Honeypots solution in
order to drive the deployment of the most appropriate, and thus, effective honeypots.

3.2.2 Description of the MTD Honeypots solution
IoT-NGIN developed Honeypots framework utilises the IP randomization MTD technique in

order to change the network properties of the attack surface exposed by the deployed
honeypots. This section provides a summary of MTD Honeypots technical design as the
detailed description was already provided in D5.2. Moreover, this section contains the

descriptions of the additional updates that were applied to the developed framework. In
short, this includes the incorporation of additional Honeypot tools and the creation of a HELM

Chart that provides for easy installation. The high-level overview of the MTD Honeypots
framework is presented in figure 3.6 below.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

29 of 72

Figure 3.6 – IoT-NGIN MTD Honeypot framework overview.

The heart of the developed MTD Honeypots framework is the Honeypot Manager (HM). HM

interfaces with the VC and periodically queries for vulnerabilities that are identified in the
target system. Based on this information the HM then selects the most appropriate honeypots
that will be deployed in the IoT network. In addition, the volume of the vulnerabilities that

have been detected by the VC suggest the number of honeypots’ instances that should be
deployed in order to create a strong enough attack surface.

The available Honeypot solutions are stored in the Honeypot Registry (HR). HR contains the

list of the available honeypots and the associated meta-data that describes the set of

vulnerabilities that can be exposed by each honeypot. Initially a limited number of honeypot
solutions were included in the HR, namely Cowries and Log4Pot. However, as the
development proceeded we opted to extend the available honeypot tools and to include

two additional honeypot solutions, the ddospot and Dionaea.

● Cowrie2 is a versatile honeypot and can be considered either as medium or as a high

interaction SSH and Telnet honeypot designed to log brute force attacks and the shell
interaction performed by the attacker.

● Log4Pot is3 a honeypot that can detect the Log4Shell vulnerability (CVE-2021-44228).

Log4Pot is able to listen on various ports for Log4Shell exploitation and detect
exploitation requests observed in the request line and headers.

2 https://github.com/cowrie/cowrie

3 https://github.com/thomaspatzke/Log4Pot

https://github.com/cowrie/cowrie
https://github.com/thomaspatzke/Log4Pot

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

30 of 72

● DDoSPot4 is a honeypot "platform" for tracking and monitoring UDP-based Distributed

Denial of Service (DDoS) attacks.

● Dionaea5 is a low-interaction honeypot that captures attack payloads and malware.

Dionaea is meant to be a nepenthes successor, embedding python as scripting
language, using libemu to detect shellcodes, supporting IPv6 and TLS.

Honeypot Deployer (HD) collects this information and subsequently creates the required

workflows that aim to deploy and configure the necessary honeypots. HD was developed
capitalising on the ArgoWorkflows CD framework.

Then, the necessary honeypots are deployed and the Honeypot Logs Collector (HLC) is

responsible for collecting the logs that are generated by the honeypot instances. The logs

capture information that describe the adversaries’ activity within the honeypots and also
include the attackers’ connection details. These logs are stored in a database.

Finally, the Honeypot IP Randomization (HIPR) module facilitates the enforcement of the IP

randomization technique for the deployed honeypots. Once the initial honeypot instances
are deployed, they get a random IP address assigned to each one of them. This IP address

is pulled by the available IP pool that the Kubernetes cluster uses for the deployed resources.
HIPR is a job scheduler which works closely with Kubernetes Load Balancer. The purpose for
this tool is to periodically execute jobs that change the IP addresses of the deployed

honeypot instances.

This MTD technique effectively prevents the attacker from identifying the honeypots, and

thus, significantly lowers the possibility of the adversary to blacklist the exposed IPs that are
assigned to the honeypots, keeping the legitimate part of the IoT network secure.

The installation guidelines for successfully deploying the IoT-NGIN MTD Honeypots framework

have been described in D5.2 section 8.3. The source code of the MTD Honeypots framework
is available through the GitLab repository of the project6. Moreover, a HELM Chart has been

defined for the Honeypot framework, which greatly simplifies the deployment process. The
corresponding installation steps are described within the Readme that resides in the

aforementioned repository.

In this section we demonstrated the developed mitigation method that was able to mitigate

common federated learning GAN-based attacks. This method relied on the assumption of
having a small dataset on the aggregator which could be used to retrain the global model
after the federated learning training had completed. Results showed that our methodology

was able to remedy the results of the attacks achieving a 12% boost in accuracy. Moreover,
we have completed the presentation of the early attack detection and mitigation

cybersecurity tools by incorporating an overview of the MTD Honeypots design and
implementation, highlighting also the tool’s latest technical updates.

4 https://github.com/aelth/ddospot

5 https://github.com/DinoTools/dionaea

6https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/mtd-

honeypot-framework

https://github.com/aelth/ddospot
https://github.com/DinoTools/dionaea
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/mtd-honeypot-framework
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/mtd-honeypot-framework

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

31 of 72

4 Semantic Twins
This section describes the Semantic Twin (ST) solution, which is used to describe the Real-world

entities (e.g. IoT devices) and their Digital Twins (DTs) in a machine-readable manner as
shown in Figure 4.1. The following subsections describe the motivation for building Semantic
Twins and the details of the Semantic Twin solution.

Figure 4.1 – A Semantic Twin describes a real-world entity and its Digital Twin forming an (entity)

Triplet. The real-world entity may be a physical device, but also a more abstract real-world entity,

such as an organisation.

4.1. Motivation for Semantic Twins
Recent years have brought us smart entities that consist of a physical entity and its Digital

Twin (DT). However, DTs are currently not defined well enough to easily build scalable
applications on top of them. Legacy Digital Twins are also missing the basic components

needed for data privacy and trust, something the IoT devices themselves also often crave.

The following subsections discuss issues in IoT systems and Digital Twins, lay out requirements

for Semantic Twins, and describe the role of Semantic Twins.

4.1.1 Issues in IoT systems and Digital Twins
Legacy IoT devices are configured in a myriad of ways. While this approach has worked well

for isolated use cases, it has not enabled IoT devices to act in a properly networked manner.

Three important root causes are:

● IoT devices are (in most cases) constrained in technical capabilities (e.g. limited

computation capability, communication bandwidth, and power resources).

● IoT devices require a high degree of security and trustworthiness due to being able to

create damage in the real world.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

32 of 72

● The lack of scalable technical solutions for traversing between the physical and digital

worlds (e.g. conveniently accessing sensor data while being physically close to the
sensor).

Most of the technical constraints can be overcome with the usage of Digital Twin solutions,

but achieving an adequate level of security and trustworthiness in a networked environment
still requires new solutions. Digital identity solutions can be leveraged to solve some of the

trustworthiness issues, but others need further types of arrangements, such as suitable data
management architectures.

Digital Twins are virtual counterparts of real-world things. From there on, the definitions

diverge according to the underlying use case. The Digital Twin concept originated from the

product lifecycle management domain in engineering and was adopted as a metaphor for
a simulation model that is connected to a real-world machine. Simultaneously, the IoT
domain developed concepts and solutions, such as digital agents and sensing technologies,

that would later be integrated into the Digital Twin concept. Furthermore, many other digital
technologies such as artificial intelligence and augmented reality have been associated

with Digital Twins, making the concept fruitful ground for misunderstandings.

For the purpose of this document, we define a Digital Twin as a collection of software services

that are related to a real-world entity. Some of the software services may be accessible

through the public internet, others only in an isolated network and running on local machines.
All of these services may provide value for people dealing with the corresponding real-world

entity, but there are no conventions on how to deal with these heterogeneous solutions.

4.1.2 The role of Semantic Twins
Semantic Twins are being developed in the IoT-NGIN project as a general solution for adding

metadata to Digital Twins and real-world entities. While Digital Twins are complex digital

services that can accomplish almost any digital task, Semantic Twins give context and
meaning to Digital Twins and real-world entities by providing information about the services

of real-world entities and their Digital Twins in a unified human and machine-readable
format.

Digital Twins consist of digital services that are related to the real-world entity. These services

can be very diverse, such as a cloud-based IoT platform, simulation model, database, or an
artificial intelligence agent. These services are also implemented in diverse ways and may

be accessible in the cloud or only as local software that is run without internet access. The
Semantic Twin needs to be able to provide its services in all of these situations.

Semantic Twin is a solution for improving interoperability and they aim to make the

integration of Digital Twins and their real-world counterparts more structured and efficient.
To achieve this goal, Semantic Twins consist of three main components as shown in Figure

4.2: Twin ID, twin document, and semantic descriptions, which are further detailed in section
4.3. The Twin ID enables the identification of the Semantic Twin, and therefore, the ST-DT-

entity triplet, and this identification can be linked to the real-world entity and Digital Twin
services through the descriptions. For example, an external service may access the database

service of a Digital Twin via the Twin ID and the semantic description of that service.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

33 of 72

Figure 4.2 - A detailed look into an entity triplet, showing the basic features of a Semantic Twin and

how it describes the Real-world entity and the Digital Twin.

As an example case, twin documents have been used in machine-to-machine

communication in a simulated factory, where machines accessed the communication
details and relationship descriptions of other machines from their twin documents to fulfil a

logistics-related task [Mat2022]. This approach, however, assumes that all parties are trusted,
limiting its applicability only to environments to where access is restricted from the outside. In

the long term, Semantic Twins can help create a global network of Digital Twins. We call this
network the Digital Twin Web due to the intended analogy to the World Wide Web as further
explained in [Aut2021a]. However, in this wider open environment, the related trust and

privacy issues require more advanced solutions as discussed later in this document.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

34 of 72

4.2 Description of the Semantic Twin solution

Figure 4.3 – Example composition of a system of systems that uses different features of Semantic

Twins.

The functional architecture of a system that uses the Semantic Twin solution is shown in Figure
4.3. The twin document is the central component of the Semantic Twin, providing the main

body of information. Other components in the green box provide various services for
enhancing discoverability and trustworthiness of the solution.

From the user perspective, the Semantic Twin journey starts from (1) the discovery of an

identifier, which in this case is the GS1 Digital Link. It can be discovered via a QR code on the
physical device or as a text string around the internet. The GS1 Digital Link (2) resolves via the

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

35 of 72

Domain Name System (DNS) to a GS1 Digital Link Resolver, which (3a) by default resolves to

the twin document server, but may also (3b) resolve to a DID resolver when read with
specially made software. The DID can then (3c) provide additional validation for the twin

document. (4) The public part of the twin document is then sent to the user. If the user holds
the appropriate credentials, they can also (5) read the private part of the twin document
and modify it, and execute operations via an access management proxy server that (6)

redirects the requests to the twin document.

The user reads the twin document that describes the methods to access an IoT cloud service

and a locally run simulation software. The user decides to (7) access the IoT cloud service
with a (delegated) credential. Then, the user (8) accesses a simulation in a local environment

with another credential that requires no internet access.

To have a shared immutable history for the twin documents, (9) the twin documents are

hashed and the hash is stored in a fast distributed ledger, which already provides a good

level of confidence on the history. (10) At longer time intervals, the hashes are then grouped
and stored (with salt to preserve privacy as discussed in Section 4.1.2) to a more secure

ledger via a Decentralised Interledger Bridge (DIB) to further increase the confidence
through this more secure ledger.

As demonstrated by the description of the architecture, the main services of the Semantic

Twin solution are:

● Provide a description document of the real entity and its Digital Twin services.

● Provide a resolvable ID for the entity triplet.

● Provide validation of the twin document.

● Manage access to the document and potentially to the device and Digital Twin.

● Verify the history of the twin document, in both fast and secure methods.

The three main topics, twin document, discoverability and trustworthiness, and semantic

descriptions, of the Semantic Twin solution are further described in the following subsections.

4.2.3 Twin document
A twin document (Digital Twin description document) is a text document that describes a

Digital Twin and its real-world counterpart. A twin document is supposed to be the initial

source of information about a real-world entity in all use cases. As the document is text-
based, any dynamic materials are added as links or interface descriptions.

The distinction between a twin document and a semantic description is that a twin

document provides the overall format, and semantic descriptions are the actual contents

written in that format. Hence, a twin document is kind of a shell for more detailed information.

We currently use unstandardized formats for twin documents because no standard format

fulfils enough requirements to be useful enough for the intended purposes. Unstandardized

formats can be used in limited experiments and applications, but in the long term, a
standardised format is required to achieve most of the benefits of Semantic Twins. Currently,

the strongest candidates for twin document format are:

● Asset Administration Shell (AAS) [AAS]

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

36 of 72

● Web of Things Thing Description (WoT-TD) [WoT-TD]

● Digital Twin Definition Language (DTDL) [DTDL]

● Next Generation Service Interfaces-Linked Data API (NGSI-LD) [NGSI-LD]

Those were compared by [Jac2020]. We currently balance between the solutions, but have
decided to use JSON-LD as the format of our twin documents. We added support for JSON-
LD to the open-source twin document hosting software “Twinbase” [Twinbase] and

developed the Semantic Twin ontology in a format that supports JSON-LD. The general
concept of the twin document was introduced by [Ala2021] and a method to distribute them

was introduced by [Aut2021b]. To be clear, the term twin document refers to the overall
concept and not any specific style of implementation.

4.2.2 Discoverability and trustworthiness
The discoverability and trustworthiness of Semantic Twins are achieved with various

identifier/identity and distributed ledger solutions. Discoverability is implemented with a “Twin
ID” concept, whereas trustworthiness is a more complex combination of Twin ID and other

solutions such as Verifiable Credentials (VCs) for third-party information, with a special focus
on distributed ledgers to provide an immutable history for the ST.

The term “Twin ID” refers both to the identifier and identity solutions of Semantic Twin systems.

We use both of these terms because they are conceptually different and have different
technical implementations, but still either of those might be needed depending on the use

case. Some Semantic Twin use cases may require a full-fledged identity solution with
advanced features, such as verifiable credentials, whereas other cases might require

anonymity and therefore use temporary identifiers for privacy reasons. Also, depending on
the use case, separate IDs may be needed for each Digital Twin service as well as the real-
world entity. In addition to one-way linking from a Semantic Twin to a Digital Twin, it may also

be beneficial to implement a bidirectional linking. For example, a Digital Twin service may
update its own description in the Semantic Twin to keep it up to date, or a Digital Twin service

may use the credentials administered by the Semantic Twin to access restricted information
in other Digital Twins.

Three main methods of Twin IDs have been identified: a plain URL, a GS1 Digital Link, and

DIDs of different methods. Twin ID technologies are still under development, and we use
simplified solutions to get started immediately. A baseline solution for a Twin ID is to use a

dedicated URL as an identifier for a twin so that the URL is redirected to the corresponding
twin document. This however does not allow more granular features that the use of GS1

Digital Links and DIDs enable. GS1 Digital Links enable several redirects from one URL, and
DIDs enable e.g. short-lived identifiers and the assignment of a verifiable credential that can
be used to access various services. However, simple URL redirections are readily available

on the internet for free, whereas GS1 Digital Links require hosting or paying for a server, and
DIDs require that the user holds and uses cryptographic keys correctly. These may not be

obstacles for organisations with strong research and development capabilities, but may
hinder at least short-term adoption in more production-oriented organisations. The initial

versions of the Twin ID concept and the Digital Twin identifier registry along with their initial
PoC implementations with URLs were described by [Aut2021b].

Trustworthiness can be increased via Twin ID solutions on various levels. Trusting a plain URL or

GS1 Digital Link requires that the DNS itself and the holder of the domain are trustworthy.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

37 of 72

Additional trust can be established by signing URLs or documents with DIDs, although this

requires that the user knows and trusts the signer. DIDs can also create decentralised chains
of trust through the use of verifiable credentials. The chains can be used e.g. for delegating

access management rights to a system through a chain of organisations. The VCs can also
be used to issue trustworthy third-party statements about the ST, DT and/or the real-world
entity. For instance, a certification authority can issue a statement that a specific IoT device

has been correctly installed and calibrated, and therefore, produces trustworthy data.

Distributed Ledger Technologies (DLTs) can be used to provide immutable history for twin

documents by storing each version of the twin document to the DLT. This makes it easy to
check the contents of each version and when they were created simply from the DLT.

However, a twin document can be quite large, so storing the whole document to the DLT is
not necessary for the immutable history, we can simply calculate a hash of each version and
store only the hash. This saves a lot of space and costs on the DLT, but requires the twin

documents themselves to remain available elsewhere for verification. An additional benefit
of only storing a hash is that the contents of the twin document are not exposed publicly, but

the existence of the hash at a certain time in the ledger proves that the twin document (with
that specific contents) existed at that point of time. The trustworthiness of the DLTs varies and
usually correlates with the costs of using that ledger: a lower degree of trustworthiness can

be achieved by storing the hash to a fast and cheap ledger, whereas a high degree of
trustworthiness requires storing the hashes to a globally known secure (and usually also

expensive) ledger. A convenient solution is to leverage an interledger solution to achieve a
high level of trust while keeping the cost low, as detailed in Section 5. There we can also use

a nonce (salt) in the hashing process to prevent tracking of twin documents across ledgers
for improved privacy.

4.2.4 Semantic descriptions
Semantic descriptions are the contents of twin documents. The use of globally shared

ontologies makes the twin documents machine-readable across different implementations
and is a key factor in enabling interoperability of real-world data across services.

For example, a visualisation software for city data can fetch the details of a data interface

of a sensor device via a Semantic Twin, so that the user only needs to insert the Twin ID of the
sensor to the visualisation software. Thanks to the semantic descriptions, the software will

know the type of the sensor and visualise it in the correct way: a radar will be shown as a
radar in the correct location and the observations of the radar will be included in the

visualisation automatically.

A problem with using globally accepted ontologies for the semantic descriptions of twin

documents in practice is that they do not currently cover enough use cases with high enough

precision. Ontologies may also be difficult to find and many of them are not documented in
a way that would enable fast adoption by people who are not deeply familiar with the

conventions of the semantics field. In some cases, it may be necessary to create a new
ontology, but the creation and publishing of them requires even more profound

understanding of the conventions. We attempt to ease the barrier for adoption by
introducing an ontology dedicated to Semantic Twins, described in the next section.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

38 of 72

4.2.5 SSI API to Semantic Twin
To prove the technical feasibility of the overall Semantic Twin approach, we implemented

the access management proxy server (the IAA proxy detailed in Section 6.1) shown in Figure
4.3. We use a research originated open-source software Twinbase [Twinbase] as a twin
document server. However, the only method to modify twin documents in the original version

of Twinbase is by Git operations. Hence, we developed first a wrapper server that transforms
HTTP-based CRUD (Create, Read, Update, Delete) requests to Git operations. That wrapper

server however needs an access management solution, for which we leveraged the access
control proxy from T5.4 that allows us to use delegated VCs for access management. We call
the combination of these two servers the Twinbase SSI API as shown in Figure 4.4. The

Twinbase SSI API is the implementation of the conceptual SSI API to Semantic Twin. The source
code for Twinbase SSI API can be found in GitHub [TB-SSI-API].

Figure 4.4 – Technical implementation of SSI API for Semantic Twins. Orange arrows depict the

process of updating access requirements.

The process of using SSI API to Semantic Twin is as follows.

● 0. Owner of a semantic twin configures the SSI API for a selected semantic twin hosting

server.

● 1. Owner gives credentials to an installer technician to access and/or modify the

semantic twin,

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

39 of 72

● 2. The installer sends a CRUD request to the SSI API, which forwards the request to the

semantic twin.

● 3. The semantic twin returns the results to SSI API, which forwards them to the installer.

To allow a user friendly and efficient process, a credential app and installer app should be
used when communicating with the SSI API. These apps are, however, use case specific and
were not developed as part of the semantic twin solution. However, a demo installer app is

being prepared as part of the Smart City LL in WP7.

The SSI API dynamically determines the required user privileges according to information

found from the semantic twins. In the current implementation, the SSI API reads the semantic
twin document to check if the Neighbourhood7 class of SAREF extension for Smart City

ontology [SAREF4CITY] is defined under the location8 class of WGS84 Geo Positioning
vocabulary [WGS84voc]. If a neighbourhood is found, the SSI API mandates that anyone who
wants to access that semantic twin has to hold a credential to access that specific

neighbourhood.

The motivation for the SSI API comes from the IoT devices configuration demo described in

Section 7.1, although the SSI API also works as a general method for privacy-preserving
access control for semantic twins in any use case, where the owner and user can use apps
that handle the use of identities and credentials.

4.2.6 Semantic Twin DLT integration
To anchor the history of semantic twins in a reliable way, the semantic twin solution was

integrated to a DLT. To preserve privacy while taking advantage of the reliability of a public

ledger, only hashes are stored in the ledger. This approach also lowers the costs of using the
ledger.

The DLT integration was implemented to the Twinbase software. Twinbase generates hashes

for the twin documents and pushes the hashes to a ledger. The Twinbase user interface also
provides a button to verify if the document has been anchored in a ledger, showing the

name of the target ledger and the time when the hash was stored.

Figure 4.5 – User interface showing the button to validate a document (a) and the result of the

validation (b).

7 https://saref.etsi.org/saref4city/Neighbourhood

8 http://www.w3.org/2003/01/geo/wgs84_pos#location

https://saref.etsi.org/saref4city/Neighbourhood
http://www.w3.org/2003/01/geo/wgs84_pos#location

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

40 of 72

The source code of the Twinbase with DLT integration can be found on GitHub [TwinbaDLT].

Instead of storing the hash directly to a public ledger, which may be so expensive that the

benefit does not outweigh the costs, the hash of multiple twin documents may also be stored

in a smart contract in a private ledger, which at suitable intervals combines the hashes and
sends an event to an interledger, which transfers the hash to a smart contract in a public
ledger. This public ledger can be used to validate a single twin document. This way, the user

can enjoy the cost-efficiency of a private ledger while also taking advantage of the reliability
of a public ledger where necessary.

The DLT integration for semantic twins is, in addition to the general benefits of anchoring the

history, motivated by the Smart Factory use case. It is typical that powertrain operators need

to make some configuration changes for powertrain components. For example, some
parameter changes are typical when a process is to be optimised. Normally these kinds of
changes mean behavioural changes in powertrain operation. It is obvious that there should

be a way how these changes will be implemented in the digital version of the product as
well. In some cases digital twins are used to simulate behaviours of real world entities.

The proposal for a regulation on cybersecurity requirements for products with digital

elements, known as the Cyber Resilience Act, requires that mentioned changes in digital twin
documents must be documented in the proper way [Cyber2022]. The idea is that all the

changes can be tracked from semantic twin document history, and the operator can check
what software version was used and what was the parameter setting.

4.3 The twinschema.org Semantic Twin ontology
One primary goal for the Semantic Twins is to enhance interoperability in the domain of

Digital Twins. Semantic technologies are a key enabler for interoperability of heterogeneous

data and information exchange. This goal is achieved by creating a specialised ontology for
the domain of semantic twins. Semantic technologies and ontologies were already

introduced in [D5.3] and [D5.4]. Therefore, only a brief summary is given here.

The "Ontologies" and "Vocabularies'' are exchangeable in this context and can be defined

as follows: Vocabularies define the concepts and relationships (also referred to as “terms”)
used to describe and represent an area of concern [Ont2022]. Ontologies focus on providing
the vocabulary and the relations for a domain. They seldom incorporate information about

individuals and instances of the classes, unless these incorporate some fundamental truth in
the respective domain. Thus, the primary use case of an ontology is to provide knowledge

about the relations and to define annotation points for actual data. The latter is then known
as "linked data", and is for instance used by websites to give search engines more in-depth

knowledge about their content.

Semantic Twins build upon this concept by using an ontology created for semantic twins to

provide meaning to the data in a digital twin document. This way, algorithms can infer

information about the twin and the real-world entity and new use-cases like the exchange
of twins or the automatic aggregation of heterogeneous data are possible.

In [D5.4] the semantic twin ontology was already presented, and didn't require major

overhauls for this final version. In the following we will summarise the basic concepts in the
ontology, explain the changes since the initial version and describe the development

procedures for future enhancements.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

41 of 72

Figure 4.6 – Main Classes in the Semantic Twin Ontology.

Semantic Twins describe the essential information about a Digital Twin, namely the identity

and owner of the Digital Twin, its real-world counterpart, access rights and terms of use, and
relations to other Digital Twins. The main classes forming the Semantic Twin Ontology can be

seen in Figure 4.6, where we find a central SemanticTwinDescription class containing relations
to the relevant classes covering the aspects of the Semantic Twin. The class

SoftwareServiceDescription describes the Digital Twin, whereas RealEntityDescription
describes the physical counterpart. It can be observed that these have a described relation

to a generic class, which can be set as a superclass to classes coming from other ontologies,
which are focusing on their special domain. Thus, the Semantic Twin ontology can be used
as a link between these ontologies. The different meta information of the Digital Twin do have

their respective classes that reuse standard ontology classes where possible (e.g., the friend-
of-a-friend (FOAF) ontology or the DBpedia ontology). Figure 4.7 uses a fictional example of

a powertrain by the partner ABB to illustrate the use of the ontology.

Since the previous version, the most significant changes to the ontology were the usage of

owl:dataProperty, which is meant to "connect individuals with literals" [OWL-W3]. These allow

us to specify types of literal data, such as strings or integers, to be connected to individuals
in the ontology. In the context of semantic twins, these are especially useful, as e.g., the

name of a Twin or the human-readable description are such native data types. The
twinschema.org ontology contains the following dataProperties: DID, Random Number

TwinName, URL, as well as hasDescription, which contains three subclasses:
hasCloudServiceDescription, hasRealEntityDescription, and hasSemanticTwinDescription.
This is separated, as the "Domain" (the classes that the property is assigned to) of these

properties must differ. Otherwise, a reasoner would conclude that a CloudService and a
RealEntity are the same thing, as both have a hasDescription property.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

42 of 72

The ontology can be found at the project's GitLab repository9. We also use Gitlab Pages to

provide an interactive ontology documentation browser, as is shown in Figure 4.7. This
documentation is created using the "ontology-browser" plugin from Protégé10. This might be

enhanced by using another tool for the html generation, but an extensive research on
available alternatives could not bring up viable alternatives yet, as all results were either
highly customised, undocumented or outdated.

Figure 4.7 – Application of the ontology to a fictional powertrain example use case.

Figure 4.8 – The Ontology documentation browser on https://ontology.twinschema.org.

9https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/semantic-

twins/semantic-twin-ontology

10 https://github.com/co-ode-owl-plugins/ontology-browser

https://ontology.twinschema.org/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/semantic-twins/semantic-twin-ontology
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/semantic-twins/semantic-twin-ontology
https://github.com/co-ode-owl-plugins/ontology-browser

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

43 of 72

The ontology for the powertrains in UC8 has been developed as described in previous

sections. The main elements were taken into account in the solution so that suitability and
usability of semantic twin approach can be tested.

However, in reality there are huge amounts of different setups in real applications: e.g. the

number of main components like motors and drives can be different, depending on
installations different sensors may be used, and there could be different kinds of users for

powertrains. This means a lot of different needs and therefore it is not possible to include all
needed ontologies for powertrain in this exercise. It is important to know what the possibilities

are when using this kind of approach. At this point it is obvious that semantic twin approach
is a good framework for UC#8.

Keeping the different needs in mind, the following aspect merit further consideration in the

future:

● How to modify semantic twin document content easily as there are a lot of variations

in powertrain setups? Manual work should be avoided and user-friendly interfaces
should be available for operators.

● What is the automated procedure to add new data to twin documents?

● What are the required actions to add e.g. a new sensor for the system?

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

44 of 72

5 Decentralised Interledger solution
This section presents the Decentralised Interledger Bridge (DIB) solution. First, the section

summarises the need for multi-ledger transactions and how they can be met with a suitable
interledger solution, the IoT-NGIN requirements for the interledger, and the existing
interledger approaches. Based on the requirements, the Flexible Interledger Bridge (FIB)

[Wu2021] developed in the EU Horizon 2020 project SOFIE [SOF2021] was chosen as the basis
for developing a decentralised solution, the Decentralised Interledger Bridge (DIB). More

details about available multi-ledger solutions and rationale for selecting the FIB as the basis
of DIB can be found in IoT-NGIN deliverable D5.3 [D5.3]. The rest of the section details the DIB

solution, both the original Ethereum DSM version and the more recent High-Throughput Fabric
DSM version.

5.1 Motivation for Interledger
Interledger technologies enable transactions that span two or more distributed ledgers. This

section summarises why a separate technical solution is required for linking the ledgers, what

benefits this approach enables, and what requirements a good interledger solution has to
meet to be able to address the needs of IoT-NGIN.

5.1.1 Need for multi-ledger transactions
Distributed Ledger Technologies (DLTs) have been developed for over a decade, and they

have been widely adopted due to the immutability and transparency provided by the
decentralised secure storage, the distributed trust ensured by sophisticated consensus
algorithms, and the automatic execution within the system enabled by features such as

smart contracts [Zha2019]. According to their individual design goals, different DLTs have a
varying emphasis, including the accessibility of data on the ledger (i.e., who is allowed to

read or write on the ledger), the consensus mechanism adopted to reach agreement on
ledger status, and the range of supported functionalities.

As DLTs have been deployed to more application areas, it has become clear that no single

DLT is suitable for all use cases. Sometimes even the requirements of a single complex use
case can easily exceed the strengths and capabilities of any single DLT. In such situations,

combining multiple DLTs with different strengths and features can be a beneficial approach
as it enables new functionality [But2016]. For instance, it might help improve the data integrity

by utilising a highly trustworthy public ledger, while reducing the cost and latency of a system
by keeping most of the heavy-lifting business logic in private ledgers.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

45 of 72

Figure 5.1 – An IoT-based system combining multiple DLTs.

A typical example are Internet of Things (IoT) systems, where an information sharing

mechanism across multiple DLTs could help resolve the security, maintenance, and
authentication issues in an automated manner [Has2019]. As illustrated in Figure 5.1, it is
typical that IoT devices and services are connected to and backed by private distributed

ledgers of individual vendors so that, e.g., the devices and equipment for a smart home
interact with Ledger A, and the automobile sensors and circuits work together with ledger B.

Then, a public ledger could be used for providing services for authentication and payment,
and interlinking these three DLTs would enable a more complex (eco)system with additional

functionality, e.g. payment services could be used with automobile ledgers at electricity
charging stations.

5.1.2 Requirements of IoT-NGIN
The Interledger solution being developed (from here on: interledger) will be used in the IoT-

NGIN project in several ways including Twin Smart Cities, Industry 4.0, and Smart Energy living
labs, and also the Semantic Twins use case from WP5. Furthermore, the IoT-NGIN architecture
is expected to introduce many other uses for the interledger beyond the IoT-NGIN project

itself including the IoT-NGIN open calls.

More specifically, in the Smart Energy Grid Living Lab the energy marketplace data needs to

be stored. In WP3, trusted AI is targeted for machine learning: Zero Knowledge Proofs (ZKPs)
of training datasets and trained machine learning models together with its parameters can

be automatically stored on DLTs in form of hash values and later utilised for verification by
third parties to ensure they have not been tampered with, while no actual data is released

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

46 of 72

on the DLTs. Finally, Semantic Twins in WP5 utilise DLTs in a similar pattern, to ensure the

integrity of twin documents.

All the above use cases require auditability for logged data, but storing everything in a highly

trustworthy public ledger would result in high costs and expose all data to potentially prying
eyes. The low throughput of public ledgers can also become a problem in some cases.
Storing everything in a private ledger would protect privacy, provide better throughput, and

slash costs, but would also lack the high level of trust. A solution is to store the data in the
private ledger and then leverage an interledger to automatically store a hash of the data

at suitable intervals to the public ledger. To improve privacy, this hash can also be salted by
adding a random number to the calculation of the hash value to prevent guessing the data

stored in the public ledger. This way, it is easy to verify whether the data in the private ledger
has been tampered with while the overall costs are kept significantly lower as the usage of
the expensive public ledger is reduced drastically.

Based on these different uses discussed above, 7 key requirements for the interledger solution

can be identified as listed in Table 5.1 (table 2.1 in D5.3) and are detailed in the following

text.

● REQ_IL_NF01: The interledger must be able to support the transfer of different types of

data (so this excludes e.g. interledger solutions that focus exclusively on value

transfers). Also, depending on the use, different types of DLTs may be utilised as part
of the system, so the interledger solution has to be adaptable to different DLTs with

relative ease.

● REQ_IL_NF02: The interledger must guarantee that the transactions across the ledgers

are atomic, i.e. they happen completely on all the involved ledgers or not at all.

● REQ_IL_NF03: The interledger must provide transparency to the operations so that the

correct operations of the interledger can be verified based on the data on the

ledgers.

● REQ_IL_NF04: The interledger must operate so that non-repudiation for all parties of

each individual transaction is guaranteed.

● REQ_IL_NF05: The interledger must be designed so that it can support a large number

of transactions per second.

● REQ_IL_NF06: The interledger should minimise the overhead (cost, performance,

storage etc.) for the application utilising the component for cross-ledger

communication.

As detailed in D5.3, a centralised bridging solution, the Flexible Interledger Bridge (FIB)

[Wu2021] developed in the EU Horizon 2020 project SOFIE, already meets all of the above
requirements. However, as a centralised solution, it suffers from the known limitations of all
centralised solution, namely higher trust requirement on the party running the bridge and

lower resiliency. Therefore, the requirements list include one last requirement:

● REQ_IL_NF07: The interledger itself must support decentralisation, i.e. that the

functionality is provided by a consortium of parties so that none of them can
misbehave in any data transfer (e.g. change data payload, report invalid ledger

transaction, or reject the transfer) without being detected by others. As a contrast, an
interledger run by a single party has several limitations: the party has to be trusted by
all users and it forms a single point of failure that can also pose problems for the

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

47 of 72

resiliency and performance of the solution; a decentralised interledger helps address

these limitations.

Table 5.1 - Requirements for the interledger solution [D5.3].

ID Requirement Description

REQ_IL_NF01

Generality Must support general-purpose data transfers and be easily
adaptable to different types of distributed ledgers.

REQ_IL_NF02 Atomicity Must guarantee atomicity of transactions across the ledgers.

REQ_IL_NF03

Transparency Must be transparent enough that the correct operation of all

transactions can be verified based on the data on the ledgers.

REQ_IL_NF04 Non-repudiation Must support non-repudiation so that the participants to a
transaction cannot later deny their actions.

REQ_IL_NF05 Scalability Must support a large number of transactions per second.

REQ_IL_NF06 Efficiency Should keep the application overhead low.

REQ_IL_NF07 Decentralisation Must support decentralisation, where the interledger is run by a

consortium of parties

5.2 Detailed description of the developed solution
This section describes the Decentralised Interledger Bridge (DIB) in more detail. The DIB

implementation has been published as open-source11.

Compared with its single node predecessor, the decentralised architecture of DIB design

provides the shared trust among a consortium of participants for interledger transactions,
while improving the resiliency of the interledger data transfer via redundancy of nodes. To

achieve a reasonable decentralised architecture for interledger, it is critical to make the
following assumptions:

● Endpoints, which typically are smart contracts on DLTs, at both source and destination

of a data transfer will implement the interfaces required by DIB.

● All interledger nodes in a consortium (regardless of the party controlling the node)

have the same access to the endpoints, including both read and write operations.

● All nodes are equal in the sense that there is no special or admin node with superior

functionality or access rights.

11https://gitlab.com/h2020-iot-

ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-

dib.

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-dib
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-dib
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/decentralised_interledger_bridge-dib

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

48 of 72

Figure 5.2 – DIB architecture consisting of nodes (Nx), bridge instances (Bx), and smart contracts

(SCx).

The high-level structure of the DIB design is illustrated in Figure 5.2. The architecture consists

of identical DIB nodes implementing the bridge functionality and a Decentralised State
Management (DSM) layer in the centre for synchronising the nodes. In the illustration,

endpoints (typically smart contracts on a distributed ledger) of each connection are ignored
for simplicity. The Connection Smart Contract (SCx in the figure) on DSM manages

unidirectional interledger transfers between certain endpoints.

In this decentralised architecture, the interledger nodes should always have access to the

DSM layer that is shared among the consortium of partners. The current implementation
supports use of Ethereum and Hyperledger Fabric for the DSM layer. Ethereum was chosen
due to wide availability of tools and ease of deployment. However, Ethereum has not been

designed for a high throughput, therefore Hyperledger Fabric should be used as a DSM layer
in situations where the high performance is needed. DIB also supports a local state manager

which resides in the node’s memory for cases where the extra resilience is not necessary and
a single-node setup is sufficient. The local state manager also has higher performance than

DSM as it does not have to synchronise the activities with other nodes.

While all the nodes have access to the DSM layer, only a single node should perform a

transaction to the endpoint ledgers. Here DIB supports a timeout mechanism to provide extra

resiliency: if the node that is supposed to perform an endpoint transaction does not perform
it within a certain amount of time, which is freely chosen by the deployer of the DSM, another

node will take over this task.

There are two alternative versions of the DIB with different emphases. The original Ethereum

DSM based DIB (described in D5.4 [D5.4]) focuses on active monitoring of the nodes to ensure

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

49 of 72

high trustworthiness and quicker recovery from unfinished transactions, but at the cost of

lower throughput. The newer High-throughput Fabric DSM based DIB has the opposite priority
by focusing on throughput at the cost of less active monitoring and slower recovery.

5.2.1 Data flow of the Decentralised Interledger using
High-Throughput Hyperledger Fabric DSM
The downside of the active monitoring in the Ethereum based DIB is that it reduces the

throughput of the bridge. To address this, an alternative DIB design based on Hyperledger
Fabric has been developed to emphasise the throughput at the cost of monitoring and
recovery speed. While the architecture of this Fabric DSM is different, the overall goal is the

same as with the previous design: to increase the resiliency and trustworthiness of the bridge
by supporting the collaboration of 1-N nodes that together provide the service, ensure that

the other nodes have performed their work correctly, and (after the defined timeout) take
over for failed nodes.

In the Fabric DSM implementation, the coordination between nodes and the tracking of the

transfer process is minimised: one node is chosen to independently carry out the complete
transaction and then write the outcome to the DSM. The other nodes then verify the

transaction was carried out correctly and indicate their agreement with silence (i.e. they only
write to the DSM if they disagree with the transaction). Alternatively, if the DSM write about

the completed transaction fails to materialise within the (relatively long) timeout window, the
failover node will start the recovery process and take over the transaction.

This design significantly reduces the time each node has to interact with the DSM and also

reduces the load on the DSM, which in both designs will be a bottleneck after enough nodes
have been added to the bridge. As a downside, this Fabric-based DSM does not support

real-time monitoring of the transfer process, which results in much slower detection of
anomalies. Further, the transfer timeout needs to be significantly longer than in the Ethereum

based DIB as the whole transfer process including the client ledger processing all needs to
be able to complete before the timeout is triggered, so recover from e.g. a node crash will
take longer.

Furthermore, the recovery process was re-designed to support the new design where DSM

doesn't have the intermediate states but the node taking over in a case of failure has to

figure out the state of the transfer by querying initiator and responder ledgers. Also, the
verification process was re-designed. Transfer is reported to the DSM layer only at the

completion of the transfer to minimise the slow down due to the large number of DSM
transactions. 4) Finally, the technology of the DSM layer was changed from Ethereum to
Hyperledger Fabric for higher performance, and the different architecture of Hyperledger

Fabric was utilised in the architecture of the DSM layer operations.

Coordination of the Transfer Process

In the Fabric-based DIB, each transfer is dedicated to one node, whereas in the previous

design nodes compete to take the next action in each step of the transfer. The idea of the

competition is to increase the trustworthiness of the bridge by distributing the responsibility to
multiple nodes. However, it requires recording every step of the transfer to the DSM layer to

coordinate the process between the nodes. This dependency to the DSM layer during the
transfer process makes it a bottleneck of the overall throughput. Thus, in the new design the

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

50 of 72

dependency to the DSM layer was reduced drastically. The transfer is only recorded to the

DSM layer for auditioning after the transfer is finished. Further, each transfer is dedicated to
one node to avoid the need to communicate and synchronise between the nodes during

the transfer.

This is achieved with a scheduling similar to round robin where nodes take turns to conduct

transfers. As the new design follows the same principle as previous designs, clients are

allowed to use arbitrary ids, even colliding ones, and thus the bridge has to generate a
unique internal id for each transfer. The unique transfer id is generated with a deterministic

algorithm based on the details of the source transaction, enabling each node to
independently generate the same id. The transfer is assigned to a node by calculating the

modulo of the transfer id and the node count, which results in the node id that the transfer
will be assigned to. As transfers are assigned to nodes by deterministic algorithm, the ids are
shuffled with a hash function to make it harder for the potentially malicious client to predict

the node the transfer will be assigned to. The objective is to prevent a denial-of-service (DoS)
attack where one node would be crashed by crafting transfer of which all would be assigned

to that node only. The modulo based algorithm that assigns the transfers to nodes requires
the number of nodes to be known and also the nodes need to have consecutive ids. The
disappearance of a node will be taken care of by the recovery process, but adding new

nodes requires updating the node count and ensuring the numbering remains consecutive.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

51 of 72

Transfer Process (Phases I-III)

Figure 5.3 – Interledger transfer process using Hyperledger Fabric based DSM.

The transfer process consists of 3 phases as illustrated in Figure 5.3.

Phase I: Receive Transfer

1. All nodes will receive the InterledgerSending(id, data) event from the source ledger

(Initiator).

2. All nodes calculate the unique transfer id with a deterministic algorithm based on the

details of the source transaction, resulting in the same id in all the nodes.

3. The function is_my_duty() decides which node will start the transfer process, based on the

id of the transfer and the id of the node.

4. Other nodes will internally register the transfer for monitoring the possible timeout in the

process.

5. All nodes also store the identifying information of the originating event to the in-memory

transfer object for later use.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

52 of 72

Phase II: Send Transfer (node in charge)

1. The node in charge of the transfer calls interledgerReceive(id, payload) in the responder

smart contract, where id is the unique id generated in the previous stage and data or
payload is the content that is being transferred. (id is passed to the functions so that the

event sent as an acknowledgement can be identified)

2. Responder smart contract will respond with an event of either

InterledgerEventAccepted(id) or InterledgerEventRejected(id) depending on whether the
recipient accepted or rejected the transfer. The response event can be connected to the

right transfer with the id.

3. Identifying information of the data sending transaction is stored to the in-memory transfer

object for later use.

Phase III: Confirm Transfer (node in charge)

1. The transfer will be acknowledged as committed or aborted to the initiator using

commit_sending(id) or abort_sending(id, reason) functions in the initiator adapter and
interledgerCommit(id) or interledgerAbort(id, reason) functions in the initiator smart contract

respectively, based on the response received in the previous stage from the responder
ledger. The id is the identifier of the data item in the originating ledger and it was stored in

the node in the first stage, as mentioned.

2. Identifying information of the acknowledging transaction is stored to the in-memory

transfer object for later use.

3. After the transfer process is completed, it will be recorded to the DSM to indicate whether

it was successful (committed) or not (aborted), using recordTransfer(transfer) function, where

the transfer parameter is basically the in-memory transfer object, which represents all the
critical information of the whole transfer process. Calling recordTransfer() emits

EventTransferCompleted event if the function is successful, and thus notifies other nodes
about the completion of the transfer.

Recovery Process

Recovery process is designed for handling scenarios where the node in charge of

conducting the transfer doesn't do its job as expected, for instance due to crashing. Similarly
to the transfer process, the recovery process is also designed so that the nodes don't need
to communicate with each other to coordinate the process, keeping the synchronisation

and thus the utilisation of the DSM layer minimal. There is a pre-defined time window for each
node in which transfer needs to be completed or it will be taken over by the next node.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

53 of 72

Figure 5.4 – Recovery process of Interledger transfer.

All nodes continuously scan all the transfers in their registries to detect transfers that have

timed out. As described earlier, transfer is assigned to a node based on a unique internal

transfer id and id of the node, but there is also a component that increments over time, more
precisely over the timeout period, and thus the node selection is rolling. This mechanism

guarantees that if a node becomes unavailable, responsibility for the transfer will eventually
be assumed by another node without requiring explicit coordination between the nodes,
and the transfer will be resumed.

When the timeout procedure activates, it starts by checking where the process was left

unfinished and then continues from there as normally, as illustrated in Figure 5.4.

Verification Process (Phase IV)

To enable auditing, and thus, increase the trustworthiness of the DIB, all transfers are reported

to the DSM after completion to generate an auditable log of the transfer process, including
identifying information of each step of the transfer process. When a transfer is reported as

completed to the DSM, the DSM also informs every node about the completed transfer that
can be audited, and if flaws are detected, transfer can be flagged by voting for rejection.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

54 of 72

Compared to the previous design of the DIB, endorsing is signalled by silence to reduce the

load of the DSM which was the bottleneck of the system. As a result, there is only one voting
round when the transfer is completed and reported, and in that voting round only rejection

votes will be cast. This is possible due to a design where there is a time window for voting and
if no rejection votes are cast during that time period, transfer is considered valid. This strategy
adds a significant delay to the transfer process finalisation compared to the Ethereum-based

design, but crucially it enables achieving a higher overall throughput.

Also, the verification process and the voting process specifically is optimised for the overall

throughput by utilising Fabric's "parallel" architecture by registering votes with distinct
composite keys using transfer's id together with node's id and thus write operations of casting

votes won't conflict. The final number of votes can be counted by running a (range) query
that retrieves all the votes with a key that starts with transfer id. In other words, votes are
collected as distinct records that are aggregated on demand. No mutations are done, that

would require synchronisation of the operations, and thus slow down the process.

The verification process has following steps:

1. All nodes receive a signal of a completed transfer, EventTransferCompleted event carrying

all the details of the transfer. All the other nodes, except the one node in charge of the

transfer, will check that all the steps of the transfer were conducted properly. The initiating
transaction doesn't need validation as all the nodes receive the content with the originating

event.

2. First, the nodes check that correct data was sent to the responder by comparing the

response to the data payload in the originating event and the recorded data in the DSM.

3. Then, the nodes also check that the transfer was correctly acknowledged to the initiator

by getting the acknowledgment event from the responder and checking that the

corresponding function either interledgerCommit or interledgerAbort was called.

4. If there are any mismatches, nodes vote for rejection using voteReject(transferID) within a

pre-configured time window.

5. After verification, the transfer is cleared from the register.

5.2.2 Security properties of decentralised Interledger
The DIB provides decentralisation with the following benefits:

1. Resiliency and availability. If one DIB node is not available to participate for any reason

(node is down, lack of network connectivity, etc.), the interledger transactions will be

successfully completed by other DIB nodes, as long as there is a sufficient number of nodes
available. Even if one DIB node has already indicated its willingness to perform the
transaction and then it is not able to do it, another node will take its place after the timeout.

2. Auditability. The DIB design allows multiple nodes (and parties) to join the DSM layer, which

keeps track of interledger transactions. Therefore, all parties are able to verify that the

transactions have been performed correctly.

However, the DIB cannot prevent malicious node behaviour. Any node that has access to

the source and destination ledgers can perform malicious transactions directly with these
ledgers, bypassing the DIB altogether. For example, the malicious node can signal to the

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

55 of 72

source ledger that the transaction has been accepted/rejected immediately, or perform the

interledgerReceive() transaction on the destination ledger with incorrect data or without the
corresponding trigger from the source side. However, in these cases DIB still provides

auditability, if all the nodes that have access to the source and destination ledgers
participate in the DSM, then the malicious node can be identified by comparing transactions
on the source, destination, and DSM ledgers. However, the current implementations do not

try to monitor e.g. for interledgerReceive() transactions without a trigger on the source side,
but such a functionality could be implemented relatively straightforwardly as no bridge node

is supposed to interact with that function without a trigger.

By default a majority of nodes is sufficient to endorse/reject transactions, e.g. if there are 9

nodes in the DSM then endorsement from 5 of them is enough. This parameter can be freely
chosen during the deployment of DSM smart contract, however changing it drastically may
worsen the resiliency or security properties of DIB. E.g., if it is required that 90% of nodes

endorse DSM transactions, then just having 11% of nodes offline or acting maliciously would
stall the DIB process since there will not be enough nodes to endorse them. In situations where

malicious behaviour of DIB nodes is not expected and the availability of individual nodes is
poor, the sufficient number of endorsements can be significantly below 50% of the nodes.

5.3 Analysis of DIB features and performance
The DIB component satisfies all the requirements presented in Table 5.1:

● DIB supports transfer or any kind of data, instead of just monetary value. (REQ_IL_NF01)

● DIB provides atomic transactions, the transaction is confirmed/aborted on the Initiator

ledger depending on the result of the Responder transaction. (REQ_IL_NF02)

● DIB provides transparency and non-repudiation since all of its actions are recorded to

the ledgers. (REQ_IL_NF03 and REQ_IL_NF04)

● DIB component itself does not produce a high overhead and supports a large number

of transactions. Performance and throughput of ledgers themselves is often the
limiting factor. (REQ_IL_NF05)

● Ledger interfaces provided by the DIB component are simple and do not incur

significant additional cost for the application smart contracts, running the component
does not incur significant CPU overhead. (REQ_IL_NF06)

● DIB supports decentralisation as described in this section. (REQ_IL_NF07)

5.3.1 Initial DIB performance results

This section presents some initial DIB performance results, the final performance analysis will
be presented in IoT-NGIN deliverable D6.3. In the DIB deployment there are several potential

performance bottlenecks:

● Initiator and Responder ledgers, in many use cases one of these is a public ledger with

very limited throughput

● DSM ledger of DIB

● The DIB component that is written in Python

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

56 of 72

During testing Ethereum ledgers utilising Geth12 software were used as the Initiator and

Responder ledgers. The testing revealed that the performance of these ledgers is around 20
transactions per second, which is quite low but understandable since Ethereum has not been

designed for high throughput.

The following Table 5.2 presents intermediate test results of Gametoken [Gam2022]

transactions in the following situations:

● Transactions performed directly, without DIB component, using a single test script

● Using DIB with local state manager

● Using 1-node DIB with Ethereum DSM (Geth)

● Using 3-node DIB with Ethereum DSM (Geth), with all nodes running on the same server

● Using 1-node DIB with Hyperledger Fabric DSM

● Using 3-node DIB with Hyperledger Fabric DSM, with all nodes running on the same

server

Table 5.2 - Initial performance results for DIB: Throughput and standard deviation (in parenthesis).

Scenario Throughput (standard deviation)

Direct process (no DIB used) 11.64 (0.1302)

1-node DIB with local state manager 11.22 (0.2748)

1-node DIB with Ethereum DSM 2.84 (0.0949)

3-node DIB with Ethereum DSM 4.52 (0.1450)

1-node DIB with Hyperledger Fabric DSM 11.32 (0.1936)

3-node DIB with Hyperledger Fabric DSM 21.80 (0.6589)

Results indicate that in addition to the ledgers, also the DIB component can be a bottleneck,

and therefore running multiple nodes in parallel increases the performance of both the
Ethereum and Fabric based DIB, since only one node handles a single transaction. Overall,

Hyperledger Fabric based DIB that has been optimised for high performance achieves good
results without significant performance penalty compared to direct process and with 3-node
setup the performance actually increases, indicating that the DIB component itself is a

bottleneck. The performance of the DIB component could likely be increased by e.g. adding
internal parallelism, but such optimisations were not the goal of this proof-of-concept

implementation.

12 https://geth.ethereum.org/

https://geth.ethereum.org/

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

57 of 72

The next section discusses the differences between using the Ethereum and Hyperledger

Fabric ledgers for the DSM layer in more detail.

5.3.2 Ethereum vs. Hyperledger Fabric as the DSM layer
There are several fundamental differences between the Ethereum and Hyperledger Fabric.

In the Ethereum ledger all transactions in the block are ordered and executed sequentially

(the order is decided by the miner), therefore the different transactions within the same block
may safely modify the same data structures, and the Ethereum DSM implementation takes

advantage of it.

In contrast, in Hyperledger Fabric transactions are executed concurrently using the execute-

order-validate (EOV) model to achieve higher throughput. As Hyperledger Fabric doesn't

force sequential execution, multiple transactions targeting the same key, where at least one
of the transactions is writing, may cause a conflict. More specifically, a conflict arises, if during

the time when the transaction is simulated on the peer (i.e. read-set is created) and it's ready
to be committed, another transaction changes the value of the same key. Thus, the read-

set version will no longer match the version in the orderer, and concurrent transactions will
fail. This is addressed in the Fabric based DSM by designing each write to use a unique key
and values are aggregated afterwards if needed.

Because of these differences, it was decided to optimise the Fabric DSM implementation for

the maximal performance by reducing the information being written to the DSM. This makes

detection of errors and misbehavior more difficult and slower, but still possible since all the
necessary evidence exists in the source and destination ledgers.

As can be seen from the performance results, the DSM implementation based on

Hyperledger Fabric is much faster, achieving up to 5 times higher throughput compared to
Ethereum in these small deployments.

5.4 Practical use cases of DIB
DIB can be used in any application requiring transfer of data between ledgers. Example use

cases include hash transfers to improve accountability and resilience, using ledgers to define
and enforce access control policies, and using and trading virtual assets.

5.4.1 Transferring hashes to more secure ledger
In practical applications most of the ledgers used will be private (e.g. Hyperledger Fabric,

Quorum, private Ethereum, etc.) since they offer vastly superior privacy, latency, throughput,

and cost compared to public ledgers. However, immutability of the transactions on the
private ledger is naturally not as strong as with a public ledger which is run by millions of
nodes.

By taking a hash of multiple private ledger transactions (e.g. using a Merkle tree) and storing

it to the public ledger (such as public Ethereum) would provide strong immutability

guarantees (after the hash has been stored to the public ledger, it would not be possible to
modify related private ledger transactions without breaking the hash) while keeping the
costs low. This operation can be easily automated by DIB: periodically a smart contract on

the private ledger is called by the application, and it calculates the hash, which is then sent

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

58 of 72

to the public ledger using the DIB process. The frequency of the hash transfer is application

dependent: higher frequency would decrease the window of vulnerability of transaction
modifications on the private ledger, but would also increase the costs.

In addition to the public ledger, the destination ledger for storing hashes can also be a

private ledger run by a larger number of organisations, therefore offering better security and
immutability properties. Also, this hierarchy can contain more than 2 layers, so, for instance,

data from the private ledger can first be hashed to an intermediate ledger run by a larger
consortium, which then hashes to a public ledger.

5.4.2 Using ledgers for Access Control
DIB together with multiple ledgers can be used for purchasing access control tokens in a

secure and transparent manner [Sir2020], in this case one ledger is used for payments (e.g.

a public Ethereum) while another one is used to provide access control tokens (e.g. a private
Ethereum or Hyperledger fabric). The approach guarantees that only those who pay for the

access will receive the corresponding access control token.

5.4.3 Trading of Virtual Assets
Suppose a situation where the virtual asset (e.g. an item in an online game) is backed by the

ledger (to enforce uniqueness of the item and prevent creation of unlimited copies of it). This
ledger would be a private ledger (Hyperledger Fabric, Quorum, private Ethereum, etc.) run

by a gaming company or consortium of gaming companies.

In order to facilitate trading of the assets, a widely used public ledger (such as public

Ethereum) is needed. The role of the DIB is to make sure that the asset is active only in one
ledger simultaneously: either it’s active in the gaming ledger and can be used for the
gameplay and not traded, or it’s active in the trading ledger in which case it can traded but

can’t be used for the gameplay [SOF2020].

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

59 of 72

6 Self-Sovereign Identity Technologies
The use of SSI technologies for the triplet’s identity and trustworthiness has already been

discussed in Section 2. This section, therefore, provides details of the two other uses for the SSI
technologies explored in IoT-NGIN, i.e. Verifiable Credential based decentralised on-device
access control with constrained IoT Devices and QR code and GS1 Digital Link based

discovery mechanisms for the Triplet.

6.1 Verifiable Credential-based Access Control on

Constrained IoT Devices
Verifiable Credentials allow flexible and privacy-preserving access control solutions. E.g.,

suppose there is a factory that has outsourced the maintenance to a separate company.

The technician working for the maintenance company needs to receive temporary access
to factory premises and to certain machines there, but the factory does not need to learn

about the technician's real identity or whether the technician is the same as the one who
visited the factory previously.

This subsection describes a verifiable credential-based access control solution that can be

used directly on the constrained devices, i.e. the constrained device such as ESP32
microcontroller verifies the credentials and enforces the access control policies. The solution

is also available as open source 13.

Figure 6.1 – Overview of the SSI Access Control component.

Figure 6.1 provides an overview of how the SSI component can be used to grant and verify

access to the Resource Server, which can be for example an IoT device. The Resource Owner

13https://gitlab.com/h2020-iot-

ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-

identities

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-identities
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-identities
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-self-sovereign-identities

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

60 of 72

and Client are identified using Decentralised Identifiers (DIDs). In the first step, the Owner

configures the Identity, Authentication and Authorisation (IAA) proxy and grants a Verifiable
Credential (VC) to the Client, which denotes that the Client has a right to access some

Resource. In the second step the Client uses this credential to contact the IAA proxy or the
actual IoT device, which will then verify the credential and grant a read or write access to
the resource as shown in the step 3. In a case of the IAA proxy, it will forward the request to

the actual Resource Server, which does not need to understand SSI technologies or even
handle the cryptographic operations.

In more detail, the credential is encoded as a standard JSON Web Token (JWT) and in order

to prevent replay attacks, the client also constructs a Demonstrating of Proof-of-Possession

(DPoP) proof when accessing the resource. Both the credential and the DPoP proof will be
verified by the IAA proxy or the actual device.

The SSI component provides the following functionality:

● Tools for identity and key management, including the creation of credentials

encoded as JWTs and DPoP proofs. For DID methods, did:self and did:key are

supported and the Ed25519 EdDSA signature scheme is supported for cryptographic
signatures.

● IAA proxy and simple resource server based on existing py-verifier work14.

● Verifier for ESP32-based embedded devices, which allows full verification of access

control credentials to be performed on an embedded device.

The performance on the constrained device is good, the full JWT + DPoP verification

consisting of two signature verifications takes just 160ms on the low cost ESP32 device.

Therefore, the whole process of accessing the protected resource takes well below one
second, which is a sufficient performance from the user experience point of view [Fot2022].

6.2 Triplet discovery using QR codes and GS1

Digital Links
A GS1 Digital Link15 converts a barcode, either one or bi-dimensional, into a web address that

contains the information on a product the barcode refers to. GS1 digital links are used to

discover the locations of the Digital and Semantic Twin of an entity Triplet.

The discovery protocol begins with a user in front of a barcode, e.g. a QR code, attached

to a real-world entity, such as an IoT device, and is shown in Figure 6.2.

14 https://github.com/mmlab-aueb/py-verifier

15 https://github.com/gs1/GS1_DigitalLink_Resolver_CE

https://github.com/mmlab-aueb/py-verifier
https://github.com/gs1/GS1_DigitalLink_Resolver_CE

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

61 of 72

Figure 6.2 – The triplet discovery protocol.

The QR code encodes the URL and the Global Trade Item Number (GTIN) of the device to

the GS1 Digital Link Resolver server16. The User scans the QR code with a smartphone using a

dedicated app that queries the GS1 Digital Link Resolver Server to get either the locations or
the DIDs of the Digital and Semantic Twins. This differentiation depends on the DID method
used by the entity triplet:

● If the DID method is a ledger-based one that allows adding information to a DID into

the ledger, such as did:ethr, the GS1 Digital Link Resolver server returns the DIDs of the

Digital and Semantic Twins whose resolution, shown in red arrows in Figure 6.2, gives
the User their DID documents containing the location parameters;

● Otherwise, if it is not possible to add data to DIDs, such as in did:key DID method, the
Resolver server returns the User the location of the Digital and Semantic Twins.

In either case, the user accesses the digital or the Semantic Twin. The figure shows the user

accessing the Semantic Twin and getting the Twin Document that allows them to open a
session with a Twin Application Server and perform operations (depending on their level of

privilege).

To guarantee the QR code the User is scanning is the original one, and it has not been

switched with a malicious one, the QR code could embed the digital signature of the
organisation that issued it17. This is feasible since a QR code can encode up to 3 KB of data.
Before accessing the URL encoded in the QR code, the user’s app verifies the signature with

16 https://gs1resolver.iot-ngin.eu/gtin:123456

17 https://gs1resolver.iot-ngin.eu/gtin:123456&<digital signature>

https://gs1resolver.iot-ngin.eu/gtin:123456
https://gs1resolver.iot-ngin.eu/gtin:123456&

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

62 of 72

the organisation's public key (step 1.1 in the figure). Similarly, the data returned by the GS1

Digital Link Resolver server is digitally signed and verified by the User (step 3.1 in the figure).

The code of the GS1 Digital Link Resolver server can be found at Gitlab18.

18https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/qr-

discovery

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/qr-discovery
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/qr-discovery

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

63 of 72

7 Integrating the solutions
The solutions 5-8 can be used together to enable data sovereignty by making IoT data and

services accessible in a trusted, auditable, and controlled way. Section 7.1 describes a demo
for the configuration of IoT devices to showcase how the integration of the solutions works.
Section 7.2 presents the Living Lab use cases that adopt, implement, and validate such

integrations for all 8 solutions.

7.1 IoT devices configuration demo
This demo being prepared in WP7 for the Smart City LL integrates solutions 5-8 to demonstrate

how to easily discover, protect, and configure the IoT Triplet while protecting the privacy of
the individual users and providing good user experience through low-latency validation. The

key actors of the demo use case are illustrated in Figure 7.1.

The Traffic Department of a City buys IoT Devices from a Manufacturer and wants to install

them to a Smart City project. The Traffic Department initialises a device and its Digital Twin
and Semantic Twin with the basic information required to delegate the setup to an external

Installer Company. Moreover, the Traffic Department creates a QR code for each device,
embedding a GTIN number that, once resolved by a GS1 Digital Link Resolver server, provides
the locations to access the device’s Digital Twin and Semantic Twin.

Figure 7.1 – Illustration of the demo.

The Installer Company employs one or more Installers Employees to go around the city and

install the devices (and possibly maintain them afterwards). To finalise the installation of a
device, an Installer Employee accesses the Digital Twin and the Semantic Twin of that device.

To access them, they require a credential that can be obtained from the Installer Company
Authorization Server. The Employee scans the QR code on the device with a mobile phone

application. Once scanned, the QR code redirects the Employee to the Semantic Twin. At
access request, the server hosting the Semantic Twin, e.g. the Twin document server shown
in Figure 5.2, begins an access control protocol to know the privileges of the person who is

requesting the access. With the QR code being accessible to anyone, any citizen of the City

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

64 of 72

could potentially get access to the Semantic Twin to view information about the Device. This

could be a wanted feature of the Smart City project.

With this demo, we aim to address the following problems:

● Discovering the Twins related to an IoT Device;

● Enabling secure access to the triplet;

● Trusting the data received by the triplet;

● Protecting installer’s privacy;

● Detecting malicious activities on the triplet.

7.1.1 Demo Description
The system resulting from the integration of the solutions described in this document is

structured as follows.

The Traffic Department, who owns the entity triplets, is responsible for setting up the entries

for each triplet in the GS1 Digital Link Resolver server and printing the correspondent QR
codes. Moreover, the Traffic Department issues a VCDept to the Installer Company to

configure the triplets: this VC has a “delegate” option so that the Installer Company can
delegate the installation rights to its Employees.

The Installer Company sets up an Authorization Server that, being delegated by the Traffic

Department, issues a VCConfig, alongside VCDept, to the Employees to configure the triplets.

Following the SSI approach, any actor issues or receives VCs from or to their DIDs. Figure 7.2

shows the DIDs paired to each actor in this demo. Actors such as the Traffic Department, the
GS1 Digital Link Resolver server, and the Installer Company Authorization server may need to

attach additional information to their DIDs. Thus they could use a ledger-based DID method.
Instead, others may only need DIDs as pseudonyms, therefore a non-ledger-based DID
method would be suitable.

Figure 7.2 – Illustration of the DIDs used by the actors.

Before configuring the triplets, the Installer Employee generates their DIDEmpl and requests the

Authorization Server a VCConfig to be issued, alongside VCDept, to the newly generated DID.
Examples of attributes, or claims, of VCConfig are the type of Devices the Employee will

configure, their location, and the duration of the validity of the credential (e.g., 24 hours).
The Installer Company and the Employee need to agree on a common secret parameter or

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

65 of 72

a similar solution to ensure only an Employee of the Installer is able to request such

credentials.

When the Employee reaches a Device, scanning the QR code triggers the discovery protocol

described in Section 6.2.

When the Employee locates the server hosting the Semantic Twin, they can access it

following the access control protocol described in Section 6.1. In particular, the Employee

signs a DPoP with their DIDEmpl and sends it alongside the credentials VCDept and VCConfig to
an IAA proxy to the Semantic Twin for access control. The IAA proxy checks:

● The validity period of VCConfig;

● The attributes in VCConfig match its attributes (and the Employee is not accessing to the

wrong device);

● The signature in VCDept is verified by DIDDept;

● The signature in VCConfig is verified by DIDAuth;

● Ensure DIDAuth is delegated by VCDept;

● The signature in DPoP is verified by DIDEmpl.

If all checks are successful, the proxy allows access to the Semantic Twin to retrieve the Twin

Document. To make the Twin Document data more trustworthy, the Semantic Twin can sign
it with its DIDST. Moreover, the security, integrity, and accessibility of the Twin document is

helped by integrating DLTs and the Interledger component, whose functionality is described
in Section 4. The protocol is shown in Figure 7.3.

Figure 7.3 – The access control protocol to the Semantic Twin.

The problems mentioned in this section are addressed as follows:

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

66 of 72

● Discovering the Twins related to an IoT Device: this is solved by the GS1 Digital Link

Resolver server;

● Enabling secure access at the triplet: this is solved by the VCs issued by the actors the

access control protocol executed by the IAA proxy or on-device validation;

● Trustworthiness of the data received by the triplet: this is solved by applying digital

signatures to the QR code, to the response data returned by the GS1 Digital Link

Resolver server, and to the data returned by the Semantic Twin;

● Protecting installer’s privacy: this is solved by hiding the identity of the Installer

Employee during access time to the Semantic Twin behind an ephemeral DID;

● Accountability for malicious activities on the triplet: if a malicious behaviour is

detected on a Semantic Twin, the Installer Company can link the DID used to access
the Semantic Twin to the identity of the Employee who used that DID to request the
VC used to access to the Semantic Twin, and take action.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

67 of 72

8 Verification and Validation
Verification results of the solutions 1-8 will be reported in IoT-NGIN deliverable D6.3 -

Interoperable IoT-NGIN meta-architecture & laboratory evaluation, which is due in June
2023.

The components will also be validated in the use cases of four IoT-NGIN living labs as

described in Table 8.1. These validation results will be reported in the IoT-NGIN deliverable
D7.4 - IoT-NGIN Living Labs use cases Assessment and Replication guidelines, which is due in

September 2023.

Table 8.1 – Use of components in IoT-NGIN living labs.

IoT-NGIN technology Smart Cities Smart

Agriculture

Industry 4.0 Smart

Energy

UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10

Generative Adversarial

Networks (GAN) based
dataset generation

 X X X

Malicious Attack

Detection (MAD)
 X X X

IoT Vulnerability

Crawler
X X X X X

Moving Target

Defences (MTD)
Network of Honeypots

 X

Decentralised

Interledger Bridge
X X X X

Privacy preserving Self-

Sovereign Identities
(SSIs)

X X X X X

Semantic Twins X X X X X

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

68 of 72

9 Conclusions
This document discusses the technical solutions from the IoT-NGIN WP5. These 4 to

cybersecurity solutions for protecting IoT systems performing Federated Learning and 4
solutions for data sovereignty and privacy problems in the domain of IoT systems.

Based upon various needs in use cases within the IoT-NGIN project, technical solutions for

each area were planned and successfully developed. The solutions are:

1. a GAN-based dataset generator for the creation of poisoned datasets that assist

addressing attacks against IoT and Federated Learning systems

2. a Malicious Attack Detector (MAD) that facilitates the detection of cyberthreats and

attacks against an IoT system

3. An IoT Vulnerability Crawler (IVC) that monitors IoT nodes and detects vulnerabilities

4. a Moving Target Defense (MTD) Honeypot Framework that deploys the honeypots

dynamically

5. Semantic Twins that enable semantic descriptions of Digital Twins and the related real-

world entities

6. a Decentralised Interledger Bridge (DIB) that enables transactions across different

distributed ledgers (DLTs)

7. a privacy-preserving Verifiable Credential based decentralised on-device access

control solution for constrained IoT Devices

8. a QR (Quick Response) code and GS1 (Global Standards 1) Digital Link based

discovery mechanisms

The solutions have been packaged for easy deployment to achieve the goals of the work
package.

This document also describes a demo being developed in WP7 for the Smart City LL for the

configuration of IoT devices to showcase how the integration of solutions 5-8 works.
Altogether 6 out of 10 LL Use Cases need at least two of the technologies that are presented

in this deliverable, in particular SSI technologies, thus motivating their importance and
enabling extensive validation of the solutions.

The verification results of these solutions will be reported in the upcoming Deliverable D6.3

and the validation results from the IoT-NGIN Living Labs will be reported in Deliverable D7.4.

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

69 of 72

10 References
[AAS] Asset Administration Shell Specifications, Plattform Industrie 4.0. 23/11/2020

https://www.plattform-i40.de/IP/Redaktion/EN/Standardartikel/specification-

administrationshell.html

[Ala2021] R. Ala-Laurinaho, “API-based Digital Twins - Architecture for Building Modular

Digital Twins Following Microservices Architectural Style,” Doctoral dissertation,
Aalto University, 2021.

http://urn.fi/URN:ISBN:978-952-64-0594-0

[Arm2017] Armin Haller et al. Semantic Sensor Network Ontology. Technical Specification

OGC 16-079. W3C & OGC, Oct. 17, 2017. url:

https://www.w3.org/TR/vocab-ssn/

[Aut2021a] J. Autiosalo, “Discovering the Digital Twin Web - From singular applications to

a scalable network,” Doctoral dissertation, Aalto University, 2021.
http://urn.fi/URN:ISBN:978-952-64-0621-3

[Aut2021b] J. Autiosalo, J. Siegel, K. Tammi “Twinbase: Open-Source Server Software for

the Digital Twin Web”, IEEE Access, vol 9, pp. 140779-140798, 2021.

https://doi.org/10.1109/ACCESS.2021.3119487

[Ber2006] T. Berners-Lee "Linked Data" https://www.w3.org/DesignIssues/LinkedData

[Brei2007] K. Breitman, M.A. Casanova, and W. Truszkowski, Semantic Web: Concepts,

Technologies and Applications, 2007.

[But2016] V. Buterin, “Chain interoperability,” R3 Research Paper, 2016.

[Cyber2022] Cyber Resilience Act 2022, Proposal for a regulation of the European

parliament and of the council on horizontal cybersecurity requirements for
products with digital elements and amending Regulation (EU) 2019/1020
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act

[DTDL] Digital Twins Definition Language

https://github.com/Azure/opendigitaltwins-dtdl

[D1.1] IoT-NGIN D1.1 - Definition analysis of use cases and GDPR Compliance

https://iot-ngin.eu/index.php/deliverable/

[D1.2] IoT-NGIN D1.2 - IoT meta-architecture, components and benchmarking

https://iot-ngin.eu/index.php/deliverable/

https://www.plattform-i40.de/IP/Redaktion/EN/Standardartikel/specification-administrationshell.html
https://www.plattform-i40.de/IP/Redaktion/EN/Standardartikel/specification-administrationshell.html
http://urn.fi/URN:ISBN:978-952-64-0594-0
https://www.w3.org/TR/vocab-ssn/
http://urn.fi/URN:ISBN:978-952-64-0621-3
https://doi.org/10.1109/ACCESS.2021.3119487
https://www.w3.org/DesignIssues/LinkedData
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://github.com/Azure/opendigitaltwins-dtdl
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

70 of 72

[D3.1] IoT-NGIN D3.1 - Enhancing deep learning / reinforcement learning https://iot-

ngin.eu/index.php/deliverable/

[D3.2] IoT-NGIN D3.2 - Enhancing Confidentiality preserving federated ML https://iot-

ngin.eu/index.php/deliverable/

[D3.3] IoT-NGIN D3.3 - Enhanced IoT federated deep learning/ reinforcement ML

https://iot-ngin.eu/index.php/deliverable/

[D5.1] IoT-NGIN D5.1 - Enhancing IoT Cybersecurity

https://iot-ngin.eu/index.php/deliverable/

[D5.2] IoT-NGIN D5.2 - Enhancing IoT Cybersecurity (Update)

https://iot-ngin.eu/index.php/deliverable/

[D5.3] IoT-NGIN D5.3 - Enhancing IoT Data Privacy & Trust

https://iot-ngin.eu/index.php/deliverable/

[D5.4] IoT-NGIN D5.4 - Enhancing IoT Data Privacy & Trust (Update)

https://iot-ngin.eu/index.php/deliverable/

[D6.2] IoT-NGIN D6.2 - Integrated IoT-NGIN platform & laboratory testing results

https://iot-ngin.eu/index.php/deliverable/

[D7.3] IoT-NGIN D7.3 - Living Labs use cases intermediate results

https://iot-ngin.eu/index.php/deliverable/

[Foa2022] Foaf Vocabulary Specification

http://xmlns.com/foaf/0.1/

[Fot2022] N. Fotiou, et al. “Capabilities-based access control for IoT devices using

Verifiable Credentials." 2022 IEEE Security and Privacy Workshops (SPW). IEEE,

2022.

https://doi.org/10.1109/SPW54247.2022.9833873

[Geo2022] Basic Geo (WGS84 lat/long) Vocabulary

https://www.w3.org/2003/01/geo/

[Gua2009] Nicola Guarino, Daniel Eberle, and Steffen Staab. Chapter: “What is an

ontology?” in Handbook on ontologies pp. 1-17, 2009.

[Has2019] M. U. Hassan, M. H. Rehmani, and J. Chen, “Privacy preservation in

blockchain based IoT systems: Integration issues, prospects, challenges, and

https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
https://iot-ngin.eu/index.php/deliverable/
http://xmlns.com/foaf/0.1/
https://doi.org/10.1109/SPW54247.2022.9833873
https://www.w3.org/2003/01/geo/

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

71 of 72

future research directions,” Future Generation Computer Systems, vol. 97, pp.

512–529, 2019.

[Jac2020] M. Jacoby, and T. Usländer, “Digital Twin and Internet of Things—Current

Standards Landscape,” Applied Sciences 2020, 10, 6519.
https://doi.org/10.3390/app10186519

[LOG4J] M. Ahmed, log4j-scan, Github, 2021. https://github.com/fullhunt/log4j-scan

[Mat2022] J. Mattila, R. Ala-Laurinaho, J. Autiosalo, P. Salminen, and K. Tammi, “Using

Digital Twin Documents to Control a Smart Factory: Simulation Approach with

ROS, Gazebo, and Twinbase,” Machines 2022, 10(4), 225.
https://doi.org/10.3390/machines10040225

[MITRE] MITRE, “CWE List Version 4.10”, 2021. https://cwe.mitre.org/data/index.html

[NGSI-LD] Duncan et al., “NGSI-LD API: for Context Information Management ,” ETSI

White Paper No. 31, 1st ed., 2019.I

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp31_NGSI_API.pdf

[Odata] Open Data Protocol

https://www.odata.org/

[One2019] oneM2M Partners Type 1. oneM2M TS-0012-V3.7.3 - Base Ontology. Technical

Specification TS 103 264. oneM2M, Feb. 28, 2019. Url:

https://www.onem2m.org/technical/onem2m-ontologies

[Ont2022] Vocabularies for Ontologies

https://www.w3.org/standards/semanticweb/ontology

[OWL-W3] OWL 2 Web Ontology Language - Structural Specification and Functional-Style

Syntax (Second Edition)

https://www.w3.org/TR/owl2-syntax

[Psy2023] K. Psychogyios, T.-H. Velivassaki, S. Bourou, A. Voulkidis, D. Skias, and T.

Zahariadis, “GAN-Driven Data Poisoning Attacks and Their Mitigation in
Federated Learning Systems,” Electronics, vol. 12, no. 8, p. 1805, Apr. 2023, doi:

10.3390/electronics12081805.

[Saref2022] Smart Applications REFerence Ontology, and extensions

https://saref.etsi.org/

[SAREF4CITY] SAREF extension for Smart City https://saref.etsi.org/saref4city/

https://doi.org/10.3390/app10186519
https://github.com/fullhunt/log4j-scan
https://doi.org/10.3390/machines10040225
https://cwe.mitre.org/data/index.html
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp31_NGSI_API.pdf
https://www.odata.org/
https://www.onem2m.org/technical/onem2m-ontologies
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/TR/owl2-syntax/#Data_Properties
https://saref.etsi.org/
https://saref.etsi.org/saref4city/

H2020 -957246 - IoT-NGIN

D5.5 - Enhanced IoT Cybersecurity & Data Privacy/Trust

72 of 72

[SOF2020] SOFIE Project Use Cases: Context-aware Mobile Gaming

Pilothttps://media.voog.com/0000/0042/0957/files/sofie-onepager-gaming-
noScreens.pdf

[SOF2021] SOFIE project: Secure Open Federation for Internet Everywhere,”

https://www.sofie-iot.eu/, (Accessed on 03/12/2021).

[SOSA] SOSA Ontology

https://www.w3.org/2015/spatial/wiki/SOSA_Ontology

[STA] OGC SensorThings API

https://www.ogc.org/standards/sensorthings

[TB-SSI-API] Semantic Twin SSI API https://github.com/IoT-NGIN/twinbase-ssi-api

[TwinbaDLT] Twinbase with DLT integration https://github.com/IoT-NGIN/twinbase-dlt

[Twinbase] Twinbase: Server software for hosting digital twin documents

https://github.com/twinbase/twinbase

[WASC] Web Application Security Consortium, “The WASC Threat Classification v2.0”,

2010.

http://projects.webappsec.org/w/page/13246978/Threat%20Classification

[Wen2019] Wenbin lin et al. Review of Standard Ontologies for the Web of Things

[WGS84voc] WGS84 Geo Positioning: an RDF vocabulary

https://www.w3.org/2003/01/geo/wgs84_pos#

[WoT-TD] Web of Things (WoT) Thing Description. W3C Recommendation 9 April 2020

https://www.w3.org/TR/wot-thing-description/

[Wu2021] Wu, L., Kortesniemi, Y., Lagutin, D., & Pahlevan, M. (2021, September). The

Flexible Interledger Bridge Design. In 2021 3rd Conference on Blockchain
Research & Applications for Innovative Networks and Services (BRAINS) (pp.
69-72). IEEE.

[ZAP] OWASP Zed Attack Proxy (ZAP), zaproxy.org

[Zha2019] J. Zhang, S. Zhong, J. Wang, L. Wang, Y. Yang, B. Wei, and G. Zhou, “A review

on blockchain-based systems and applications,” in International Conference

on Internet of Vehicles. Springer, 2019, pp. 237–249.

https://media.voog.com/0000/0042/0957/files/sofie-onepager-gaming-noScreens.pdf
https://media.voog.com/0000/0042/0957/files/sofie-onepager-gaming-noScreens.pdf
https://www.sofie-iot.eu/
https://www.w3.org/2015/spatial/wiki/SOSA_Ontology
https://www.ogc.org/standards/sensorthings
https://github.com/IoT-NGIN/twinbase-ssi-api
https://github.com/IoT-NGIN/twinbase-dlt
https://github.com/twinbase/twinbase
http://projects.webappsec.org/w/page/13246978/Threat%20Classification
https://www.w3.org/2003/01/geo/wgs84_pos
https://www.w3.org/TR/wot-thing-description/

	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended audience
	1.2 Relations to other activities
	1.3 Document overview

	2 Overview of IoT cybersecurity and data privacy and trust in IoT-NGIN
	2.1 Mitigation of poisoning attacks and early attack detection
	2.2 IoT data privacy and trust

	3 Early attack detection and mitigation
	3.1Malicious Attack Detector
	3.1.1 Motivation for MAD
	3.1.2 Description of the MAD solution
	3.1.3 Results

	3.2 Moving Target Defense Honeypots
	3.2.1 Motivation for MTD Honeypots
	3.2.2 Description of the MTD Honeypots solution

	4 Semantic Twins
	4.1. Motivation for Semantic Twins
	4.1.1 Issues in IoT systems and Digital Twins
	4.1.2 The role of Semantic Twins

	4.2 Description of the Semantic Twin solution
	4.2.3 Twin document
	4.2.2 Discoverability and trustworthiness
	4.2.4 Semantic descriptions
	4.2.5 SSI API to Semantic Twin
	4.2.6 Semantic Twin DLT integration

	4.3 The twinschema.org Semantic Twin ontology

	5 Decentralised Interledger solution
	5.1 Motivation for Interledger
	5.1.1 Need for multi-ledger transactions
	5.1.2 Requirements of IoT-NGIN

	5.2 Detailed description of the developed solution
	5.2.1 Data flow of the Decentralised Interledger using High-Throughput Hyperledger Fabric DSM
	5.2.2 Security properties of decentralised Interledger

	5.3 Analysis of DIB features and performance
	5.3.1 Initial DIB performance results
	5.3.2 Ethereum vs. Hyperledger Fabric as the DSM layer

	5.4 Practical use cases of DIB
	5.4.1 Transferring hashes to more secure ledger
	5.4.2 Using ledgers for Access Control
	5.4.3 Trading of Virtual Assets

	6 Self-Sovereign Identity Technologies
	6.1 Verifiable Credential-based Access Control on Constrained IoT Devices
	6.2 Triplet discovery using QR codes and GS1 Digital Links

	7 Integrating the solutions
	7.1 IoT devices configuration demo
	7.1.1 Demo Description

	8 Verification and Validation
	9 Conclusions
	10 References

