leT-NGIN

R\
O
<

%
D3.4

ML models sharing and
transfer learning
Implementation

»
,\’
O&ACKAGE WP3 PROGRAMME IDENTIFIER ggggg-lcr
% DOCUMENT D3.4 GRANT AGREEMENT ID 957246
START DATE OF THE
O REVISION V1.0 prROJECT 01/10/2020
DELIVERY DATE 31/03/2023 DURATION 3 YEARS

© Copyright by the IoT-NGIN Consortium

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 957246



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

DISCLAIMER

This document does not represent the opinion of the European Commission, and the European
Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain I0T-NGIN consortium parties,
and may not be reproduced or copied without permission. All I0T-NGIN consortium parties have
agreed to full publication of this document. The commercial use of any information contained in this
document may require a license from the proprietor of that information.

Neither the I0T-NGIN consortium as a whole, nor a certain party of the loT-NGIN consortium warrant
that the information contained in this document is capable of use, nor that use of the information is
free from risk, and does not accept any liability for loss or damage suffered using this information.

ACKNOWLEDGEMENT

This document is a deliverable of I0T-NGIN project. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement N°
957246.

The opinions expressed in this document reflect only the author’s view and in no way reflect the
European Commission’s opinions. The European Commission is not responsible for any use that may
be made of the information it contains.

2 0of 95



H2020 -957246

- loT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

PROJECT ACRONYM
PROJECT TITLE
CALLID

CALL NAME

TOPIC

TYPE OF ACTION
COORDINATOR

PRINCIPAL
CONTRACTORS

WORKPACKAGE
DELIVERABLE TYPE

DISSEMINATION
LEVEL

DELIVERABLE STATE

CONTRACTUAL DATE
OF DELIVERY

ACTUAL DATE OF
DELIVERY

DOCUMENT TITLE

AUTHOR(S)

REVIEWER(S) '\
ABSTRACT <<

HISTO,

@ s

loT-NGIN

Next Generation loT as part of Next Generation Internet
H2020-ICT-2020-1

Information and Communication Technologies
ICT-56-2020 - Next Generation Internet of Things

Research and Innovation Action

Nal

Capgemini Technology Services (CAP)

SPA (ENG), Robert Bosch Espana Fabrica Aranjuez S
SpA (ASM), Forum Virium Helsinki (FVH), ENTERSOFT

Technologies Ltd (EBOS), Privanova SAS (PRI), Syp@&li
CUMUCORE Oy (CMC), Emotion s.r.l. (EMOT), -Korkeakoulusaatio
(AALTO), i2CAT Foundation (I2CAT), Rheinis estdlische Technische

Hochschule Aachen (RWTH), Sorbonne Ugiversité (SU)
WP3

O,
=
o>
S5
v}
»
>
%
=<
Z

REPORT < /
PUBLIC Q/
FINAL < : >
31/03/2023

\g

sharing and transfer learning implementation

J. Mira (ATOS), I. Moreno(ATOS), J. Gorronogoitia Cruz (ATOS), T. Velivassaki
/(SY ), Ch. Betzelos (SYN), D. Skias (INTRA)

A. Voulkidis (SYN), Dimitrios Skias (INTRA)
SEE EXECUTIVE SUMMARY
SEE DOCUMENT HISTORY

Deep Learning, Reinforcement Learning, Online Learning, Federated
Learning, Machine Learning, Privacy Preservation, Al, ML

30of 95



H2020 -957246

- loT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Document History

Version Date Contributor(s) Description
VO.1 27/01/2023  ATOS Table of Contents
V0.2 17/03/2023  ATOS, SYN Sections 1-5 N
V0.3 21/03/2023  ATOS Peer-review version X b~\/
V0.4 24/03/2023  ATOS, SYN, INTRA Peer-review g ‘
V0.5 28/03/2023  ATOS, SYN Post-Peer-Review version h
V0.6 29/03/2023  ATOS Camera-ready v@;gv
V0.7 30/03/2023 CAP Final quoli% ck\
V1.0 31/03/2023  ATOS i v

4 of 95

Final ve@



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Table of Contents

DOCUMENT HISTOMY 1.t e e e e e e et e e e e eatt e e e e e asaaeeeeeasaseeeeasaeeeeaanreaaeas 4
TADBIE OFf CONTENTS ...ttt e et e e e ta e e s aaeessaeessaeesssaeesssaeessseeennsenas 5
LIST OF FIQUIES .ttt ettt e e et e e e ettt e e e s eta e e e e e aaaeeeesssaeaeeassseaaeasssaeaeeanssaeaeennsseaens 7
LIST OF TAIES .ottt sttt e st e e s baeessbeesnsneesannessnseessasees Rneeesnnes 9
List of Acronyms and ADIIEVIATIONS. ......cooovvviieiiieeeeceeeee e s L 10
EXECUTIVE SUMIMIQIY ..ottt e et e e e et e e e eeaaeeeeeataeeeeeenseeeeeetheeee hanreeaeas 13
| 1 e Y (U1 1T o F USRS cove USRI 14
1.1 INTENAEA AUIENCE ..ot s g adhe e eieeeeiee e 15
1.2 Relations 1o other ACHVITIES ...ciiiiiiiieeee e e e 16
1.3 DOCUMENT OVEIVIEW oottt ereeeesveeesree e s e et eeteesaneesnteeesaveeesnseeennnes 18

2 1OT-NGIN MACHINE LEAIMING...eiiiitiiieiieeeieeeeieeeeieeesieeesveeeimgeeses SBaeseeeesseesssseesssseesseeesssessnssees 19
2.1 ONINE LEAMING .ccttiieciieecte ettt eiee e tee e s ree e oo reesaae e taaesssaeessseesssaeessaeesnseeennnes 19
2711 DESCHPHON ettt eeeeeee b et 19
2.1.2  TeChniCOl AESIGN..cccciiiieeeeee e e T e e 20
2.1.3  Implementation for IOT-NGIN LLS .am...cccoc ¥ 23

2.2 REINTOrCEMENT LEAIMNING .uiiiiiieiiae e e e b eieee et e ettt e e te e e tre e e e e e staeesaaeesareeeesveeesaseeennnes 30
AV B B T-T el 11e) 1] o PO USRS 31
2.2.2  TECNNICAI AESIGN i ettt et e et e e e e e e e abe e e e e araeeeesasaeeeeennnes 31
2.2.3 Implementation fOr IOT-NGIN LLS .......coooiviiiiiiiieieeieieeeeee e 33

3 10T-NGIN Privacy Presewing, Federated LEQIMING .......coecuiiee et 36
3.1 DS (] o] 1] o T SRS 37
3.2 TECHNICAlI AESIGML ... vveieieeieie et e et e e e e et e e e e ettt e e e eeaaeeeeeeareeeeeessaeeeeanes 38
3.2.1 DescriptioN Of SUDCOMPONENTS ...ceiiiiiiiieeeeee et 39
I 01 (=] 7 1o L& =T USRS 40

VI Le)1Ye Lo 5 \Vile o 1= I aTe 1o T TSRS 43
4.1 D= e (] @] 1] o TSRS 43
4.2 TECNNICAI DESION. .. eeiiieeciee ettt e e e e e e e ebaee e esssbeee e s ssseeeeessaeeesessaeaeannes 43
2 B N (o] a1 [>T (U] (= TSSOSO 43
4.2.2  IMPIEMENTATION (it ee e e e e e ee st e e e e e e e eessrrarreeeeeeeas 47

4.3 Implementation fOr IOT-NGIN LLS ........uuiiiiiiiee e e 49

S INSTAATiON ANA USEI GUIAE .....ccciiieie ettt e e e aae e e e e e s e e e sanee e ennaeas 55
5.1 ONlINE LEAINING SEIVICE ..ttt et e e e e e st e e e eara e e e e s aaaeeeennees 55
5.2 Reinforcement LEQrNING SEIVICE ...c...uviiiiieee et 58



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

5.3 Privacy-preserving Federated Learning FrameworkK ........ccueeeeeiiieeiecieee e 58
TG T B o (= (=Y UL =TSRSS 58
5.3.2  INSTANATION GUIAE ...ttt ettt ettt e s e s s 58
5.3.3  USEI GUIAE .ottt ettt ettt et e st e st e e st e e s bt eesnateesabeeenaneees 63

5.4 Polyglot Model Sharng FIamMEWOIK .......cocuiiiiieiieeeceee e 72
54,1 EXIErnal AEPRENAENCIES.....coooeeeeeeeeiieeeeeeeeeee et e e sesnaneee e 73
5.4.2  RUNNING SEIVICES LOCAIIY..uiiiiiiieiiieeieeee ettt g e 74
5.4.3 Deployment on Kubernetes CIUSTEIS ........uvvveeiieiiiieiiieeeeeeeeeeeeereeeeese e e b 75
CONCIUSIONS ittt ettt ettt et ire et e e sieeestaessseessnseesnnseesnssesssfloness B enseeessseesnineens 78
Annex Components and Interfaces for Polyglot Model Sharing .....em S, 79

7.1 Model SNAMNG SEIVICE....oiiiiiiiicceee e e B B e 79
7.1.1  HTTP REST APl OPErQtiONS..cccuveeecieeecieeeiieeeciieeesveeeseeeaifon B M e e eeeeveeeeveeesveeeenvee s 79
7.1.2  Dataset ReQISTTATION ..iii e Bimnre e e Bp e e e ve e e e e eereeeeeaaaeeeeenesaeaeas 80
7.1.3 Model Registration, Training and Retrieval ..., 80
7.1.4  Model Metadata REEVAL.. ... b Bt 81

7.2 BIOCKCNQIN SEIVICE ... .viiiiiieiieeeeeeeeee e e 82
7.2.1  SMart ContraCt INTEMACES ...t et 82
7.2.2  HTTP REST APl OPEIATIONS ... vt et eeeesfurrieeieeeeeeeeeciireeeeeeeeeeeeiirreeeeeeeeeeeservsreeeeeseeenennnns 85
7.2.3 Dataset and Model Contra@ DeplIOYMENT ........vvviviiiiiieeeeeeee e, 85
724 ContraCt MetadatO rEGUEST M ..o e eaavaaananes 87
7.2.5 MOl VErfICOHON. ... b ettt et be e e serae e enee s 87

7.3 MOAEl TrAINING SEVICE ... veeeirieeiieeetite ettt et eeette e et e e steeeseaeeessaeeessaeeesseessaeesssaeessseeeannes 88
7.3.1  HTTP REST AP QOPBIATIONS ... uvvveieiieeeeeeeireeeeeee e eeeeetreee e e e eeeeetareeeeeeeeeeeseaansreeeeeseeennnnes 88
7.3.2  MOAEl traININGNEQUEST ..ottt e e e e aa e e e e araaa s 89

7.4 MOAELATANSIATON SEIVICE .ooieiiieiiieeiee ettt e e ae e et e e e e s beeennns 90
7.4.1  HTIP/REST APl OPEIrOONS...ciiieiiee ettt ettt e sttt ettt e e e s aae e s tae e sveeessaeeesnseeennseees 90
7.4.2 TMOEl translatioN FEQUEST.........eie e 91
RETEIEINICES ...ttt ettt e et e et e e e bt e e s bt e e sabeesbbeesabteesabeeenabeeenns 92

6 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

List of Figures

Figure 1 - WOork pACKOQES STTUCTUIE ....iiiiieieee ettt et 16
Figure 2 - Overall architecture of the OL SEIVICE ....cccuiieiieeieeeeeeeeeee et 21
Figure 3 - Technical architecture of the OL SEIVICE ....uiiiiiiiieciiee e 22
Figure 4 - DeeplIFT results for power generation forecasting iNn UCP ........uvvviiciiieicciieee e 25
Figure 5 - DeeplIFT results for power generation forecasting in UCT0.........oooviveeeeeen B, Y 25
Figure 6 - Model performance MONITOMNG .. ..cuiiiiiieeieeeieeeiee e ereesaee e e e e b e b sreeenes 26
Figure 7 - Data drift MONITOMNG ...eeiiiieciieecee et s B ee e vee e rae e 27
FIQUIE 8 - DL ArCHITECTUIE ...iiiieieee ettt et e e etaee e e e eee e e e s e s e e eneaeaeennnseaaaas 28
Figure 9 - Training results for power consumption forecasting of UC 10y .. 29
Figure 10 - Preprocessing stage object detection model ... e, 30
Figure 11 - RLservice high leVel SCNEME .......coouiiiiieeeee i e e 32
Figure 12 - Sequence diagram of interaction between Tensorforce and environment......... 32
Figure 13 - Energy demand for DOMESHIC CIUSTETS.......fioiiiigiiieeeeceee e 34
Figure 14 - Energy demand for INdustrial CIUSTers.. 4. ..t i e 34
Figure 15 - The PPFLL API deployment approach threugh Docker containers, K8 and Argo
WOTKFIOWS .ttt esree e e ettt sae e e seree s 38
Figure 16 - The technical design of the PPFLVAPT ...t 39
Figure 17 - Architecture diagram of the\Pelyglot Model Sharing framework ..........ccccceevnenne 44

Figure 18 - Polyglot Model Sharing\framework implementation repository directory structure

Figure 19 - Sequence diagtam of the Polyglot Model Sharing Framework demo use case..49

Figure 20 - Demo use c@se's implementation directory structure .........ccovveeeiieeieciieeeeecnen. 50
Figure 21 - Dataset artifact stored in the object storage.......ooviieeiiiiccce e, 52
Figure 22 - Train€d model in MLAGAS STOTAQE ......uiiiiieeeeeeee e 54
Figure 23 - WORKTIOW tO deplOy OL SEIVICE ..ottt et 55
Figure 24 - Workflow to deploy OL MONITONNG SEIVICE. ....uiiiuiieeiieeiieeeeeeete e 57
Figuren26.=.REST call to retrieve a user ACCESS TOKEN. ....ccuvviiieeieiee e 63
Figure 26 - Parameters setting in the POST request body for running the FedPATE framework.
.............................................................................................................................................................. 64
Figure 27 - Deployed pods for FEAPATE frAINING ...cccveieeeeieee e 65
Figure 28 - Training through FEdPATE ran and completed........oiveiieecieeecieeeieeeeeeee e 65
Figure 29 - Final model trained through FedPATE has been stored in MLaaS’ Minio storage 66
Figure 30 - Starting the NVIDIA FLARE server through the PPFL API.....ccccovviiiiiiiiiieeieeeeee 67
Figure 31 - NVIDIA FLARE server and OSErVer POAS .....cccuviieeeciiieeeeeeee ettt 67

7 of 95


file://///Users/yosu/Documents/Atos/IoT-NGIN/IoT-NGIN_D3.4_v0.7.docx%23_Toc131059610
file://///Users/yosu/Documents/Atos/IoT-NGIN/IoT-NGIN_D3.4_v0.7.docx%23_Toc131059611

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Figure 32 - Running NVIDIA FLARE client software for client-T ..., 68
Figure 33 - Indicative parameter setting for starting a fraining process though NVIDIA FLARE
.............................................................................................................................................................. 69
Figure 34 - Logs of the training process at the client Side.......cccvviieeiiiiicciiiee e, 69
Figure 35 - Final model of NVIDIA FLARE training stored in Minio model storage component of
1INV Kelo N o] [} ne]1 0 o FHTTERREE O RRRRRN 70
Figure 36 - Instantiating TFF training through the PPFL APl .......ccvviiiieeeeeeeeeeeeee e B 71
Figure 37 - The fraining process through TFF has been completed.........coovev il 71
Figure 38 - Final model trained through TFF stored in MLaaS' Minio storage ..... b e eeveene. 72
Figure 39 - Project's GitLab container registry interface ... b e, 73
Figure 40 - Model Sharing service's Kubernetes manifests....... o 76
Figure 41 - Sequence diagram of the Model Sharing service's dat@set registration operation
.............................................................................................................................................................. 80
Figure 42 - Sequence diagram of the Model Sharing service'ssmodel registration and retrieval
.............................................................................................................................................................. 81
Figure 43 - Sequence diagram of the Model Sharing service's model metadata retrieval
o] o1=T (@ ) 11 o TR i S SO R TS 82
Figure 44 - Sequence diagram of a dataset's contraci/deployment operation ..................... 86
Figure 45 - Sequence diagram of a model'scontract deployment operation .........ccc.u....... 86
Figure 46 - Sequence diagram of the Blockchain service's contract metadata request
OPIEIATION ettt eecee e B e B e e eae e e e eetaaeeeeeeasaeeeeesseaeeeanssssaeeasssaeeeaanssaaeeansraseeeanssaeeeaanns 87
Figure 47 - Sequence diagram of ghe Bloekchain service's model verification operation.....88

Figure 48 - Sequence diagram of'thesModel Training service's fraining request operation...89

Figure 49 - Sequence diagromn of the Model Training service's training job workflow
IMPIEMENTATION <. et e et e e et e e et e e e e e aaaee e e eataeeeeenssaeeeenns 90

Figure 50 - Sequence diagram of the Model Translation service's model translation operation

8 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

List of Tables

Table 1 - Relation of WP3 activities with other WPs and tAsKS .......cueeeciieecieeeieecieeceeeeee e 17
Table 2 - Smart Energy LL MQTT topics for forecasting SErVICES ......uvevvveeeciieeeiieeeie e 23
Table 3 - Transfer Learning NYPer-pOraMETEIS.........viii ettt eeree e e svee e e e srae e e s eeaaeeeenans 28
Table 4 - Normality test results (D-VAIUES) ..ocoeeviiieceeee ettt R e 29
Table 5 - Details of the ML and FL frameworks analyzed in D3.3......coovvivvvveiieiiiiieenn S Yo 37
TADIE 6 - PPFL AP INTEITACES. ... iiieiie ettt et erae e s vee e e e e e e 40
Table 7 - Environmental variables’ configuration for local deployment ..., 58
Table 8 - Environmental variables’ configuration for Docker deployment, ... d..eeeeevevieeenne. 60
Table 9 - Environmental variables’ configuration for K8S deployments,. . e, 61
Table 10 - Model Sharing service HTTP REST APl 0perations. ... S, 79
Table 11 - Dataset smart contract metadata specification ... 83
Table 12 - Dataset smart contract operations ........c.eeeveeevcece . erieceeeee e 83
Table 13 - Model smart contract metadata specCificatioN ..a.....coeeeieeciieeeeeeeee e, 84
Table 14 - Model smart CoNtraCt OPErAtiONS ...l T e 84
Table 15 - Blockchain service HTTP REST API OR@ratiONS..........vviiiieiieee e 85
Table 16 - Model Training service HTTP REST APl OPErations .........ccueeeeveeecieeeiieeeiee e 88
Table 17 - Model Translation service HTIR-REST APl 0perations .........cccveeeceveeeiieeeieeeeee e 90

9 of 95



H2020 -957246 - 1oT-NGIN

D3.4 - ML models sharing and transfer learning implementation

List of Acronyms and Abbreviations

AAA
ABI

Al

AP
API
BCE
BDVA
CA
Cl/CD
CNN
CPU
DL

DP
DQN
D<X>
ECG
EG
EIP

EV
EVM
FC

FL
FQDBN
GAN
GitOps
GPU
GRU
HE

Authentication, Authorization and Accounting

Application Binary Interface
Artificial Intelligence

Average Precision

Application Programming Interface
Binary Cross-Entropy

Big Data Value Association

Certificate Authority

Continuous Integration/Continuous Delivery

Convolutional Neural Network
Central Processing Unit

Deep Learning

Differential Privacy

Deep Q-Network

Deliverable

Electric Charging Station
Electric Grid

Enterprise Jategration Patterns
Electric Vehiele

Ethlereum Virtual Machine
Federated Core

Federated Learning
Fully-Qualified Domain Name
Generative Adversarial Network
Git Operations

Graphics Processing Unit
Gated Recurrent Unit

Homomorphic encryption

10 of 95

leT-NGIN



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

HTTP HyperText Transfer Protocol
laC Infrastructure as Code

ID |dentifier

IDS Intrusion Detection System

loT Internet of Things

loU Intersection over Union

JSON JavaScript Object Notation

LL Living Labs

mMAP mean Average Precision

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
ME Mean Error

ML Machine Learning

MLaa$ Machine Learning as a Service

MLOps ML Operations

MQTT MQ Telemetry Transport
MSE Mean Squared Error
NNI Neural Network Intelligence

NV FLARE NVIDIA Federated\L.earning Application Runtime Environment

OL Online Learning

ONNX Open Newural Network Exchange

(ON @perating System

PATE Private Aggregation of Teacher Ensembles
POC Proof-Of-Concept

PPFL Privacy-Preserving Federated Learning

PPFLaaS Privacy-Preserving Federated Learning as a Service

REST Representational State Transfer
RL Reinforcement Learning

RNN Recurrent Neural Network

SCR Self-Consumption Ratio

11 of 95



H2020 -957246 - 1oT-NGIN

D3.4 - ML models sharing and transfer learning implementation

SDK
SGD
SRIA
SSL
SSR
SVT
TFF
TPU
uc

Ul
uuiD
VOC
WP
w.r.t.
XAl
YAML
YOLO

Software Development Toolkit
Stochastic Gradient Descent
Strategic Research and Innovation Agenda
Secure Sockets Layer
Self-Sufficiency Ratio

Sparse Vector Technique
TensorFlow Federated

Tensor Processing Unit

Use Case

User Interface

Universal Unique ldentifier

Visual Object Class

Work Package

With regards to

eXplainable Artificial Intelligence
Yet Another Markup Language
You Only Look Once

12 of 95

leT-NGIN



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Executive Summary

Endowing loT-based applications and devices with inteligence capabilities to take informed
decisions based on the device environment is of paramount importance in nowadays
application scenarios. loT-NGIN offers a set of frameworks and services aimed for enhancing
the intelligence of these loT applications and devices, namely: 1) The Machine Learning as a
Service (MLaas), as the the main I0T-NGIN MLOps platform for loT, and Il) the_Privacy
Preserving Federated Learning (PPFL) platform, specialized for federated Learning/and iii)
complementary services and frameworks, including the online learning service end the
model sharing framework, that are delivered with the MLaas.

This document describes the progress over D3.3, towards the fulfimenf of these l0T-NGIN
goals to endow loT applications with intelligence. Specifically, the mgin obfcomes towards
this goal reported in this deliverable include:

o Extended and new features for online learning, including:)i) “a new internal pipeline
implementation based on KServe that provides greater flexibility of reuse in multiple
inference scenarios, ii) the support for eXplainable AIXXAI) to explain how models
learn from features, i) a learn monitoring systemifor detecting data drift. ML
applications developed for the IoT-NGIN Living Lab (LL) use cases are also reported.

e A Reinforcement Learning (RL) based implementation for system optimization,
deployed within MLaas$, and tailored to opftirize electric grids for the Smart Energy LL.

e A common enfry point APl that harmenizesthe access of third parties to the PPFL
platform, common for all the FL framewarks supported.

e A Model Sharing framework implementation, that enables an integrity-guarantee
batch training of ML models, aad-their registrawithin the MLaaS model storage for
futher sharing and reused, as-well as their conversion into ONNX intermeditate model
forinference in any envirohment compatible witn ONNX runtime.

These MLOps platforms, frameworks dnd services are released as open source in the IoT-NGIN
project’s public GitLab repositery hitps://gitlab.com/h2020-iot-ngin, contributing to the loT
community.

Planned future work in€ludes extending the application of these MLOps plaforms and
services in additional [oT-NGIN LL use cases, which will be reported in D6.3 [1] and D7.4 [2].

13 of 95


https://gitlab.com/h2020-iot-ngin

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

1 Infroduction

Internet of Things (loT) facilitates the extraction of information from systems, through devices
and sensors connected to them. Companies owning those systems can infer knowledge
about their behavior and performance, with the aim of improving them in diverse aspects.
As an example, metrics gathered from sensors can be immediately used to trigger an alert
on a detected malfunctioning situation. However, the overpopulation of devices and sensérs
is generating an increasing volume of information that companies need to face,a challenge
identified by the Big Data 5 V's [3]. As a result, a simple system service could not ke capable
anymore of coping with the data intricateness. Therefore, new solutions aresequired to face
this complexity and effectively and purposely infer valuable information from it. With the
development of new Al information exiraction and ML-based inference.iechniques and
algorithms and the advent of increasing computation power, notably“eased on Graphics
Processing Units (GPUs) and Tensor Processing Units (TPUs), it is new achievable to extract
value from huge volumes of data and even predict the future behavior of systems. These
breakthroughs will enable systems’ stakeholders to better cémprehend their company
activities and improve future planning, leading to increase Business value.

Primary users of these ML-based techniques are datd scientists and ML engineers, who
require an ML platform that can provide all the necessary services to process data, train,
share and deploy ML models. Implementing and maintaining such an ML platform is a
complex, time-consuming and costly endeavor, requifing expertise most of companies lack
of. Therefore, a leading industry trend is @ddressing the provisioning of this kind of ML
platforms, by offering all the services required to puild and execute ready-to-use ML models.
In addition, these ML platforms support thendevelopment of custom-tailored ML systems for
some specific use cases. Such ML pldtforms are commonly referred to as Machine Learning
as a Service (MLaas).

Companies leverage MLaas to reduge the time and cost of integrating their ML modelling
and delivery procedures intoitheir development and Continuous Integration/Continuous
Delivery (CI/CD) environmenfts. By using MLaas, data scientists can procure and preprocess
the data and train the"model, by focusing on their core competency, that is, in the ML
development, rather than on the burden of taking care of the underlying procedures and
infrastructure, which are provided and managed by the MLaas.

The I0T-NGIN project has envisaged a holistic view for a complete MLaasS platform supporting
ML development and delivery in the domain of loT, addressing the functional and non-
functionalyeguirements expressed in the project, and its high-level architecture. This task has
been realizéd by seeking open-source projects, by selecting suitable components for
specificourposes, and by determining the procedures to integrate them together in order to
constitute a comprehensive framework. Besides, loT-NGIN has adopted GitOps technologies,
sueh as Infrastructure as Code (laC) [4]and ArgoCD [5] to automate the platform building
and'delivery.

The design and implementation of the IoT-NGIN MLaasS platform was described in a series of
previous reports, namely D3.1 [6], D3.2 [7], D3.3 [8]. In those reports, a number of additional
services and frameworks, extending the MLaasS platform with additional ML capabilities, were
also reported (both functional and technically), including the online learning service, the
reinforcement learning (RL) - based optimization service, and the privacy-preserving
federated learning framework. Another service framework, the polyglot model sharing

14 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

service framework was also reported in the specification (D3.1) but its implementation was
not described in detail until this document.

The present document is a technical report, entitled “ML models sharing and Transfer learning
implementation”, the fourth and last deliverable of the WP3 series (D3.4) and reports the
results of the activities of Task 3.2 “Deep learning/reinforcement learning techniques to
enhance fraining processes”, Task 3.3 “Confidentiality-preserving federated ML models” and
13.4 “Machine Learning Model Sharing”. The results of the activities of Task 3.1 “Big Data and
ML framework architecture” are not reported in this document as it ended by the time D3.3
was released, where its results were reported in detail.

Moreover, the activities reported in D3.4 align with the objectives of WP3:

e Define, design and develop a big data management and privacy preserving
federated ML layer, based on Big Data Value (BDV) Strategic Research and
Innovation Agenda (SRIA)4.0 [?9], to train and share ML models:

¢ Implement innovative deep learning techniques to enhance, fraining processes with
inline adaptive self-learning that will improve the resulting machine learning models
automatically.

This document complements D3.3 with updates and newi“features implemented for the
online learning service, the reinforcement learning (RL) - based optimization service, and the
privacy-preserving federated learning framework. Forythese services, it focuses on describing
these last updates and new features, and referencesD3.3/for other functional and technicall
aspects already reported, avoiding duplicating D3.3 content, unless needed for the sake of
better understanding.

1.1 Inftended Audience

The intended audience includes datasaientists and ML engineers which may find this report
inspiring for their research and development efforts as well as ML service providers who aim
to adopt the 10T-NGIN MLOps.paradigm and the enhancements towards reinforcement,
online and federated le@aming and integrity-guarantee model sharing. The document
provides technical speeifi€ations, as well as practical guidance allowing interested
audience to test and adopt the IoT-NGIN developments. The document describes the design
and implementation of the online learning and reinforcement learning techniques, the
privacy-preserving federated learning APl and the polyglot model sharing framework.

Moreover, the document might be of interest to business users who wish to adopt different
technical approaches for machine learning, privacy-preserving federated learning and
sharing int@ fheir processes. The document provides insights for exploiting the 1oT-NGIN tools
in the£antext of the Living Lab (LL) use cases, which could be indicative for other use cases
as well:

Finally, this report is useful internally, for the project partners which develop ML related
solutions, perform integration and validation activities, as well as for the Living Labs. Useful
feedback could be also received from the Advisory Board, including both technical and
impact creation comments.

15 of 95



H2020 -957246 - IoT-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

1.2 Relations to other activities

The activities of WP3 are strongly linked to other I0T-NGIN activities, as indicated its work
package structure rendered in Figure 1.

WP?9: Project Management & Open Calls Coordination

1oT-NGIN Technology Development

S
=
ke
o
2
@
c
[0}
O
%
[0}
=
o
2

Requirements & Meta-
Architecture

WP8: Impact Creation &
Outreach

Table 1 describes the relation beP3 tasks and the other IoT-NGIN activities.
Table 1 e &"on of WP3 activities with other WPs and tasks

« THe definition of the Living Labs’ use cases (UCs) inspires D3.4 for defining
the design and implementation of the online and reinforcement
earning services, the polyglot model sharing framework, and the

federated learning framework, and for providing failored

QE implementations in the context of these use cases.
@ Models trained with the online learning service have been integrated

info the Secure Edge Cloud framework for IoT micro-services for secure
execution of ML models (see D2.3 [10]).

WP4 The object detection models of the IoT Device Discovery module have
been served within the MLaaS platform as instances of the online
learning service.

WP5 WP5 develops cybersecurity tools for securing FL operation. These tools
can work together with the FL modules of WP3 to ensure protection

16 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

against data and model poisoning attacks. Moreover, the WP5 tools are
based on ML functions, which may be trained and served via the MLaa$S
platform.

WPé WP3 components have been integrated with the rest of project’s
technologies and frameworks in WPé, while the MLaaS platform and
tools can be useful in the development of application logic for the use
cases or the Open Calls.

WP7 WP3 components have been implemented and used in several living
labs and use cases.

WP3 supports 3@ parties by offering ML models via MLaaS medel fraining
and sharing.

WPS8 WP3 provides notable outcomes and results fof supporting impact
creation activities. Moreover, it considers fegdback™ (e.g., from the
market analysis and business modelling tasks) which could be relevant
for updating or enhancing the WP3 designtand development.

17 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

1.3Document overview

The rema of the document is organized as follows.

Section 2 introduces the updates and new features implemented during this reporting period
for the lIoT-NGIN online and reinforcement learning services, including their functional
specification, technical design and implementation, as well as the specific implementation
for the LL use cases where these techniques have been adopted.

Section 3 infroduces the updates and new features implemented for the Privacy-Rreserving
Federated Learning framework, focusing on the common access API for deployingFL tasks
across the PPFL framework.

Section 4 describes the functional specification, technical design and implemeéntation of the
Polyglot Model Sharing framework, and its in-lab validation with an example yse case.

Section 5 provides installation and user guidance, of above servicessarnd-<frameworks, which
are published as open source.

Section é draws conclusions and summarizes next steps for future’work.

Annexin Section 7 describes the main components of the Polyglot Model Sharing Framework,
their REST APIs and the main processes they implemenis

18 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

2 [0oT-NGIN Machine Learning

2.1 Online Learning

This section describes the updated and the new features implemented for the Online
Learning (OL) Service, as part of the MLaaS$ platform, infroduced in D3.3. For the sake of
facilitating the reader understand these features and their implementation, this sectionnmay
borrow some content from D3.3 when needed, but in most of situations, it will tefer fo-if, to
avoid extending the document unnecessarily.

2.1.1 Description

D3.3 described the first version of the Online Learning serv. The firstwversion focused on
providing a service capable of dynamically training ML models#fer1oT applications and also
performing inferences on demand.

Dynamic training, also known as Online Learning, concerns thetraining of ML models when
new datais available. Thus, the model is tfrained continwously. This paradigm acquires great
importance in the context of IoT due to the large number,of sensors or devices that can be
present on common scenarios, and the large amount.of information captured by them
dynamically.

In addition, the OL service supports both APIRESIrequests and streaming data since most loT
devices generate communication flows in real time.

The OL service version reported in thissdocument maintains these features and offers an
improved implementation that offers.)\greater flexibility and ii) new features.

Greater flexibility is achieved withnthe'incorporation of a pre/post processing module that
mediates between the service.clients and the model. This modification allows to deploy the
pre/post processor and the Observice as two separate microservices, thus letting them to
scale independently.

Regarding the new featudres, a module has been implemented for XAl (eXplainable Artificial
Intelligence), that attempfts to explain the predictions made to answer the question: Why has
the model made this predictione XAl is a set of methods and processes that help to
comprehend”andh trust the prediction driven by the ML model. Moreover, it helps to
characterize the model performance by providing the impact of the input data for a given
prediction; aading transparency to the prediction and capacity for model bias detection.
This médule.is optional, that is, the OL service does not come with an explainer deployed by
defaultsinee it is a use case dependent module.

Finally, a complementary service to OL, called OL monitoring, has been implemented. This
service monitors, in real time, the performance of the model and the input data sent to the
OL service, both for training and inference, so that it can detect a degradation on the model
performance and if data drift phenomenon has occurred.

Data drift is defined as the variation between the data in the training phase and in the
deployment phase. This phenomenon can be caused by different factors, the most common
are that the fraining data did not include the entire population of the data or the distribution
of the data varies over tfime.

19 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

2.1.2 Technical design

The overall architecture design of the OL framework is shown in Figure 2. The internal
architecture of the OL service in Figure 3.

The OL service is deployed into MLaasS using Kserve [11] through Kubeflow. [12]. Kserve allows
to deploy 3 types of components: Predictor, Transformer and Explainer. Each of these
components expose a REST APl as a HTTP service!.

The Predictor?is the ML model hosting service. It is responsible of performing dynamig. training
and providing inferences on demand. This component is designed to be reusable” across
specialize OL services for different use cases. It loads the model from MLaaS.Model Storage
(MinlO [13]) to make a prediction or updates it back when the model has<eeen improved
after training. A new strategy has been implemented so the model is only updated and
stored back to MinlO when the training losses have been lowered.

The Transformer is a service, located between the client and the Predictor, that is responsible
for preparing the data, received in JSON format, so that the Predictor can train the model or
make a prediction. In addition, the Transformer also performshe post-processing of the
prediction returned by the Predictor. In this way, the inferenge.obtained is processed so that
the client gets the prediction in a more appropriate format. Thus, the Transformer that
processes the input data is use-case specific. That js, each OL service will encompass a
different Transformer.

As the Transformer is the module that receives thexinput data, it must also support receiving
data coming from MQITT [14] and Kafka serviees. To’cover this requirement, Camel-K [15] is
used (as explained in D3.3).

The Explainer service aims to provide justification to the predictions. This service is only
accessible through HTTP and extractssthe most significant features of the input data. In this
way, it is possible to understand which, part of the input data has had more influence in the
final prediction and also the way by which the model has obtained the prediction. This
service is also use-case specific.since the XAl the algorithm depends on the input data type
and the framework used t@'implement the ML model.

The monitoring service £onsisis’of a HTTP endpoint deployed using FastAPI framework [16], a
Prometheus engine [17]%and a Grafana web tool [18]. This service monitors the input data
and the model performance in real fime by using the Evidently [19] package. To do this, the
Predictor sends/#he input data and the inferences made to this service, and then, by using
Evidently, stafistical hypothesis tests to detect data drift are carried out, and evaluation
metrics of the model in production are computed.

To detect data drift, Evidently requires a reference dataset. This dataset is collected by the
modél developer following use-case specific methods. For instance, it could be the dataset
the” ML model developer uses to perform some tests during initial model development to
validafe the model architecture.

The results obtained by Evidently are collected in Prometheus, mediated by an exporter that
Evidently registers in Prometheus, which scrapes the data from the Evidently monitoring
service. In Grafana a data source pointing to Prometheus is configured. Thus, Grafana can

1 The REST APl exposed by the Predictor is hidden so only the Transformer gets access
2 Despite its name, the Predictor is used fo either i) train the model online, ii) process an inference,
through different APIs

20 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

access these results for visualization, in dashboards, where users can analyze the
performance graphs. The dashboard provides different evaluation metrics: mean errors,
mean absolute error 4and mean absolute percentage errord. It also shows the history of these
metrics as a time series. Lastly, it provides the bias of the predictions both in the training and
in the production phase. This bias indicates whether the model tends to overestimate or
underestimate the value with its predictions.

«components «components
= |Kserve pipeline = | Kubeflow
S el
cusen
creates,
1
«compenents v
+topic: MQTT_Topic [1 IMQTT Broker + topic: MQTT_Topic [1 Saah wcomponerts
oA ._. TTTTTTTTS =] 0L Service <] Monitoring
I I
| |
} } «components acomponents
leuser «used = | Transformer -~ IMonitoring (Evidently)
#companents e +service: OL REST API[1 . 1 + API: Monitoring [1]
= 1loT Device ausen = 1Camel-K cusen %[ e ‘
_______ k_ I
7 »
}uuse» use } -~ " «COMmpenents «compenents ,r' “compenents
| SN [ _ = | Explainer = | Predictor - | Prometheus
! r wUSe
| |
| « ] |
| = | L
i . | Kafka Broker . o wuser N |7 susex

+ topic: Kafka_Topic[1] +topic: Kafka_Topic[1]

«components
] Grafana

.
\ .
. p
~ storage: Storage [1M
«com'pnr‘em»

= MinlO

Figure 2 - Overall architecturevof the OL service

New OL modules have been implementeder updated from D3.3, using Python since it offers
a large ecosystem of specialized libraries,for Al. These modules are listed below:

¢ Create Kserve Service (Predictor). It is responsible for deploying the REST API service
within the OL service. It creates an HTTP endpoint that exposes the OL API for model
update or prediction. The"main library used in this module is Kserve.

e Transformer. It recéiyes orraw dataset and performs the data pre-processing stage.
Therefore, it containsall the functions needed to prepare the data for the ML model.
It also performs the post-processing stage, so the prediction is processed to be
provided in mere convenient format for the requester. The implementation of this
module s .use-case specific.

e Explainer. I receives the preprocessed input data and returns the significance of
each fegture in the prediction. It is powered by Kserve and must be implemented by
theiME'model developer.

¢ { Online Learning Module. This API links the Predictor to the backend module. It is
responsible for choosing the correct backend and transmitting the model update or
the prediction requests. It also implements the model saving strategy.

3 ME: ME =% N (i —3). where N, y; and 9, are the number of predictions, actual and forecast value
respectively.

4 MAE: MAE =% N lyi — %1, where N, y; and %, are the number of predictions, actual and forecast
value respectively.

5 MAPE: MAPE = %2{.":1 |y"y;l_yAl |, where N, y; and %, are the number of predictions, actual and forecast

value respectively.
21 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

e Streaming connector. This module provides tools to support real-time protocols. This
module is not being used in current deployment because Kserve only supports HTTP
connections, but itisimplemented in case future versions of Kserve supports streaming
data. The main libraries that have been used for its implementation and its testing are

Kafka [20] and Paho-MQTT [21].

e MinlO Connector. Provides the required tools to download and upload the ML
models. This version stores the frained ML model in MinlO storage in case the model
performance gain overpass a given threshold during the training. This module isbased

on the MinlO library.

e Backend. Modules responsible for including required functions to perform ML'model
updates or predictions for each ML framework. Current version supports the following
frameworks: Sklearn, Vowpal Wabbit, TensorFlow and Pytorch.

e OL Monitoring. It receives input data and model predictions to(compute different
model performance metrics and to carry out statistical hypothesis=tests to detect
data drift using Evidently. These results are scraped by~the Prometheus agent
periodically, to be displayed in the Grafana dashboards.

+ update: OL[1 + predict: OL[1 + i i i i
p ] pi [1] — (— * explain: Explain ] [— * monitor: Monitor [1]
e «/?rrpr!nem» W lWl
5 _ -~ 0L Service i i
[ 1
1 1
«component» «components «component» «components»
=] Streaming Connector (<~ - - - - - - = | Transformer  |------= = =] Explainer <] Monitoring
T
! : A
v V |
L
«component» «components :
= ] Predictor (Create KServe Service) ~ |-- == =_]MinlO Connector !
1
|

«components
%] OL Module

v

«components
= ]Backend

«component»
= 1PyTorch

«components
=] TensorFlow

«components
£ ] Sk-learn

«component»
=] Vowpal Wabbit

Figure 3 - Technical architecture of the OL service

As described,.inprevious deliverable (D3.3), additional steps are required for deploying the
recenjrele@ses of the OL services. The whole process is described in section 5.1. The main

steps are:

1- OL Service Adaptation: it is the initial step to configure the OL service. Three different

modules are set and impl

emented:

a. Predictor: it sets different parameters such as the MinlO host and the buckets
where the ML models are stored, the backend (framework which was used to
implement the model) to use in order to perform the model update or the

prediction.

for the input data.

22 of 95

Transformer: it Implements the use-case specific pre/post processing methods



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

c. Explainer (Optional): it implements the XAl algorithm to provide explanations
about the inferences made.

2- Create the OL Docker images: once all Kserve components are configured, they are
enclosed in Docker images, and registered in the registry from where Kubeflow
refrieves them to build the deployment pipeline. There is a docker image per module.

3- Define the Kserve YAML manifest: This manifest defines the configuration of the OL
service during its deployment. It defines the name of the inference service, the
number of replicas, the CPU limits and the Docker images to use, among other
configurations.

4- Create the Kubeflow pipeline: This step creates a Kubeflow pipeline that instantiates
the Kserve YAML manifest when executed.

5- Run the Kubeflow pipeline: This step deploys the OL service as an HTFP. inference
service.

6- Define the Camel-k binding: Camel-K binding consists of a YAML file thiat defines the
broker and topics where data is being dumped and the prediction service to where
the data is tfransferred to.

7- OL monitoring adaptation: This step configures the type ofidata to be monitored and
the type of task (regression or classification) to be performed by the OL service.

8- Create the OL monitoring Dockerimage: Once the OLmenitoring is configured, it must
be encapsulated in a Docker image and uploaded into the Docker registry.

9- Create the monitoring YAML manifest: it configures some aspects of the monitoring
service, before deploying, such as service ptme.

The source code of the implementation of the @nline Learning service is available at the |oT-
NGIN GitLab repository [22].

2.1.3 ImplementatiogN@r IoT-NGIN LLs

This section describes thetgpplication of the Online Learning services for the training and
inference in some of the IoTsNGIN LL use cases, as a way to evaluate these services. The
following describes a joiAt work between WP3 and WPé, included in this document for the
sake of completeness. incoming results of the application of these services to the LL use cases
will be also repeotied in D6.3 [1].

2.1.3.1 (urt Energy

D3.3 described the Smart Energy scenario and the procedure to deploy two power
generatiorn forecasting services for UC? and UC10. These services have been improved with
the inclusion of the explainer and also with the adoption of the monitoring service.
Implemented services for UC? and UC10 are shown at

Table 2.

Table 2 - Smart Energy LL MQTT topics for forecasting services

MQTT Meter/Topic

Service Description
uce ucio

23 of 95


https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Power Use power data over the time to | Smart Meter/ Power Quality
Consumption | predict the consumption in next 24-36 BBBSOXX Analyzer/
Forecasting hours. w4
Power Use power data over the fime to | PMU/ Power Quality
Generation predict the generation in next 24-36 3640f24bq43a Analyzer/
Forecasting hours. 423188979372 | Wé

baeé277a

To include the explainer component in both services, a XAl method #Ahdi, provides the
explanations to the predictions is required. To implement this method, the Captum library [23]
is used. It is an open-source Python library specialized in XAl for models implemented with
Pytorch [24].

Captum allows to use different XAl methods to compute the importance of each input
feature in the model prediction. Different methods have been tested, being DeeplLIFT (Deep
Learning Important FeaTures) [25] the one that provided the Best explanations. This method
belongs to the XAl backpropagation-based approach..These approach highlights the input
features that are easily predictable from the output.

DeeplIFT attempts to decompose the output prediction” of a neural network on a specific
input by backpropagating the contribution of eaegh neuron to each input feature. It
compares the activation of the neurons with its, reference activation (a default or neutral
input) and assigns contribution scores according to the difference. DeeplLIFT has the
capacity of detecting both positive and “fiegative conftributions, so the explanations
distinguish features with positive impaefen the prediction from those with a negative impact.

To verify that DeeplLIFT provides¢acceptable explanations, a small evaluation has been
performed for both Smart Energy ferecasting services. An input vector with 36 past power
measurements (the forecasting=model requires an input dataset with 36 features, see D3.3)
is used with the DeepLIFT method to derive which features have the highest impact on the
prediction. The impactofieach feature is represented in Figure 4 and Figure 5 for UC9 and
UCI10, respectively. Feafures with a positive contribution are render in green, features with no
major impact in yellow and the ones with negative contribution in red. The conclusion that
can be extracted from DeeplIFT is that the features with highest impact are the last ones in
the input tensSor {represented in the x-axis in figures), that is, the most recent ones, as
expected.

24 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

1e6 Comparing input feature importances
—— Power
03 0.4
0.0
0.2
2 0.5 £
g 00 o
o 3
T _ H]
g-10 '
-0.2
-15
I—0.4
-2.0
0 5 10 15 20 25 30 35
Features (36 samples)
Figure 4 - DeeplIFT results for power generation forecasiing inWC9
Comparing input feature importances
—— Power I
0
-10 0.4
-20
_ 02 4
= (0]
= _30 Q
5 E
g. —40 0.0 g
g g
£ ]
50 _02 [
—60
—70 I—0.4

0 5 10 15 20 25 30 35
Features (36 samples)

Figure 5 - BeeplIFT results for power generation forecasting in UC10

Once DeeplIFT explanations have been verified, the forecasting services can be updated
to include the éxplainer component. To do so, some steps described in the previous section
are followedi In particular, the creation of the docker image for the explainer and the

addition ofifhe explainer section in the manifest YAML. Then, the Kubeflow should be defined
and executed.

The_precedure to deploy the monitoring service for the UC? power generation forecasting
service is'detailed below.

¥ The first step is to configure the monitoring service: the type of data to be monitored
and the type of ML task (Classification or Regression) being performed. In addition, a
reference dataset must be added as a baseline to compare the new data coming in
with. Once this service and the reference dataset have been configured, its Docker
image is created and uploaded into the Docker registry. Afterwards, the YAML
manifest is applied, configuring the name of the service.

25 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

2. Next, the OL service is configured, in particular the predictor component, to enable
monitoring. A boolean environment configuration flag enables/disables monitoring,
and another one defines the endpoint of the monitoring REST API.

Grafana dashboards are shown in Figure é and Figure 7. Figure 6 shows the performance
monitoring of the model. As explained in section 2.1.2, this monitoring provides ME, MAE and
MAPE evaluation metrics af the present time and over fime. It also provides information about
the bias of the model's predictions. In this way, it is possible to know if the model tends to
overestimate or underestimate. Figure 7 shows the monitoring of the data drift. This
dashboard provides information about the data drift in different ways. The Dataset Rrift pahel
shows whether or not the data drift has been detected over time. The share of driffed
features panel shows the percentage of features that suffer of data drift) Since this
implementation only has a single variable (the generated power), when data drift is
detected, 100% of the dataset presents data drift.

1A 88 General /Evidently Regression Performance D.. ¥ < W B ® Olstrdays ~ Q@ o v ©
>
Q datasetname | data_drift_dataset v feature | All v
v Row title
w
ME MAE MAPE

Iﬂﬂ

oo

1)

-0.0339 0.0339 4.52

Aggregated Metrics in time

o= ME == MAE == MAPE
~ Feature error bias

Error Bias: prediction Error Bias: target

© ® o ®

Figure 6 - Model performance monitoring

26 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

G 88 General / Evidently Data Drift Dashboard ¥ «§ i B @& @ Lest3odays v @ ¢

>
ataset_name data_drift_dataset «

(9]
i}

Evidently Data Drift Monitoring

Here can be your information about dashboard and its usage

g = O

~ General information

Dataset Drift

o ®

Share of drifted features # of drifted features # of features

NaN

2m 0214 02117 02/20 02/23 02/26 03/0 03/04
: l
~ Detailed information

P-value of features

@ ® o ®

Figure 7 - Dgta.drift monitoring

The last service that has been implemented for the Smart Energy LL UC10 is the forecasting
of the consumed power. The scenario’remains the same as described in D3.3. The electrical
network is publishing messages-with the consumed power in an MQTT broker, and the OL
service has to infer whatdhe power consumption will be like 24 hours later by using the
previous 36 power samplés. The pre-processing performed in the same way.

The implementation of the, DL model leverages transfer learning technique. Transfer learning
is an ML technigue fhat refrains a model, originally designed and trained for a specific
purpose, to be feused for another inference objective. The rationale behind this technique is
to take advdntagerof the "knowledge" acquired by the model in the first learning objective
to learn meare quickly on the second one. From the implementation point of view, Transfer
Learning consists of freezing the input layers of the model that has already been trained. That
is, thetweights of these layers are not adjusted in the training phase with the dataset for the
seeondiearning purpose.

Figure/8 shows the architecture of the model. The description of this architecture is described
in section 3.1.3 of D3.3 [8]. The layer to be frozen is the first Gated Recurrent Unit (GRU) layer.
Therefore, the weights of the rest of the layers will be retrained.

27 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

~

- // \\ \\\\\\ )
[o—re}—{rs] & [ | GRU Layer
| h1 | h2 |—{h3 ]| ) [hn |} GRU Layer

A

5ol

Figure 8 - DL architecture

Before deploying the OL service with this architecture, a little experimentation has been
conducted to verify that the technique is promising. For this,'\@ dataset of consumed power
has been collected for approximately 15 days and aSmall pre-analysis of this dataset has
been carried out. Alike the UC10 power generation ferecasting service, this dataset presents
a 24-hour seasonality. Table 3 shows the chosen Ryperpdrameters for training the predictive
model.

Table 3 - Transfer Le@rnifig hyper-parameters

Hyper-parameter Value

Epochs 50

Learning rate 0.001

Optimizer Adam [26]

Loss function Mean Squared Error
Bateh size 128

TrainiAg results are shown hereafter in the same way as in D3.3. Figure 9 shows the actual
power dafa (orange line), inferences performed by the ML model (blue points) and the
forecasting intervals with a 90% of confidence (blue area). Forecasting intervals can be
computed since the errors between the actual data and the model predictions present a
distribution that can be considered as Gaussian. Normality hypothesis tests have been
carried out to assume that errors come from a gaussian distribution. The tests are Shapiro-
Wilk, Anderson-Darling and D'Agostino-Pearson [27]. The null hypothesis supports that the
data probably comes from a normal distribution while the alternative hypothesis defends
that the data present a different distribution. The statistical tests return a probability known
as p-value. If this result presents a value lower than the defined significance level (0,05 in this
case), the null hypothesis must be rejected, so the data distribution cannot be assumed as

28 of 95



H2020 -957246 - 1oT-NGIN I T NGIN
R -
D3.4 - ML models sharing and transfer learning implementation o

normal. Therefore, it is correct to assume that errors come from gaussian distribution, as shown
at Table 4.

Table 4 - Normality test results (p-values)

Shapiro-Wilk 0.56

\Y%

Anderson-Darling 0.61 ?\
Agostino-Pearson 0.15
The model can learn seasonality in data. The MSE obtained using @J;ldohon subset is

0.012.
Forecasting with 90.0% Confidence

plldatlon subset
120
< °
°
°
L > » ° °
100 : &
L
! | W
]
« « b
= 4 !i @ L L
< 80 ! b % 0 1 pe ! oll ¢ «
z ) . % o o o « >
& r \
¢
« 4 o »
L
60 »
J Q olle g > 4 >
] 1 ﬂ
°
°
0= Actual Data
@ Predictions
Confidence Interval
T o T T S T S T S T Y
& 3 N & & & &
> R & & >
sV g g & &
N N N & & &
v v v v v v
Date (y-m-d H:M)

B&re {— Training results for power consumption forecasting of UC10

The mode %ed in MinlO so that the corresponding OL service can load it and perform
upd inferences.

oyment procedure for the OL service corresponding to this energy demand
ting UC is the same as described in section 2.1.2.

2.1.3.2 Smart Agriculture
The Smart Agriculture LL offers different UCs that require ML modeling for different purposes,

as described in D3.1. In the previous section, we have addressed some Smart Energy LL UCs
that require dynamic training for ML models due to the nature of the source training datasets.

29 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

On the conftrary, other LL UCs require different approaches for ML training and inference in
MLaasS.

This section describes the deployment process of a service that hosts an Al-based object
detection model, capable of detecting Synelixis’ SynField loT devices in images taken by
mobile phones. This model is the first step towards indexing of the SynField devices on the
overall network and eventually the Smart Agriculture LL, as explained in D4.3 [28].

The service is deployed using the Kserve library, by adopting the same procedure described
in section 2.1.2. This library only exposes a REST APl endpoint that attends requests enclosing
input data in JSON format, but it does not support images in its payload. As therobject
detection service requires images as input data, it is necessary to encode the images in
baseb4 before they are sent to the service. Moreover, the model needs to bewegistered in
the MLaaS Model Storage (MinlO). The object detection service retfrieves the model from
MIinlO and then processes inferences on demand. The service receives @ baseé4 encoded
image. At the pre-processing stage, the Transformer component prepgares the data for the
model. The preprocessing consists of decoding the image and conyverting it into a 3-
dimensional tensor. This component makes use of the Baseé4 CV2-«and Numpy libraries. Figure
10 depicts the process.

Figure 10 - Preprocessingzstdge object detection model

Once the 3D tensor is ready, the NMransformer component sends it to the Predictor
component. As explained above(this coOmponent loads the model from MinlO, receives the
tensor as input, and processes the, prediction. It sends the prediction to the Transformer,
which postprocesses it to inclugde-the detected object frame into the original image, baseé4-
encodes it, and sends it bdckindSON format.

The procedure described in“Section 2.1.2 has been applied to deploy the service in the
MLaasS platform, includingithe creation of a Dockerimage that encapsulates the Transformer
and its registration inte’the Docker registry, the creation of the YAML manifests for configuring
the Transformer and Predictor components, and finally the definition and execution of the
Kubeflow pipeline.

x2Reinforcement Learning

This section describes the functional specification, technical design and implementation and
its application to the IoT-NGIN LL UCs of a Reinforcement Learning (RL) based optimization
engine. The conceptual description of this RL-based optimizer for the Smart Energy LL UCs
was infroduced in D3.3. RL-based optimization engines are very use-case specific, although
different standard RL-optimization techniques reported in the scientific literature can be
applied. The following subsections provide an updated description of the RL-based

30 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

implementation for the UC9 Electric Grid opfimization. A detailed evaluation of the
performance of this optimizer will be reported in the deliverable D6.3 [1].

2.2.1 Description

Reinforcement learning is an ML paradigm that consists of an agent that learns how to
optimize a given system behavior from its interaction with the system environment. In each
interaction with the environment, the agent takes an action, based on its own state invorder
to maximize a reward. This paradigm was described in D3.3. The following describesithe RL-
based optimization model design and technical implementation, which is use-c@se specific,
for the UC9 Grid Energy Optimization use case described in D3.3. The technical.design and
implementation of this opfimization model is based on standard RL dlgorithms and
implementation, and therefore reusable for application to other cases\such as the UC10
described in D3.3. Therefore, section 2.2.2 provides a reusable 4echnical design and
implementation, and section 2.2.3 provides the details to concretize)the implementation to
the UC9 optimizer, by providing details on the action set, state set and rewards.

2.2.2 Technical design

In D3.3, the high-level architecture of the RL-based opfimization service was presented.
Figure 11 shows the description of the architecturg”at'a.high level.

Alike OL, the RL service is deployed in MLaaS withhKserve, following the same procedure
described in section 2.1.2. An interaction withthe environment, through publish/subscribe
protocols, may be required, so the possibility of £reating a camel-k binding is conceived to
support this functionality.

The RL module is responsible for trainingihie Al model with RL algorithms. For this purpose, the
Tensorforce framework [29] hasibeen selected. This open-source deep reinforcement
learning library, implemented on\ensorflow [30], has been selected since it adopts a set of
high-level design choices such as the modular component-based design, the separation
between RL algorithm andvapplication that make it suitable for our technical requirements.

Tensorforce requires to define two objects, namely i) the agent and i) the environment. The
agentis the entity responsible for taking an action when the environment is in a certain state,
aiming to maximize the reward. The environment is the entity that returns the reward and
new state after applying the action. Then, the agent learns the actions that provide the
highest reward

Tensorforce Offers model free algorithms, which do not learn a model of the transition
functions of, the environment to make predictions of future states and rewards, from both
families:, Q-Learning and Policy Optimization. Q-Learning algorithms aim to learn optimal
pealicy lbased on state-action value pair while Policy Optimization ones learn the optimal
poliey by optimizing the policy distribution.

Within the Q-learning group, Tensorforce provides the Deep Q-Network (DQN), Double DQN,
and Dueling DQN algorithms. While from the Policy Optimization group, it offers the Policy
Gradient, Proximal Policy Optimization and Actor-Critic algorithms.

31 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

RL Service by Kserve

RL Module
(Tensorforce)

e e Pre-Processin,
Buffer 6

HTTP Train
Endpoint Predict

<

A 4
Figure 11 - RL ser@h level scheme

The environment the agent in’reroc’rs\&l< can be areal one or simulated. In any case, the

Tensorforce entity fransmits the agfior en by the agent to the environment and waits for
it to return a new state and rew process is shown in Figure 12.
Tensorforce
.Real Environment Agent
Environment Entity

& / Taken action
Q Takenaction
i New states
Reward New states
Q > Reward

Figure 12 - Sequence diagram of intferaction between Tensorforce and environment

32 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

2.2.3 Implementation for IoT-NGIN LLs

In D3.3, the need to implement RL-based optimization model was presented to cover the use
cases UC? and UC10, namely “Move from Reacting to Acting in Smart Grid Monitoring” and
“Control, and Driver-friendly dispatchable EV charging”, respectively, with the purpose of
optimizing and conftrolling the electrical network.

This section describes an implementation of a RL-based optimization for the UC?, based on
the Tensorflow framework.

Environment

As we cannot get access to the real UC? electric grid (EG) to interact with, @ EG simulator
has been implemented by the EG owners, using the pandapower-ramework [32]. This
framework uses the Flow PYPOWER power solver to create a calculdtion-network program
with the aim of automating and optimizing power systems. As a resulls the simulator describes
the same environment state as the real EG network when conmected with the same sources
of power generation and consumption.

The operation of the simulator is as follows: once the eleCtrical network is specified in
pandapower, the simulator reads the power loads dethanded by all the consumer groups
connected to the network and the power generated along a day. The data has a resolution
of 15 minutes, so there are 96 values of domestic and“industrial consumers’ demand and
generated power.

Then, the simulator infroduces the data intofhe/Corresponding loads on the electric grid and
performs a simulation. The simulation resulissconsist of the different parameters of the grid
state. those that are used as a rewardare-réferenced in the following reward section.

States

The optimizer acts on the cdstomers’ energy demand, that is, it modulates the distribution of
energy demand throughout the day, so it is necessary to know what the energy demand
state is they are in or equivalently, which is the distribution of current energy demand.

Two types of customers can be distinguished: domestic and industrial. There are 13 loads
(client groups) of each. To fry to better understand what the data looks like, a pre-analysis of
dataset collectedvover a year has been carried out.

Figure 13 showsithe average distribution of each domestic load for one day. It can be seen
that all distributions are very similar. In addition, the load "Load_D_486" presents a much
highet energy demand than the rest and accounts for 38.5% of the total energy demand.
Alsoeonsidering the loads "Load_D_491" and "Load_D_493", there is around 70% of the power
demanded.

33 of 95



H2020 -957246 - 1oT-NGIN

D3.4 - ML models sharing and transfer learning implementation

leT-NGIN

Power (W)

As for industrial loads shown in Figure 14, something

Load | 486, Load_| 491, Load_| 487 and Load_

Domestic Loads

200 ~

150 4

Load D_490
Load D_495
Load_D_494
Load_D_749
Load D 486
Load D_487
Load D_493
Load D_748
Load_D_747
Load D _492
Load D 489
Load D_491
Load D_496

Hour

~
Figure 13 - Energy demand for Domes’riwers

<

milar occurs. All the groups present a

e energy demand of these loads

very similar distribution, and the total energy dem%is practically concentrated in 4 loads:

accounts for 77% of the total.

A
Industrial Loads
80 -
—— Load_|_490
—— Load_|_495
707 —— Load_|_494
—— Load_|_749
60 1 —— Load_| 486
—— Load_| 487
50 1 —— Load_| 493
) —— Load_| 748
“5 40 Load_|_747
z —— Load_| 492
& 3p —— Load_|_489
—— Load_|_491
20 4 —— Load_|_496
] M
e —_—
0 5 10 15 20
Hour

Figure 14 - Energy demand for Industrial clusters

Therefore, this first version fries to simplify the problem by acting only on these 7 loads. In this
way, the state set is much smaller, speeding up development thus.

Actions

34 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

The RL-based optimizer seeks to optimize the energy demand of the electrical network. To
do this, the distribution of energy demand of each load is modified, which, is furned into a
shift in energy demand throughout the day.

This version of the optimizer uses four sets of discrete actions. The first set is the load selection.
As explained above, seven loads over which to act are considered. Therefore, the action set
encompasses 7 possible actions.

The second action set of actions determines the start time of the energy displacement.
Therefore, this action set includes 24 different actions.

The third action set determines the percentage of energy that is shifted at differentAimes. 3
different energy shifts have been established 1%, 5% and 10%. For example, if.from 8:00 a.m.
to 9:00 a.m. there is an energy demand of 10W and you want to make a 10%shiff'to the time
slot between 9:00 a.m. and 10:00 a.m., this second time slot will increase your péwer demand
by 1W, and the energy demand from 8:00 a.m. to 2:00 a.m. will decredase-t by the same
amount.

The energy demand shift presents a number of restrictions. The firshone is that the total energy
demanded by a load must remain constant throughout the day«The second one is that the
shift can only occur within 2 contiguous time slots, the displaeement cannot be applied to
any arbitrary distant time slofts.

These restrictions are considered in the model implementation phase.

Rewards

The objective of the system is to optimize the operation of the electrical grid. This version tries
to maximize two grid performance parameters: SSR (self-sufficiency ratio) and SCR (self-
consumption ratio). SSR can be defined,as the relation between the energy produced by
the network and the energy consumed oy the network. SCR is defined as the ratio between
the power consumed by the netwerk and the power produced.

The employee reward function,is mean of both ratios: R = %(SCR + SSR).

Experiments

Results obtained from inifial experiments with this first version of the RL-based optimizer for the
Electric Grid optimization UC? will be reported in D7.3 [33]. Following experiments will be
conducted overmore advanced releases of the optimizer in the context of WP64, and their
results will beteported in D6.3 and D7.4.

The seurce code of this first implementation of the Electric Grid optimizer is available at the
lolA¥&IN GitLab repository [31].

35 of 95


https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/rl-optimization

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

3 IoT-NGIN  Privacy Preserving Federated
Learning

The parallel evolution of both edge computing and Federated Learning has brought
valuable opportunities in the deeper penetration of inteligence into modern services and
applications through the exploitation of available computational and energy resources/at
different levels of the devices’ hierarchy.

Edge computing brings computation closer to the edge, i.e., basically closer te.the end user.
This implies significant benefits e.g., related to reduced latency and jhcreased energy
efficiency, since considerable communication cost is saved, as data and workloads remain
local, rather than being transmitted to a remote cloud server. Moreover, data are kept at
the data owner’'s/controller’s side, rather than being transferred”to (unfrusty) cloud third
parties.

The edge computing paradigm is manifested for Machine [earning through Federated
Learning (FL), which allows distributed ML model trainingidmeng a set of collaborating
(federated) edge nodes. In FL, data remain local, as local are the ML model fraining
computations on that data, happening at edge devices. Then, local models are
communicated to a central aggregation server, which combines the individual model
updates received from individual edge nodes. A" number of FL frameworks in literature
support setting up and running fraining tasks in & federated way, which have diverse
capabilities in real or simulated setups, number of nodes, ML techniques supported, etc. A
comprehensive and comparative analysis ef.the state-of-the-art FL frameworks has been
provided in D3.1 [6].

Yet, the “fraditional” FL approach Telies on the existence of frusted entities, both for the
aggregation server and the FL pacticipants, as well as on trusted communications among
them. However, in redlistic scenaries, this assumption is often optimistic.

To address the lack of tfust” inh FL systems, privacy preservation techniques have been
suggested in literaturegZwhich/span the local updates’ masking (e.g.. through Differential
Privacy - DP, Multi-party=€omputation), and identity protection (e.g., through homomorphic
encryption, other cryptographic techniques, etc.). Such techniques have been analyzed in
D3.1.

However, thépractical application of those approaches and their efficiency/cost in the ML
model development of different domains is not common ground across FL frameworks, ML
algorithms \dand application domains. In 10T-NGIN, we have extensively investigated the
appliéation®of privacy preservation mechanisms for three state-of-the-art FL frameworks,
namely WVIDIA FLARE [34], Tensorflow Federated (TFF) [35] and FedPATE, an adaptation of
Flower [36] to the Private Aggregation of Teacher Ensembles (PATE) approach [37], as
tabulated in Table 5. This work is reported in D3.3.

36 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Table 5 - Details of the ML and FL frameworks analyzed in D3.3

FL framework ML algorithm ML Privacy preservation
framework technique
NVIDIA FLARE Single-Stage Object | Pytorch DP, HE
Detector (Yolov))
FedPATE Convolutional Neural | PyTorch DP
Networks (CNNs) for image
classification (Image
Classifier)
TFF Multi-Layer Perceptron- | Tensorflow DP
Classifier

Based on this work, analyzing the efficiency and impact of privacy. preservation in FL training
of indicative ML models through the selected three FL framew©rks,\the next logical step of
loT-NGIN contributions has been towards the facilitation of the &xecution of FL training tasks
with the preferred FL framework. To this end, we introduce thePrivacy-Preserving Federated
Learning API (PPFL API), as a single-entry point for instantiating FL training tasks.

3.1 Description

Motivation

Usually, the execution of FL fraining, requires significant effort related to the manual
configuration for both the setup of theyselected FL framework, the porting of ML models into
the framework and the instantfiation, of'the tfraining activities. This also assumes familiarity with
the intfernal operation of eachsF-fframework, which might not always be the case. The great
amount of manual work burdens the automation of the ftraining tasks, required for
accelerating operatiopsyim, both real and simulation scenarios. To this end, [0T-NGIN
infroduces the PPFL APl \ds an indicative entry point for initiating FL training tasks through the
analyzed frameworks and for the indicative ML models investigated, which represent
indicative ML applicdtions.

Approach

The infroduction of a common entry point for the instantiation of FL training tasks would
facilitate the work of the Al developer. Indeed, the PPFL APl is implemented to hide the
cemplexity and specificities of each FL framework and privacy preservation technique from
the {API) user and to facilitate the automation of the FL training processes through simple API
calls. Moreover, the integration with the MLaaS$ platform for model storage enables the use
of the model through model sharing or model serving functionalities of the MLaa$S platform
via the relevant endpoints.

Considering the computational overhead that FL training may require, the deployment of FL
training tasks on the cloud has been addressed through the PPFL API, benefiting from the
resilience and scaling features inherent in a cloud environment. As such, the PPFL API is
designed as a cloud native application, which is also able to automate the deployment of

37 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

FL training tasks in a cloud native architecture. Based on these, the source code of each FL
framework is containerized as Docker images, which are published in a Container repository,
Dockerhub [38] in our case. The Docker images are instantiated as deployments described
in K8S manifests, indicating the components and configuration for each FL framework as
Kubernetes app. Then, a training task with the selected FL framework can be deployed,
submitting it as an Argo Workflow [39] in the underlying K8S deployment. The deployment
approach adopted for the PPFFL APl is depicted in Figure 15.

Build Docker Publish to Build/ update Submit Argo
Container Container K85 manifest Workflows
of FL EEFCZICISI'TCII"}-"
fram evvork

APHriggered Argo
deployment

Deweloper acfion | Dockerhub Ceweloper acfion 2

Figure 15 - The PPFLL API deployment approach through D@c tainers, K85 and Argo Workflows

The first step towards the realization of the PPFL A%been the homogenized presentation
of the three FL frameworks. The parameterization of each of the three FL frameworks has
been analyzed, so that the definition of the @ve’rers' values can be provided by the PPFL
APl user. Such parameters may include ed ones, such as the number of clients, ML
related ones, such as the number s and epochs, or even privacy preservation
techniques related, such as DP pare X , etc.

Code updates have been appli
been containerized as Docket.i
framework containers cur
as well as operatfion on

upport operation in simulation mode for TFF and FedPATE,
es through NVIDIA FLARE. In addition, having the maximum
level of automation possible in mind, no hardcoded information or configuration has been
left within the containers. ©n the contrary, as the configuration parameters differ among the
FL frameworks, t c{e provided by the user and are properly set for each FL framework by
the PPFL API, )gs environmental variables or configuration files.

@&h’mcol design

f the PPFL APl is fo enable the Al developer to easily deploy FL fraining tasks through
FLARE, FedPATE or TFF, following a CI/CD paradigm for the integration and
ep ymen’r of FL frameworks.

In order to achieve this, the PPFL APl incorporates the following functionalities:

User interface allowing interaction of the Al developer with the PPFL API
Management/execution of the received requests

Execution of training tasks as defined in the FL request

Access confrol-based API protection

38 of 95



H2020 -957246 - 10T-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

e Integration with the model storage component of the MLaaS$ platform, in order to
store the frained global model after each FL training execution and make it available
to third parties via the MLaas.

The development view of the PPFL APl is depicted in Figure 16.
. Teain with
- sedecied FL

Access Control

FLManager

MLaas

PPFL AP
A‘J

Trgined
mzdel
|
Execuior

E: Tor . Esecu
s

. N\ :
Figure 16 lechnical design of the PPFL API

3.2.1 Descrip’ri@%(subcomponen’rs

FL API 7

The FL APl is the interaction point of external users or services to the PPFL API. It provides a set
of RESTful e oints which allow for submitting requests for deployment of FL training
activities. YA | is Authentication, Authorization and Accounting (AAA)-protected through
O]
1.

OAuUth-2.0 and OpenlD Connect (OIDC) [41] based processes for access and identity
man . Moreover, the validation of requests is within the functionalities of this
onent.

S
These'requests are forwarded to the FL Conftroller for being further managed and processed.

FL Manager

The PPFL APl is designed on the premise of supporting automated, API-driven operation,
without tight coupling with specific FL frameworks. The FL Manager acts as a link between an
FL framework and external users, separating them properly, so that users do not need to
interact with specific FL frameworks. Through this decoupling, adding or removing supported

39 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

FL frameworks is made easy, while addifional feature development in each of these
frameworks can vary from one to another with minimal impact on the external user. The FL
Manager receives the deployment requests, registers relevant information and
communicates with the relevant conftroller in order to execute the request. Moreover, this
subcomponent is responsible for managing the outcome of the execution and forwarding it
to the API for the external users’ information.

FL Controller

The FL Conftroller is responsible for instantiating FL training tasks in the relevant Fly framhework.
The Controller obtains the container images of the FL framework and deplays it within the
Kubernetes cluster. Depending on the FL framework, the controller may trgger the training
in simulation or in real mode. In the simulation mode, the Conftroller instantiatés both the FL
server and the user-specified number of FL clients, initiates the training session, receives the
status of the execution result and the storage of the final model in the MEaaS platform. In the
real mode, the Controllerinstantiates the FL server, while the FL clienis’need to be instantiated
individually within the cluster, under the clients’ responsibility.The Conftroller will instantiate
the training process and will collect any information about. thesstatus of the execution, as
well as the storage of the training model in MLaas.

3.2.2 Interfaces

The interfaces of the PPFL API through which.dhe external user, e.g., an Al developer, may
interact with the API are tabulated in Table 6. The APl is also online documented via Swagger,
which is accessible at https://ppfl-api.iot-hgin.onelab/swagger/, while examples of its usage
are provided in section 5.3.

Table 6- PPFL APl interfaces

PPFL API

Provided FedPATE Interface
Interfaces

DescriptionNd The interface enables requests for training tasks through the FedPATE FL
framework.

Endspoint http://{BASE URL}/fp/

Q3 http://{BASE URL}/fp/{FP_ID}
Protocol HTTP

used

Methods GET/POST/DELETE

Message Request Body (POST):

{

"net_name": "name",
"num_rounds": 1,
"num_teachers": 1,
"tfeacher_epochs": 1,

40 of 95



H2020 -957246 - 1oT-NGIN I T NG I N
R -
D3.4 - ML models sharing and transfer learning implementation o

"student_epochs": 1,
"batch_size": 1,
"learning_rate™: 1,
"noise": "noise",
"epsilon": 0,

"sigma”: 0,
"num_queries": 1,

"noise_data" 1, \/
"bucket_name": "name", ?\
"domain_name": "name", A
"access_key'": "key",
"secret_key": "key" O

) <2~

*values are indicative only O

TensorFlow Federated

Description | The interface enables requests for '\ng tasks through the TFF FL

framework. P

End-point http://{BASE URL}/tff/

URL http://{BASE_URLY/Hff/{tf Q/
Protocol HTTP
used \

Methods GET/POST/DELE]

Message

{
Cm parameter”: 1,

<> arameter™: 1,
N "n_clients™: 1,

/7 "n_samples'": 1,

& "target_label™: "label",
Q "minio_repo": "repo_url",
"access_key": "key",
"secret_key": "key"

}

*values are indicative only
NVIDIA FLARE - Server

Descrintion The interface enables requests for starting or shutting down the server
P and the admin client of the NVIDIA FLARE FL framework.

End-point http://{BASE_URL}/nvoverser/
URL http://{BASE_URL}/nvoverser/{nvoverser ID}

41 of 95



H2020 -957246

- loT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

<

Protocol HTTP
used
Methods GET/POST/DELETE
Message I{?eques’r Body (POST):
"start": true,
"shutdown': frue V
} 4 V‘
NVIDIA FLARE - Training
Descrintion The interface enables requests for triggering fraini Ifﬁnrough the
P NVIDIA FLARE FL framework.
End-point http://{BASE URL}/nv/
URL http://{BASE_URL}/nv/{nv_ID}
Protocol HTTP
used ?\
Methods GET/POST/DELETE P
Message I{?eques’r Body (POST): %‘ ’
"epochs": 1,
"batch_size": 1, @
"num_clients™ 1,
"num_rounds“, I,
"bucke ""name”

omgi e":"name",

" %eyn: “key i
% ss_key": "key"
)

\*volues are indicative only

Required
Interfaces

Nc&rf(ces

are required for the PPFL API.

?\
OQ‘

42 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

4 Polyglot Model Sharing

4.1 Description

The Machine Learning Models Sharing Platform offers a secure environment to manage
datasets and the machine learning models' lifecycle, offering a user-friendly interface that
abstracts end users from the complexities involved, such us, to cite a few of themi the
metadata management for enabling assets’ traceability, guaranteeing theirimmutability, as
well as ensuring the reproducibility for all frained machine learning models.

The platform offers a transparent data integrity mechanism, which™ gyarantees the
immutability and complete traceability of all artifacts stored (e.g., datasets, machine
learning models, training results); this is achieved by using a Blockchdin-based approach for
storing relevant metadata for all its assets.

The feature set that the framework offers is very useful for anyfapplieations that involve the
management of machine learning models that involve sensitive, information. Additionally,
due to the implementation of the Polyglot Model service, theflatform is especially suited for
loT applications, providing a simple solution for handlifig sensitive data, machine learning
model fraining, and offering a platform-independent runtime machine learning model
representation that enables a wider array of compatiblé hardware for inference purposes.

4.2 Technical Design

4.2.1 Architecture

The Polyglot Model Sharing framework has been designed following a microservices-based
approach, with distinct, single rurpose services, namely the Model Sharing, the Blockchain,
the Model Training and “the, Model franslation services. This decision was taken in
concordance to otherkey arcChitectural aspects, mainly offering a Cloud native solution, with
a strong focus on DevOpsi& Continuous Integration / Development and containerization.

We will now infreduce the main components of the platform (see its architecture in Figure
17) in the following\sub-sections.

43 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

«components»
£]K8S Cluster
«components» «components» «components»
=] MLaaS Storage (MinlO) =] Quorum Network 5 ] K8S API Server

+ API: K8S[1]
[}

1 1
+ API: Storage [”IWI |7K|+API: Quorum [1] L/fl
|

I

I

| I

. ! ause»

|
&
|
|
) lause» «component» ! «component» «components»
SR ] == = |Model Sharin cuse» : = |Model Trainin =] ArgoCD
g 3 g
[}‘ “““““““ +APl: Sharing[1l] [~ 7777 T + API: Training [1] s + API: Workflow [1]
; 2 ! «use»

! 1

L

T
«usen,

|
v «components : | cuse» «components» «components»
v ~777__=IModel Translatol ! T = ]Model ZKV < ]RDBMS
L TR 00 = e =
ASEEDSEE + API: Translation [1 + APL: ZKV [1] +API: DB [1]

Figure 17 - Architecture diagram of the Polyglet™odel Sharing framework
4.2.1.1 Components
4.2.1.1.1 Model Sharing service

This service provides an interface for registering (i.e., storing its metadata and artifacts) and
refrieving ML models and datasets in thevplatform.

It implements operations for registering and downloading datasets, as well as registering
models, scheduling their trainingxand’downloading the resulting trained models.

For all the assets under its goyernance, it stores relevant metadata in the blockchain, with
the help of the platforms\Bleckchain service (see next subsection).

By storing all relevant¥assets’ metadata in the platform’s blockchain instance, and
overseeing the training phase of the models in a controlled environment, we can guarantee
the replicability&f all the frained models, and ensure that the training results were achieved
exclusively with the,specified inputs. Additionally, this metadata allows for guaranteeing the
integrity of all stored assets.

The operations implemented and offered by the service are further detailed in the
implementation section.

4R 1/1.2 Blockchain service

This service provides an interface for deploying and interacting with smart contractsin a EVM
(Ethereum Virtual Machine) [42] blockchain (e.g., ConsenSys Quorum [43]).

It implements operations for creating, retrieving, and interacting with smart contracts in the
platform’s blockchain instance.

The operations implemented and offered by the service are further detailed in the
implementation section.

44 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

4.2.1.1.3 Model Training service

This service is in charge of scheduling model training jobs to be executed in the fraining
cluster. As mentioned in the platform’s introductory section, the main motivation for this
service is offering a controlled environment for the training of machine learning models, to
be able to guarantee the reproducibility and immutability of the resulting frained machine
learning models. This service trains models in a batch manner, given complete frain and test
datasets, unlike the Online Learning service infroduced in section 2.1, which trains models
with data injected dynamically. Moreover, this service is only required to guarantee the
integrity of a model stored in the MLaas storage for a given dataset.

Model training jobs are scheduled executions of containers that enclose the definition and
instructions for the training of a registered machine learning model.

Registered models must provide a training container image, stored in a container registry of
choice, which will be provided with the training dataset indicated’ upon the model’s
registration, and its resulting model will be automatically registered’inthe platform, making it
available to the end user, and the rest of the platform’s featuress

The model training jobs are executed in the platform’s MLaaS Kubernetes Cluster, with the
help of Argo Workflows [39].

The operations implemented and offered by thesService are further detailed in the
implementation section.

4.2.1.1.4 Model Translation service

This service offers the ability for the platfermto transform registered machine learning models
info the Open Neural Network Exchange (ONNX) [44] format upon training, offering a
compatibility layer for all stored models in the platform.

By providing this compatibility tayef, model developers can implement their machine
learning models in their bagkend of choice (i.e., TensorFlow, PyTorch), without compromising
on the limited hardware support provided by their backend of choice.

The operations implemented and offered by the service are further detailed in the
implementation section.

4.2.1.2 gxtornal Dependencies

The plaiform relies on several external components for the implementation of its core
features.

We will proceed to intfroduce the platform’s external dependencies in the following sub-
sections.

4.2.1.2.1 MLaasS PostgreSQL instance

The MLaasS PostgreSQL [45] instance is required in order to host the relational database that
the Model Sharing service depends on for storing additional information about the models
registered in the platform.

45 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

4.2.1.2.210T-NGIN ConsenSys Quorum instance

The IoT-NGIN ConsenSys Quorum Blockchain instance is required by the Blockchain service,
in order to store the metadata of the datasets and machine learning models registered in
the platform.

The metadata is stored in smart contracts, which are immutable programs stored in the
blockchain, which control the access and actions of their implementation, based on the
contract’s definition.

For our use case, contracts are used as means of storage of the relevant metfddatd of
datasets and models registered in the platform.

4.2.1.2.3 MLaaS Model Storage instance

The MLaaS Model Storage instance, based on MinlO, is required y) the"Model Sharing
service, as the platform of choice for object storage solution.

The choice of object storage as the platform’s artifact storagé) solution is justified by the
flexibility provided in its organizational structure, and its content-agnostic approach to
storage.

The MLaaS MiInlO instance for the project stores all-the platform’s persistent assets, i.e.,
datasets and machine learning models.

4.2.1.2.4 Argo Workflows instance

The Argo Workflows instance is required by(the"Model Training service, in order to schedule
the model training jobs.

Argo Workflows allows for the executientof sequential jobs in Kubernetes Clusters. In our use
case, each model registered on jhe platform triggers a model training job, which executes
a user-defined container image.\providing it with the associated model dataset, and
registers the resulting model-in.the platform. The registration step, in this context, involves
storing the training results in”the Model Sharing service, which, in turn, coordinates the update
of the model metadaia, in, the blockchain instance by means of interfacing with the
Blockchain service. A mefe in-depth explanation of this process can be found in the section
4.3.

44 of 95



H2020 -957246 - 1oT-NGIN

D3.4 - ML models sharing and transfer learning implementation

4.2.2 Implementation

leT-NGIN

The repository containing the implementation of the platformis hosted in the [oT-NGIN GitLab

project [46].

4.2.2.1 Project Repository Structure

We will now further detail the project’s repository structure (see Figure 18).

v @2 docs
> M diagrams
> M misc
> B¥ services
v g services
> M blockchain
> H lib
e sharing
v i kube
deployment.yaml
kustomization.yaml
secret.yaml|
service.yaml|
v ¥R app
> M lib
~ @ mainpy

Q L env
Q .env.sample
&

?s
O%

¥ poetry.lock
[T] pyproject.toml

FF requirements.txt
sharing_client.json

> W training

> M translation

& eny

€ gitignore
generate_clients.sh
openapitools.json

README.md

~

R\
O
Q

Figure 18 - Polyglot Model Sharing framework implementation repository directory structure

47 of 95


https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

- /docs: directory containing platform documentation and technical diagrams
- /services: directory containing the platform’s services implementations
o /services/{service}: directory containing the service's implementation
= _.kube/: contains the service’s Kubernetes resource definitions
= app/: contains the Python project implementation
= .env.sample: reference file for the service's required environment variables
= Dockerfile: contains the instructions for building the service's container
image
= poeiry.lock: service's Poetfry dependencies lockfile
= pyproject.toml: configuration file for the Python project’s tooling
= requirements.txt: compiled form of the Python project’s dependencies
= {service}_client.json: OpenAPI| schema for the service’s HTIR REST API
- generate_clients.sh: script for programmatically generating SDK for interacting with the
platform service's HTTP REST APIs, based off their OpenAPI specification.definitions
- openapitools.json: OpenAPI Generator configuration file
- README.md: project’s repository infroductory documentation

The platform components (services) have been implementédsfollowing a microservices-
based approach, with distinct, single purpose services.

They have been developed in Python, using the. FastApi framework. The service's
dependency management is handled using Poefry [£/].

Each service exposes a REST API, along with ifs specification and the documentation
available on the OpenAPI format; a Swagger Ul instahce is always accessible at the /docs
HTTP route. The OpenAPl schema [48] for thé REST APl is dynamically generated by FastAPI
when running the server, and can be accessed yia HTTP at /openapi.json.

In order to interact with the service, a Pythen client for each service is provided, providing a
SDK for interacting with the service's.REST API. This client is generated programmatically using
the OpenAPlTools' OpenAP| Genératol [49], using the aforementioned OpenAPI schema.

The Python clients are published inthe project's GitLab Package Registry [50].

A Dockerfile [51] is providédforeach service, in order to build a container image that runs
the service in a containérized way.

In a similar manner, the gontainer image, built from the included Dockerfile instructions, is
published in the project's reqistry [52].

The set of Kubernetes resources required for deploying the service in a Kubernetes cluster
can be found\at the .kube directory in the service's code repository.

4772 R Components

In se€tion 7 Annex, the main components of the Polyglot Model Sharing Framework are
described in terms of their exposed interfaces and their main supported processes.

48 of 95


https://fastapi.tiangolo.com/
https://python-poetry.org/
https://spec.openapis.org/oas/v3.1.0
https://github.com/OpenAPITools/openapi-generator
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages
https://docs.docker.com/engine/reference/builder/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

4.3 Implementation for IoT-NGIN LLs

User Model Sharing Blockchain Service Mhodel Training Model Translation Blockchain Instance Argo Workflows RDB Object Storage

send model metadata

deploy contract with model metadata

retum madel UUID

schedule training workflow run

training job execution

store trained model artifact

send trained model metadata

store trained model metadata in original contract

return successful metadata storage

request trained madel by UUID

turn trained model

User Model Sharing Blockchain Service Model Training Madel Translation Blockchain Instance Argo Workflows RDB. Object Storage

Figure 19 - Sequence diagram of the Polyglot Magél Sharing Framework demo use case

At the time of writing, the Polyglot ModehSharing Framework has not been used by the loT-
NGIN Living Labs’ use cases, but it is expeated some of them (e.g., Smart Agriculture and
Smart Energy LLs) will use it during the\final validation, reported by WPé. In this section, we
provide our own use case to shoewcase (Figure 19) the overall end-to-end usage of the
platform.

In the sequence diagram shown in Figure 19, we can see in further detail the interactions
between the platform’s seni€es,*as well as the platform’s external dependencies for our own
use case.

1. We register the dataset to be used in the training phase in the platform

2. We register the machine learning model in the platform, referencing the registered
dataser

3. Wait forthe model training step to complete.

4. Reffieve ([download) the model

5. Reqguest model in ONNX format (polyglot service)

Forour example use case, we document, in the following, the workflow for registering and
training an image classification model on the platform.

The implementation for this demo case can be found in the project’s GitLab repository, in
the /demo directory (Figure 20).

49 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

~ demo
v ¥ app
>
5
.env.sample
@ main.py
¥ poetry.lock

[T] pyproject.tom|
v data
mnist-original.mat
%" Dockerfile

FF requirements.bxt

Figure 20 - Demo use case's implementation direCtopy structure

The machine learning task is a multinomial image classification [53] for handwritten digits. We
will use the MNIST [54]dataset for training this model.

We implement the image classification model in Pydérch [24]. This image classification model
will be based on a CNN architecture [55] (Listing 1).

MNISTNetwork(
(features): Sequential(
(0): Conv2d(1, 16, kernel size=(3, 3), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1,
ceil mode=False)
(3): Conv2d(16, 32, kernel size=(3, 3), stride=(1, 1))
(4): ReLU()
(5): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1,
ceil mode=False)
)
(classifier): Sequential(
(0): Flatten(start dim=1, end dim=-1)
(1): Linear(in_features=800, out_features=1024, bias=True)

(2): ReLU()
(3): Linear(in_features=1024, out features=512, bias=True)
(4): ReLU()

(5): Linear(in_features=512, out_ features=10, bias=True)
(6): Softmax(dim=1)

Listing 1 - Demo use case classification machine learning model definition

50 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

For us to be able to register and train our machine learning model in the platform, we need
to provide our model definition and training process as a container image (Listing 2). This
containerimage must conform to the guidelines specified in the implementation section 7.3
of the Model Training service.

FROM python:3.8.16-slim
RUN apt-get update
WORKDIR /code

COPY requirements.txt /code/requirements.txt
RUN pip install -r requirements.txt

COPY ./app /code

CMD ["python","main.py"]

Listing 2 - Dockerfile instructions for the demo use casse's nmlodel training container image

In our use case, we are using this platform’s/Gitlkab project container registry for hosting our
training image.

Once we have all the required pre=srequisites, we will further proceed with the model
registration process.

Before registering the model in the, platform, we first must register the dataset that we want
to use for our model training job.

We will do this by executing thefollowing HTTP request:

curl --request POST \
--url http://localhost:9005/dataset \
--header 'content-type: multipart/form-data' \
--form dataset=@mnist-original.mat \
--form 'metadata={
"organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",
"samples_dimension": "(1,32,32)"

3

Upon the successful registration of the dataset, the service will respond to our request with a
unique identifier (UUID) for the dataset. We will use the received UUID for referring to our
dataset when registering our model in the platform.

51 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

"dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9"

We will now check the platform’s MinlO instance to check that the dataset artifact has
been registered in the object storage (Figure 21):

OBJECT STORE + Object Browser Q & || a
ENTERPRISE LICENSE

(B Object Browser

E datasets Rewind refresh ¢

~ Name Last Modified Size

B b2a30898-b72c-4b08-802b-7786425d019 ‘oday, 13:09

Figure 21 - Dataset artifact stored in the objed&{ siorage

As we can see, the dataset has been stored in the datasetsucket, named with the UUID
that we received upon registration.

We can additionally check that the dataset’s metadata has been successfully registered in
the platform’s blockchain instance by verifying that*e=smart contract for this dataset has
been deployed.

This is possible by executing the following request to the Blockchain service, indicating the
address of the deployed contract (whichwcan be found in the project’s internal PostgreSQL
database.

curl --request GET \
--url
http://127.0.0.1:9007/contract/0x9ab7CA8a88F8e3511f9b@eEEA5777929210199295

The service responds with the following JSSON-encoded text, which represents the metadata
stored in the smart confract.

{
"organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",
"samples dimension": "(1,32,32)",
"size bytes": 55426379,
"hash": "adbc812alf@ab4c881a4lfc872cb643e"
}

We will now register our model in the platform, referring to our dataset with the UUID received
in the previous step. We will do so by executing the following HTTP request.

52 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

curl --request POST \
--url http://localhost:9005/model/ \
--header 'content-type: multipart/form-data' \
--form 'metadata={
"model params": {
"developer id": "dd8fca81-a999-40f5-81f0-68627e303a27",
"organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",
¥
"data_params": {
"dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9"
}
A
--form train_image=registry.gitlab.com/h2020-iot-
ngin/enhancing iot_intelligence/t3_4/ml-model-sharing/demo_model image

Upon the successful registration of the model in the platform, the sefvice will respond to our
request with a unique identifier (UUID) for the model. We will usevthe received UUID for
referring to our model in the platform.

"model id": "62e8efbc-47e5-4e60-abe5-8fb8a7b676ba"

We will now wait for the model training jobo finish. We can check the status of the fraining
job by invoking the model retrieval precedure in the Model Sharing service.

curl --request GET \
--url http://localhost:9005/model/62e8efbc-47e5-4e60-abe5-8fb8a7b676ba

If the training job is still notfinished, the service will respond in this way:

"Model 62e8efbc-47e5-4e60-abe5-8fb8a7b676ba has not been trained yet. Please,
try again later."

Otherwise, we will receive the resulting artifact from the training job.

We will now, as in the case of the dataset registration, check that the trained model has
been stored in the platform’s MinlO instance (Figure 22).

53 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

OBJECT STOR’E + Object Browser Q &

_H Object Browser

~ Name Last Modified Size

Figure 22 - Trained model in MLaasS storage

As in the previous case, we can find our model stored in the models’ bucketwwith the UUID
we received when refrieving the model from the Model Sharing service.

We will also check that the model's metadata stored in the blockchaindngludes the training
results (i.e., it has been verified):

curl --request GET \
--url
http://127.0.0.1:9007/contract/0x43D1F9096674B5722D359B6402381816d5B22F28

Inspecting the response received from the serviCe, we can identify that the res_hash
parameter is present, and that it matches the' oane We can calculate in the trained model
previously retrieved.

"model params": {
"developer id": "dd8fca81-a999-40f5-81f0-68627e303a27",
"organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",
"train_image hash": "5b4d62ed98ebaaf764a63ae3leaaf8d6",
"res_hash": "f73b9eb23dcf464a1916d8e991dfaff4"

¥

"data_params": {
"dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9"

}

For thed@ststep of our demo, we willinvoke the model translation service in order to franslate
odr trained model into the ONNX format. We will do so by executing the following request.

curl --request POST \
--url http://localhost:9008/translate/62e8efbc-47e5-4e60-abe5-8fb8a7b676ba

The service will then respond to our request with the trained model in the ONNX format.

54 of 95



H2020 -957246 - 10T-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

5 Installation and User Guide

5.1 Online Learning Service

This section focuses on the updates required to create, deploy and use an OL service within
the MLaasS, w.r.t. the procedure described in D3.3. Figure 23 shows the procedure for creating
and deploying an OL service.

YAML
configuration
for Kserve
deployment

Kubeflow Execute Define Camel-k
Pipeline Kubeflow

implementation Pipeline

Docker image of
each
component

OL service

binding

adaption (optional)

Figure 23 - Workflow to deploy OL service

Alike D3.3, itis required to have a ML/DL model implemented before creating the OL service.
The model creation stage is out of the scope of OLffamework and must be provided by ML
engineers. In addition, the model also must be.registered in the Model Sharing.

The first step is the OL service adaptation. This stdge involves the provisioning of three different
components:

i.  Predictor: Configuration of different parameters that are specific for each OL service
such as the MinlO location/ the,framework used for implementing the ML/DL model,
the service name, etc.

i. Transformer: Implementation of the data pre and post processing pipeline. Each OL
service requires its @wn Trgnsformer since the input data is use-case specific.

ii.  Explainer (Optional): implementation to provide explanations to the inferences made.
This componentisfoptional and the XAl algorithm must be implemented by the ML
engineers and stored in MinlO so the Explainer can load it.

Once the components are implemented and configured, each of them needs to be
encapsulated in a'Docker image. This Docker image must be uploaded to a Docker registry
in order far Kubeflow to include it to the pipeline. An example of Dockerfile is provided in
D3.3.

At thisspoint, each OL component is containerized, and Docker images are available in
Docker registry.

Before deploying the OL service by executing a Kubeflow pipeline, Kserve YAML manifest is
defined (Listing 3). This file specifies the Docker image of each component, name of service
and configuration of environment variables.

55 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

apiVersion: serving.kserve.io/vlbetal
kind: InferenceService
metadata
name: # <Inference Service Name>
namespace: # <Namespace>
spec
predictor

containers V
name: # Conatiner name
image: # <OL_Predictor_Image>

imagePullPolicy: Always

envFrom O
configMapRef
name: # <Env_Config_Map> %
secretRef Q

name: # <Env_Secret> Q
transformer
containers ?~
image: # <OL_Transformer_Image>
name: # Conatiner name

imagePullPolicy: Always %:

envFrom
configMapRef

name: # <Env_Config_Map> @
secretRef %
name: # <Env_Secret> \
explainer

containers :
image #<0L_Exp|ainer_lr@

name: # Conatiner nam
imagePullPolicy AlwaQ

envFrom
configMapR /7
name: # &)nfig_Maw
secretRef
nam v_Secret>

Q Listing 3 - Kserve YAML manifest
On;

Kserve YAML manifest is created, the next steps are the same as described in D3.3. At
Kubeflow, a Jupyter Notebook is created and the Kubeflow pipeline is implemented. Once
the execution is finished, the OL API REST service will be deployed.

Optionally, Camel-K binding can be created to support pub/sub communications. The
binding creation is also available in D3.3.

56 of 95



H2020 -957246 - IoT-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Section 2.1.2 described OL monitoring service. This is an additional service, so its
implementation and deployment are outside of the Kubeflow Pipeline. This service needs
Grafana and Prometheus to be deployed in the cluster so its metrics can be visualized.

Both Grafana and Prometheus have been deployed using Helm [56]. Helm allows to
configurate applications by applying a configuration YAML manifest. Therefore, Prometheus
is configured so it can scrap new OL monitoring service. The configuration file can be find in
the GitLab repository [57].

Figure 24 depicts the deployment steps.

OL Monitoring Docker image OL Monitoring
adaptation g YAML manifest

Figure 24 - Workflow to deploy OL monitoring service.

The first step is the OL monitoring service adaptation. This step aims to configure some aspects
such as the data type to be monitored, the reference data and kind of metrics to be
registered. The service implementation can be founded in the Monitoring for MLaaS GitLab
reposifory [57]. Once the service is ready, it mést be containerized in a docker image and
upload to a Docker registry. The Dockerfile eane found in the GitLab repository for MLaasS
Prometheus [58]. Finally, the YAML manifesiis defined (Manifest for MLaaS Prometheus [59])
and applied so the service is deployed.

After following the steps described above, there are two API REST services i) the OL service
and i) the OL monitoring service. ©LService presents two endpoints, one corresponds to the
Transformer and the other {6 the Explainer. The Transformer is waiting to receive data in JSON
format either to update.ihe"model or to perform an inference. The Explainer is expecting
data in JSON format, however in this case it is to provide an explanation of the inference.
The way to invoke the Olservices is described in D3.3.

Regarding the QL maonitoring service, this service does not present any endpoint accessible
from outside 6f MLaaS. However, the Grafana GUI can be accessed to observe the OL
monitoring sefvice metrics. Grafana allows you to create dashboards orimport them in JSON
format. Anysef.the 2 options is valid and works. Some of the dashboards that have been
shownrin section 2.1.3.1 can be located in the GifLab project for MLaaS Grafana [60].

57 of 95


https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/deployment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

5.2 Reinforcement Learning Service

Instructions to install the RL-based Optimizer as an MLaas service and to use it will be given
in D6.3 [1]. At the time of writing, a first version of the RL-based Optimizer has been provided,
which needs preliminary evaluation (planned to be reported in D7.3 [33]), further
development and improvement, and therefore, it is not yet ready to be delivered for wide
usage within the oT-NGIN pilot.

5.3 Privacy-preserving Federated Leawiing
Framework

The following instructions refer to the installation of PPFL API.

5.3.1 Prerequisites

The prerequisite technologies to successful installation of th&*RRFLMAPI include:

Docker [51]

Kubernetes [61]

Argo Workflows [39]

Keycloak [62]

Helm [56]

Linux OS, ideally Ubuntu 20.04 LTS

5.3.2 Installation Guidg
5.3.2.1 Local deploymexQt

First, the repository for the RRFL APl must be cloned in the desired local directory.

git clone https://gitlab.com/h2020-iot-ngin/enhancing _iot_intelligence/privacy-
preserving-federated-learning/privacy-preserving-federated-learning-api.git

Next, the required packages must be installed.

pipenv install

As the PPFL API relies on Keycloak for AAA services, the environmental variables must be
defined in the host OS as follows.

Table 7 - Environmental variables’ configuration for local deployment

58 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Variable Description Example
KEYCLOAK_SERVER_URL | The URL of the Keycloak server https://keycloak.iot-
ngin.onelab.eu/
KEYCLOAK_REALM The name of the Keycloak realm iot-ngin
KEYCLOAK_CLIENT_ID The ID of the Keycloak client ppfl

KEYCLOAK_CLIENT_SECR | The client secret key used to | <set to the key.'in
ET_KEY authenticate with Keycloak secret'™>

The values for KEYCLOAK_SERVER_URL, KEYCLOAK_REALM, KEYCLOAK_CLIENT_ID,
KEYCLOAK_CLIENT_SECRET_KEY must be replaced with the approprate values for the
Keycloak instance that will be used.

Finally, in order to run the API server, the following command-should be hit.

python manage.py runserver

The APl serveris now running at hitp://localhgst:8000/.

Finally, the user may call the PPFL APlkatblp://localhost:8000/{fl framework}/, providing a
valid JWT token in the authorization ‘header, where fl_framework could be tff, fp, nv for
TensorFlow Federated, FedPATE of NVIDIA Flare, respectively.

5.3.2.2 Docker dgpDiDyment

To deploy the API using Decker, the steps provided below must be followed.
First, build the Dackerimage using the following command.

docker build -t your-image-name

Next, push'the Docker image to a registry, replacing docker-registry and image-name with
the appropriate values for your environment.

docker login
docker tag image-name docker-registry/image-name
docker push docker-registry/image-name

Copy the docker-compose.yml located under the fl-api directory to a server supporting
docker and docker-compose. Then, create a .env file under the same directory with the
configuration presented in Table 8.

59 of 95


http://localhost:8000/
http://localhost:8000/%7bfl_framework%7d/

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Table 8 - Environmental variables’ configuration for Docker deployment

Env variable name

Description

POSTGRES_HOST
POSTGRES_DB
POSTGRES_USER
POSTGRES_PASSWORD
DJANGO_SETTINGS_MODULE
SECRET_KEY

ARGO_HOST

NAMESPACE

KEYCLOAK_SERVER_URL
KEYCLOAK_REALM
KEYCLOAK_CLIENT_ID

KEYCLOAK_CLIENT_SECRET_KEY

The hostname of the PostgreSQL server
The name of the PostgreSQL database
The username for the PostgreSQL user
The password for the PostgreSQL user
The setftings module used by Django
The secret key of the PPFL APl app

The URL of the Argo Workflowssetver

The K8S namespace in which the application is
deployed.

The URL of the Keycloak server
The name ofthe Keycloak realm
The ID of the Keycloak client

The, client)secret key used fto authenticate with
Keycloak

Deploy the Docker image to a Boeker host, issuing the command.

sudo docker-compose up --build

Finally, the user may
http://localhostB000/1fl framework}/,

call the PPFL API Docker

container at
providing their token as authorization header

(acquired assexplained in section 5.3.2.1), where fl_framework could be ftff, fp, nv for
TensorFlow Federated, FedPATE or NVIDIA Flare, respectively.

5B 8 Kubernetes Deployment

For the installation of the APl in Kubernetes, the PPFL API repository must first be cloned with

the following command.

git clone https://gitlab.com/h2020-iot-ngin/enhancing iot _intelligence/privacy-
preserving-federated-learning/privacy-preserving-federated-learning-api.git

Then, the environmental variables for the PPFL-APlI Kubernetes deployment must be

configured.

60 of 95


http://localhost:8000/%7bfl_framework%7d/

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

cd ppfl-api/fl-api/Kubernetes/ppfl

The PPFL-API relies on a Postgres instance, on ArgoWorkflows and a Keycloak instance, as
e.g., the one integrated with 10T-NGIN Access Control component. Before deploying the
PPFL  API, the secrets located in kubernetes/postgres/secrets.yaml and
kubernetes/ppfl/secrets.yaml have to be configured. In addition, the environmental
variables in the PPFL APl deployment, located in kubernetes/ppfl/deployment.yaml, must be

filled in with the appropriate values, as presented in Table 9.

Table 9 - Environmental variables’ configuration for K8S deployment

Env variable name

Description

Value*

POSTGRES_HOST

POSTGRES_DB

POSTGRES_USER

POSTGRES_PASSWORD

DJANGO_SETTINGS_MO
DULE

SECRET_KEY

ARGO_HOST

NAMESPACE

KEYCLOAK_SERVER_URL

KEYCLOAK_REALM
KEYCLOAK_CLIENT_ID

KEYCLOAK_CLIENT_SECR
ET_KEY

The hostname of the PostgreSQL
server

The name of the

database

PostgreSQL

The username for the PostgreSQL
user

The password for the PastgreSQL user

The settings moduleUsed by Django

Te secret key. of the PPFL APl app

The,URL of the Argo Workflows server

The K8S namespace in which the
application is deployed.

The URL of the Keycloak server

The name of the Keycloak realm
The ID of the Keycloak client

The client secret key wused fo
authenticate with Keycloak

iot-ngin-ppfl-api-
pastgres

database

user

<set to the key 'postgres-
password' in secret 'iof-
ngin-ppfl-api-postgres'>

flapi.settings.prod
<Set the

‘SECRET_KEY’
‘iot-ppfl-api'™>

key
in secret

http://argocd-argo-
workflows-server
iot-ngin
https://keycloak.iot-
ngin.onelab.eu/
iot-ngin

ppfl

<set to the key
'KEYCLOAK_CLIENT_SEC
RET_KEY' in secret 'iot-

ppfl-api™>

*Indicative values from a test deployment used for exemplary purposes in this guide

The installation of the auxiliary components is described in the following.

61 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Argo Workflows

The PPFL-API relies on the Argo Workflows component to deploy the dockerized FL
frameworks. The installation of the component is performed via Helm, particularly using the
bithnami chart. To install, the following step must be performed.

cd ppfl-api/fl-api/Kubernetes/argoworkflows

helm repo add bitnami https://charts.bitnami.com/bitnami
helm install argocd -f values.yaml bitnami/argo-workflows
kubectl apply -f role.yaml

POSTGRES

To install the Postgres instance, the secrets.yaml file ~found~ in (ppfl-api/fl-
apj/kubernetes/postgres/secrets.yaml) needs to be configured with'the login credentials of
the Database and deployed, with the following command.

kubectl apply -f kubernetes/postgres/secrets.yaml

Also, the name of the global.postgresgl.auth.database key must be changed in the
values.yaml file of the Postgres (ppfl-api/fl-apj/kulsernetes/postgres/values.yaml) to match
the environmental variables POSTGRES_DB inthe Kubernetes deployment manifest of PPFL-
APL. Then, it can be deployed with the following command.

helm install iot-ppfl-api-postgres bitnami/postgresql -n iot-ngin --version
12.1.3 -f kubernetes/postgres/values.yaml

PPFL-AP| deployment

Finally, to deploy the PRFL:ARIfhe following command must be executed.

kubectl apply -f kubernetes/ppfl

62 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

5.3.3 User Guide

Keycloak

As the PPFL API is AAA-protected, authentication token from the deployed Keycloak
instance must be obtained and provided in the API call request, in order to be able to trigger
the PPFL APl services. To obtain an access token from Keycloak, arequest needs to be made
to the token endpoint with the use of the Keycloak credentials, for a particular user, Figure
25 shows an example call to this endpoint in the Postman REST Client [63], indicating hew to
use the Keycloak username and password to authorize the request and successfullyzebtain
a Keycloak access token.

POST http://192.168.248.7/realms/iot-ngin/protocol/openid-connect/token Send

Authorization Cookles

Type Basic Auth !) Heads up! These parameters hold sensitive data. To keep this data secure

Usemame
Password  eeessessescecescssssssssssscses

Show Password

Body Cookies Headers (10) Test Result 8  Save Response

Pretty Raw eview Visualiz JSON

Figure 25 - REST call to retrieve a user access token.

In the following, the use of the PPFL API for using each of the three FL frameworks is
demonstrated. In any case, the access token retrieved previously is necessary for authorizing
any.interaetion with the PPFL API.

FedPATE

The interaction with the PPFL API for the FedPATE framework is realized under the /fp/
endpoint. To run the FedPATE model, the relevant parameters have o be set in the request
body, as shown in Figure 26. Specifically, the required parameters can be described as
follows.

e --net_name: str, name of your model.

e -—-nuUM_rounds: int, number of rounds for FL.

63 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

e --num_teachers: int, the number of teachers/clients.

e --fteacher_epochs:int, number of epochs to train the teachers.

e --student_epochs: int, number of epochs to train the student.

e --batch_size: int, batch size (32 or 16).

e -learning_rate: float, learning rate (default=0.001).

e --noise: str, type of noise for the aggregation mechanism ('laplacian' or 'gaussian’,
default="laplacian’).

e -—epsilon: float, epsilon for laplacian distribution (if --noise="laplacian’).

e -sigma: float, standard deviation for gaussian-normal distribution (if --noise='gaussian?).

e -—-num_queries: int, number of queries to the student.

e --noise_data: int, the number of data to add Laplacian noise (must be less than
num_queries).

e --bucket_name: str, the bucket in MinlO where the best student model will be stored.

e --domain_name: str, the domain where the model will be stored.

e --access_key: str, access key for accessing MinlO.

e -secret_key: str, secret key for accessing MinlO.

hitp://192.168.1.238:31201ifp/ () Save

POST http://192.168.1.238:31201/fp/ Send w

Bodye  Pre-request S Tests  Setting Cookles

none form-data @ x-www-form-urlencoded raw binary GraphQL

KEY VALUE DESCRIPTION wo  Bulk Edit

net_name

student_spochs

s oo Q
3

s
1
2
B
1
1

batch_size

(<]

learning_rate o1
noise laplacian
epsilon 03
sigma o1
num_queries 1000

noise_data 1000

o
2
~
&
3
@
3

=

oo @dB

o

5

S <
[nd
B
g
s
&
5
E|
g
=
g
2
-l
B
@

Figeee 26 - Parameters setting in the POST request body for running the FedPATE framework.

After a successful request, a container is deployed and the training of the model starts in
FedPATE in simulation mode.

Figure 27 shows that the pod for FedPATE (Flower PATE) has been created successfully. This
view is available to the administrator of the MLaaS platform.

64 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Figure 27 - Deployed pods for FedPATE fraining

Then, the logs in Figure 28 show the execution of the fraining process in FedPATE, as well as
its completion.

Figure 28 - Training through FedPATE ran and completed

At the'end of the training, the trained model is stored in an external storage. In the context
of the I0T-NGIN project, the Minio storage integrated in MLaaS platform is utilized. Figure 29
shows that the final trained student model (i.e., best_student_model_test.pth) is available at
MLaaS' MinlO object storage, after the training procedure is finished.

65 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

CONSOLE

) & testminio

Last Modified Size Actions:

Obiject Info (4]

Name

Last Modified:

ETAG:
995417429

Figure 29 - Final model frained through FedPATE hGs een stored in MLaaS’ Minio storage

NVIDIA FLARE

Here, an indicative execution of FL training process under real nodes is demonstrated
through NVIDIA FLARE. As a first step, the NVIDIA FLARE server (federated server or
aggregator) and the observer seryices have to be started, in order for the clients later to be
able to connect to the server andsstart their training.

Server and Observer

Figure 30 shows the request to start the server and the observer of the NVIDIA FLARE
framework. The request parameters include:

e -start: BOelean; When set to true, the request asks for the server to start.
¢ -shutdown:Boolean; When set to true, the request asks for the server to shut down.

66 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

POST http://192.168.1.238:31201/nvoverser/
Body = T
none form-data raw binary GraphQL  JSON
“start®:true,
false
Body ( S#
Pretty C

: true,

v false

Figure 30 - Starting the NVIDIA FLARE serverthrough the PPFL API

The previous POST request successfully creates the observer and server pods, as shown in
Figure 31.

16:56:09 +0200

rviceaccount from kube-api-acc rpgd (ro)

from multiple

1em

18m

18m

10m

18m

10m K t ta > e : r* al g nt on machine
18m g i

1em

Figure 31 - NVIDIA FLARE server and observer pods

67 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Clients

The next step for initiating a training session is the instantiation of the clients and their
connection to the Federated server already running. As this is a real deployment, the clients
are instantiated individually, running the relevant client software. Particularly, each client
should download and pull a clients' specific docker image from Synelixis' docker registry
called "synelixis/nvflare-yolo:v7-client". Afterwards, in order for the ML model to be frained on
each client's private data, a docker volume has to be created in the above docker image
as the ML model must have access to these data. This can be done with the following
command: "docker run -t --gpus all -v /path/to/client's-private-datasnvilare-
yolo/voc_pascal_small synelixis/nvflare-yolo:v7-client /bin/bash”, where the flagt--gpus all" is
used for gpu acceleration, which also opens an interactive terminal. Finally, in order to
connect to the Federated Learning system and thus with the FL server, eackrelient'should run
the script "./clients/client-<client-index>/startup/start.sh”, where client-index identifies the
client. Figure 32 shows the described procedure for the first client out of the*8-ef our FL system.
As we can see, the client has made a docker volume in order to_give access to its private
data and then it successfully connects to the FL system by runningsthe script "./clients/client-
1/startup/start.sh”, as it is the first client to our FL system. The rémaining clients follow similar
procedure with indices "2" and "3" set for the clienf-index in the script for the second and the
third one, respectively.

ubuntu@synat: S docker run -it --gpus all -v /home/ubuntu/nvflare_api/client-6:/nvflare-yolo/voc_pascal_small synelixis/nvflare-yolo:v7-client /bin/bash
root@95e553a6128f: /nvflare-yolo# ./clients/client-1/startup/start.sh

root@95e553a6128f: /nvflare-yolo# WORKSPACE set to /nvflare-yolo/clients/client-1/startup/..

PYTHONPATH is /local/custom:

start fl because of no pid.fl

new pid 16

Waiting for SP....

2023-03-22 ©08:53:27,538 - FederatedClient - INFO - Got the new primary SP: ser:86002

2023-03-22 08:53:28,558 - FederatedClient - INFO - Successfully registered client:client-1 for project AGV_YolovS. Token:55e5d247-0016-4693-b592-f170fa4q5eff
6 SSID:961b5623-b70b-442f-a4d7-2b9eSee825¢3

Figure 32 - Running NVADIAFLARE client software for client-1

Training

After the server has beens/created and the clients have connected to it successfully, a
training process may begxiriggered through a POST request with the parameters shown in
Figure 33.

68 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

post i 1921881238 31201/

Cookles

KEY VA DESCRIPTION ses  Bulk EQIt

[ B <

(O <
g

(A<
T
5

Save Response

Figure 33 - Indicative parameter setting for siarting dvfraining process though NVIDIA FLARE

Assuming valid request parameter setting.the FL controller for NVIDIA FLARE starts the model
training.

Indicatively, Figure 34 depicts theraining process in one of the three clients.

Figure 34 - Logs of the fraining process at the client side.

After the training procedure has finished, the final model is stored in the Minio instance of the
MLaasS platform, as shown in Figure 35.

69 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

E‘BNSOLE + Bucksts Q

B testminio

@ best_model_yolo.pth

= Name Last Madified Size Actions:

Obiject Info 0

Figure 35 - Final model of NVIDIA FLARE training storeg iniMini@ model storage component of the
MLaaS platfegh

TensorFlow Federated

Last, but not least, the instantiation ofithe™FL training process (simulation mode) through
TensorFlow Federated is presented«kirst, the training parameters are provided in the POST
request for triggering the trainingfunder the /tff endpoint, as shown in Figure 36. Specifically,
the following parameters must be,seix

e -—-epochs:int, number of epochs to train.

--batch_size: int, bateh'size,(32 or 16).

--num_clients: int, the/snumber of clients.

--num_rounds: int, number of rounds for FL.

--bucket_name: sfr, the bucket in MinlO where model will be stored.
--domainsmame: str, the domain where the model will be stored.
--secret_key: str, secret key for accessing MinlO.

--acce&ssykey: str, access key for accessing MinlO.

Assunding valid parameter setting, this request will result in the relevant pod being deployed
in the,Cluster via the FL Confroller.

70 of 95



H2020 -957246 - 1oT-NGIN

D3.4 - ML models sharing and transfer learning implementation

http://192.168.1.238:31201/tf/

POST http://182.168.1.238:31201/tft/
Body »
none form-data @ x-www-form-urlencoded raw binary GraphQL
KEY VALUE DESCRIPTION
imb_parameter 1
dp_parameter 1
n_clients 20
n_samples a2
target_labe aitack_cat
minio_repo minio-cli.kf Jot-ngin.onelab.eu
access_key rootuser
= secret_key iotnginminiorootpass
Body kies Headers (10) T
Pretty  Raw Preview ze SON =

Figure 36 - Instantiating TFF frainifg through the PPFL API

leT-NGIN

[5) Save

Cookles

= Bulk Edit

1439 m B SaveResponse -

The training process gets started and compléted, as indicated in the logs of Figure 37.

Figure 37 - The fraining process through TFF has been completed

As with the other two FL frameworks, the final model gets stored in the Minio component of

the MLaasS platform, as depicted in Figure 38.

71 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

CONSOLE = Watas

i B testminio

Figure 38 - Final model trained through TFstered jn MLaaS' Minio storage

5.4 Polyglot Model Sharpjg/framework

This section describes the way to launahthe Model Sharing framework in a computational
environment. A similar procedure has been followed to install the framework in MLaas, by
using their K8 manifests.

There are two main ways of running the Model Sharing platform in a local environment:
1. Running each service's project in the host OS

2. Running each service.as a container

Each services prevides a container image, which can be run using Podman [64]1. The source
Dockerfiles inCluding the instructions of the container images for each service are located in
their respective containing directories, as previously described in the implementation
section. The' project's container image registry offers a visual interface (Figure 39) for
inspecting the hosted artifacts, which can be accessed from the project's GitLab repository
[65)

72 of 95


https://podman.io/

H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

M ml-model-sharing 202 - ] L Container Registry

[ Project information . N
Container Registry

B Repository

[ Issues

< 7Image repositories () Expiration policy is disabled.

11 Merge requests
@ clyco

@ Security and Compliance

Updated ~  IF

+** ml-model-sharing/training-svc
@ Deployments g/ a

f
3 Packages and registries

Package Registry +»= ml-model-sharing/blockchain-svc (% o ‘

Container Registry

Infrastrucure Registry +== ml-model-sharing/translation-svc

o

@ Infrastructure

&2 Monitor
+++ mi-model-sharing/sharing-svc o)

I Analytics

Ao

Figure 39 - Project's GitLab container registry interfacg

The environment variables required by each service are documented in their respective
.env.sample files (Listing 4).

DB_HOST=localhost

DB_USER=test

DB_PASS=test

DB_NAME=test

DB_PORT=5432
MINIO_ENDPOINT=127.0.0.1:9000

MINIO_ ACCESS=w88MSWdgwM51PBN1

MINIO SECRET=RBlcEFACZzzMx59J1gGapIJ7iVnkA3B5S
MINIO DATASETS BUCKET=datasets

MINIO _MODELS_RES_BUCKET=models_res
MINIO_SECURE=false
BLOCKCHAIN_ENDPOINT=http://localhost:9005
DOWNLOAD_DIR=/tmp/model-sharing/download

Listing 4 - Model Sharing service's .env.sample file

In this section, we will‘detail how to setup a local environment.

5.4.1 Bxtexnal dependencies

5. 4. M=PostgreSQL instance

Yow, can run a PostgreSQL instance locally with Podman using the following command:

podman run --name postgres-model-sharing -e POSTGRES_PASSWORD=<password> -e
POSTGRES_USER=<user> -e POSTGRES_PASSWORD=<pass> -e POSTGRES_DB=<db_name> -d -p
8080:8080 postgres

73 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

5.4.1.2 ConsenSys Quorum Instance

Please, refer to the following official guide [66] for running a Quorum instance locally, using
a local Kubernetes cluster (e.g. minikube [67]).

podman run --name postgres-model-sharing -e POSTGRES_PASSWORD=<password> -e
POSTGRES_USER=<user> -e POSTGRES_PASSWORD=<pass> -e POSTGRES_DB=<db_name> -d -p
8080:8080 postgres

5.4.1.3 MinlO Instance

You can run a MinlO instance locally with Podman using the following command:

podman run -d -p 9000:9000 -p 9001:9001 quay.io/minio/minio server /data --
console-address ":9001"

5.4.1.4 Argo Workflows Instance

Please, refer to the official guide [68] for running an Argo Workflows instance locally, using a
local Kubernetes cluster (e.g., minikube).

5.4.2 Running Services Lagdlly

As the project has been designed follewing a microservices-based approach, it is possible to
launch the platform's components,individually; however, please note that in most scenarios
the platform's features are result of the collaboration with multiple services, and integration
tests will usually require multiplésservices to be running concurrently.

5.4.2.1 Running dervices in Host OS

For each servigenit's recommended to setup a Python virtual environment in order to avoid
conflicts in thesproject's dependencies. The dependencies required by each service are
compiledindheir respective requirements.ixt, and can be installed using the pip CLI tool.

The recemmended way to setup the virtual environment and install the dependencies of the
servicestis by using Poetry. For this, execute the following command in the service's rootf
directory:

poetry install

By default, by running this command, Poetry will create a virtual environment, installing on it

all of the required dependencies. Additionally, upon completion of the command, Poetry
will activate the virtual environment.

74 of 95


https://consensys.net/quorum/products/guides/getting-started-with-consensys-quorum/
https://minikube.sigs.k8s.io/docs/

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

When running the services in the host OS (not containerized), they will look, by default, for a
.env file in their root directory. This .env file must conform to the structure defined in the
service's .env, .sample file.

You can launch any of the services using the following command:

python -m uvicorn services.<service>.app.main:app --port <port> --reload --log-
level trace

5.4.2.2 Running Services in Containers

You can run any of the services containers locally with Podman asing the following
command:

podman run -d -p <port>:<port> -env-file .env registry.gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/<service>
<service_name_podman>

Note that we are providing the service with the reguired environment variables by pointing

to a .env file; this . env file must conform to the.structute defined in the service's .env.sample
file.

5.4.2.3 Invoking the B{X>MREST APIs

Please, refer to section 4.3 (Implementation for IoT-NGIN LLs) for an in-depth, guided demo
use case in which the processiorinvoking the services' REST APIs is further detailed.

5.4.3 Deployntenton Kubernetes Clusters

In order to deplay any of the framework's services in a Kubernetes cluster, it is recommended
to use the provided Kubernetes manifests as a starting point.

Each service's“Kubernetes manifest files are stored in their containing implementation
directory indhe project's GitLab repository (Figure 40), on the .kube directory.

75 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

ml-model-sharing / services / sharing / .kube /

Name Last commit

& deployment.yaml fix: service names in env variables
& kustomization.yaml feat: updated k8s deployment files, d

& secret.yaml feat: descriptors for required secrets

& service.yaml feat: updated k8s deployment files, d

Figure 40 - Model Sharing service's Kubernetes manifesjs

Please, note that it is required to specify the correct values forsfhe environment variables
required by each service for their deployment. This environmentwariables are located in their
respective deployment.yaml Kubernetes manifest templateifiles_(Listing 5).

spec:
containers:
- image: registry.gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/sharing:latest
name: sharing-service
ports:
- containerPort: 80
resources: {}
env:
# MLAAS POSTGRESQL
- name: DB_HOST:
value: localhost
- name: DB_USER:
value: test
- name: DB_PASS:
valueFrom:
secretKeyRef:
name: sharing
key: DB_PASS
- name: DB_NAME:
value: test
- name: DB_PORT:
value: 5432

Listing 5 - Excerpt from Model Sharing service's deployment.yaml Kubernetes manifest template file

76 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Additionally, some of the environmental variables are specified using Kubernetes secrets,
following Kubernetes's security best practices [69]. It is therefore required to create these
secrets in the target Kubernetes cluster. A template for these secrets is provided for all the
required secrets (Listing 6).

apiVersion: v1
kind: Secret
metadata:
name: sharing
namespace: mlaas #Same namespace services/pods are deployed
type: Opaque
stringData:
# MLAAS POSTGRESQL
DB_PASS: test
# MLAAS MINIO
MINIO_SECRET: RB1cEFACZzzMx593gGapIJ7iVnkA3B5S

Listing 6 - Model Sharing service's secret.yam|Kuberngtes manifest template file

77 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

6 Conclusions

This document is the last one of a series that have been reporting the development of the
loT-NGIN MLOps platforms and services, including the MLaaS$ platform, the PPFL platform,
and a number of frameworks and services that have been built and delivered with MLaas,
namely the Online Learning service, and the Polyglot Model Sharing service. While the MLaaS
architecture and technical specification of its reference implementation was described in
D3.3, this document has reported the main progress beyond D3.3 on the development'ef the
final versions of the Online Learning service, the first version of the RL-based optimizdtien, the
PPFL platform and the Polyglot Model Sharing framework.

The Online Learning service has been reimplemented to take advantage, of<the further
flexibility of KServe pipeline, to foster its reusability across multiple inference scenarios for other
models. Additionally, XAl explainers have been injected, aiming to provide.insights to explain
how the trained models learn from features. A new monitoring plaformdes.been integrated,
featuring the detection of data drift and accounting for model I€arning*error over the time.
Model tfransfer techniques have been adopted to re-train models tovinfer similar knowledge,
as evaluted for energy demand forecasting in the Smart Enefgy LL. Another example of
exposing a model inference service with MLaaS for WP4/0object detection has been
described as well.

The PPFL framework has been extended with a, common entry-point APl that gives a
harmonized operational interface to the differeqt infegrated FL frameworks. Moreover, a
CI/CD Cloud based approach for FL task deployment has been followed for the API
implementation.

The model sharing framework has been“specified both functionally and technically, and
details of its micro-service implemenjation-have been given. Evaluation of the framework
has been conducted in a dedicated Use'case that has been conceived for such purpose.

The software implementations of the components presented in this deliverable are offered
as open source on the__project’'s page on the public Gitlab repository, at
hitps://qitlab.com/h2020-ief-n&in/enhancing ot inteligence/. Details about installation
and usage are also provided insthis report for convenience of interested audience.

As future work, all the €@omponents described in this report will be further adopted and
evaluated in the IoT-NGIN'LL use cases, as well as with the open call projects, during the last
evaluation peried of the project and will be reported in forthcoming Dé6.3 and D7.4
deliverables.

78 of 95


https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/

H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

/ Annex Components and Interfaces for
Polyglot Model Sharing

/.1 Model Sharing service

The main purpose of the Model Sharing service is coordinating the storage and retrieval of
all the assets in the platform (i.e., datasets and machine learning models). To achievesthis, it
will exclusively manage access to the platform’s object storage instance, and coordinates
with the Blockchain service for the deployment, verification and retrieval of Smart contracts
in the platform’s blockchain instance. Additionally, it coordinates the scheduling of model
training jobs for newly registered machine learning models by coordinafing with the Model
Training service.

/.1.1 HTTP REST APl Operations

The Model Sharing service exposes the following operations (see Table 10) through its HTTP
REST API:

Table 10 - Model Sharing service MITP REST APl operations

Method | Route Description

POST /dataset Register and store a new dataset in the
platform

POST /model Register and schedule the training of a

machine learning model

GET /model/{model_id} Retrieve a registered model upon successful
training job
GET /dataset/{dataset_id} Retrieve aregistered dataset
/model/{model_id} Stores the resulting model from the model
PUT training job, and makes it available for
retrieval

/model/{model_id}/metadata | Retfrieves the metadata stored in the

GET blockchain for a registered model

79 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

/.1.2 Dataset Registration

In Figure 41, we describe the implementation of the dataset registration operation, which
involves the storage of the dataset artifact on the platform’s object storage instance, as well
as deployment of its associated smart contract in the platform’s blockchain instance through
the Blockchain service.

The dataset contents are stored in the object storage instance, on the dataset bucket,
identified by the UUID assigned by the Model Sharing service. Notice that all the original file's
metadata, including filename and content type are not preserved upon its storageron the
object storage instance. This original metadata is stored externally, on the MLaa$ Relational
Database instance.

The additional metadata required for ensuring the immutability of the registered dataset is
stored in the blockchain instance. This metadata can be retrieved ai/dnytinne by the other
services through the Blockchain Service.

User Madel Sharing Blockchain Service Blockchain Instance RDBMS Object Storage

register dataset

store dataset artifact

A 4

send dataset metadata

deploy dataset contractgWith metadata

»
»

return contract addres
[T S, A

return contract address

store contract address,and«cOntent-type metadata

User Model Sharing Blockchain Service Blockchain Instance RDBMS Object Storage

Figure 41 - Sequence diagram of the Model Sharing service's dataset registration operation

/.1.3 Modgl Registration, Training and Retrieval

In Figure 42,éwe describe the implementation of the model registration operation, which
involves the sterage of its metadata in the Blockchain instance, and model training job
schedulingyidthe Model Training service. Upon the successful execution of the training job,
the reSulting artifacts are registered, and the model's smart contract is verified, updating its
stored metadata. From this moment, the model can be retrieved by the end users.

Upen successful training of the registered model, the resulting artifacts are stored in the
object storage instance, on the model bucket, identified by the UUID assigned by the Model
Sharing service. Notice that all the original artifact's metadata, including filename and
content type are not preserved upon its storage on the object storage instance. This original
metadata is stored externally, on the MLaaS Relational Database instance.

The additional metadata required for ensuring the reproducibility of the fraining results, as
well as the immutability of the resulting artifacts, is stored in the blockchain instance. This
metadata can be retrieved at any fime by the other services through the Blockchain Service.

80 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

User Model Sharing Blockchain Service Model Training Blockchain Instance

register new model

send model metadata

h

deploy contract with model metadata Q

return contract address v
B REELLr L PP SR EERPPTE P TP R R PP =y
return contract address
e

petition for training job
Q tion

register training results

send trained model metadata V
store trained model metadata in original contract

return successful metadata s

[y

\,

update model status to available for usage

request trained model by UUID

return trained model
N \

User Model Sharing Blockchain Service Model Training Blockchain Instance

Figure 42 - Sequence diagr f the Model Sharing service's model registration and retrieval

R

7.1.4 Model Metadata Retrieval

In Figure 43, can visualize the metadata retrieval operation implementation, in which we
retrieve th data of a registered machine learning model, which is stored in a smart
contr ployed in the project’s blockchain instance — which we access through the
Blo gs ervice.

81 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Model Sharing Blockchain Service Blockchain Instance

request contract metadata

B
Ll

validate contract type and version

request read contract by identified type and address

h

return contract instance

parse and format contract's metadata

return formatted contract metadata
Model Sharing Blockchain Service Blockchain Instance

Figure 43 - Sequence diagram of the Model Sharing service's model metadata retrieval operation

/.2 Blockchain service

The Blockchain service provides the interface-for interacting with the blockchain instance,
for all the other platform components.

This service is responsible for managing all the information registered in the blockchain
instance, in the form of smart confracts.

These smart contracts are ,de€ployed into the blockchain for all registered assets in the
platform (datasets and médels).

For each asset type, there exists a smart contract definition that contains the machine code
and rules for interactingswith the deployed contfracts. This smart contract definition is
implemented in Solidity [70], a high-level language used for smart contract definitions, which
compiles to E¥M'executable bytecode (ABI — Application Binary Interface).

/. 28&hart Contract Interfaces
The, metadata stored depends on the contract interface; in our platform, we have two
conftract interfaces:

- Dataset contract [16]
- Machine learning model contract

The dataset contract (Table 11) stores the following pieces of metadata:

82 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Table 11 - Dataset smart contract metadata specification

Unique identifier of the dataset's | 5d066d58-06de-
owner organization 47ab-a2f6-

organization_id string c8f413e21947
N\

o

Dataset sample dimension (128,1 81?3/
samples_dimension | string

/A

Stores the metadata of a resulti MOO

size_bytes int256 model fraining job 7
'@ )
MDS hash of the do’rose’r?l ts 0cc175b9c0f1bé
i a831c399e26977
hash string oo

(,

N
The dataset contract (Table 12) implemen’r@ollo ing operations:

Table 12 - Dataset smart ontract operations

Returns the UUID of the | 5d066d58-06de-47ab-
associated dataset 02f6-c8f413e21947

get_dataset_params

83 of 95



H2020 -957246

- loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

The machine learning model contract (Table 13) stores the following pieces of metadata:

leT-NGIN

Table 13 - Model smart contract metadata specification

Field Data Type | Description Example
Unique identifier of the | 5d066d58-06de-
TS . machine learning model | 47ab-a2fé-
organization_id string developer's company c8f413e21947
Unique identifier of the | 5d066d58-Q6de-
. . machine learning model | 47ab-a2fé-
developer_id string developer c8f443e21947
Unique identifier of the dataset |<6d066d58-06de-
. . specified for the model training | 4/7ab-a2fé-
dataset_id string job C8i413e21947
MD5 hash of the model's | 0cc175b9c0f1béa831
frain_image_hash | string training containepimage Cc399e269772661
MD5 hdshof the resulting | Occ175b9c0f1b6a831
res_hash string ﬁg:L?rféstbfrom the model | c399e269772661

The machine learning modeleoniract (Table 14) implements the following operations:

Method

Tagble, 4 - Model smart contract operations

Refurns

Description

get_model_params

(string memory,

string memory,
string memory)

sting  memory,

Returns all model-related metadata stored in the
contract

gét_data_params

string memory

Returns the UUID of the associated dataset

verify

Void

Stores the MDS5 hash of the resulting artfifacts from
the model training job

84 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

/.2.2 HTTP REST APl Operations

The Blockchain service exposes the following operations through its HTTP REST API (Table 15):
Table 15 - Blockchain service HTTP REST APl operations

Method Route Description
POST /contract Deploy a smart contract into the blockchain
GET /contract/{address} | Fetch a deployed contract’'s metadatd

/contract/{address}/ | Stores the metadata of a resultingtmodel training job

POST verify

Note: the REST APl exposed by this service is not intended fof the end users of the platform,
but only to be accessed directly by the rest of the senvices of the system.

We will now infroduce a more in-depth explanation, fer.the implementation of this service's
operations.

/.2.3 Dataset and ModgtContract Deployment

In these diagrams (Figure 44, Figure 45), we detail the deployment of the confract of a
dataset or model registered in thevplatform, in the context of the registration of a new
dataset or model in the platform. Note that both processes differ, especially due to the exira
step involved in the modelsegistration process (further detailed in section 4.2.2.2.2.5), the
model verification, whi€hfeguires an update of the stored metadata in its smart contract.

85 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

User Model Sharing Blockchain Service Blockchain Instance

register new dataset

-
|

send dataset metadata

deploy contract with dataset metadata

return contract address

A
: \ 4

return contract address \
e o] \\
return dataset UUID
‘ ...................................
User Model Sharing Blockchain Service Blockchain Instance
Figure 44 - Sequence diagram of a dataset's contract d nt operation
User Model Sharing Blockchain Service Blockchain Instance

register new model Q' o
send model meta /

deploy contract with model metadata

return contract address

e na e
store trained model metadata in original contract
/ return successful metadata storage
re(ﬂ/ain odel by UUID
\ined model artifact

<-- xS

> N
User Model Sharing Blockchain Service Blockchain Instance
v

Figure 45 - Sequence diagram of a model's contract deployment operation

86 of 95



H2020 -957246 - IoT-NGIN
leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

/.2.4 Contfract metadata request

In Figure 46, we detail the metadata request operation, performed for contracts deployed
in the blockchain.

Model Sharing Blockchain Service Blockchain Instance

request contract metadata

B
Ll

validate contract type and version

request read contract by identified typetand address

h

return contract ipnstance

parse and format contract's metadata

return formatted contract metadata
Model Sharing Blockchain Service Blockchain Instance

Figure 46 - Sequence diagram of the Blockchdin Serfice's confract metadata request operation

/.2.5 Model verificahow

In Figure 47, we can observe’the verification step of a model training job, in which
metadata of the resulting/artifacts from the model training job is stored in the original smart
contract of the machinelearning model.

The verification step i§ handled by the verification operation of the Blockchain Service. This
operation invekesa function in the deployed smart contract of a registered model, which
stores the MD5&digest (l.e., hash) of the resulting artifact from the model training job.

This functiondsimplemented on the smart contract's definition and ensures that the digest
of thelresulting model training artifact is only stored once (l.e., the field is immutable).

87 of 95



H2020 -957246 - IoT-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Model Sharing Blockchain Service Model Training Blockchain Instance

send model metadata

h

deploy contract with model metadata

h

return contract address

- m e e e e m e em e e m e en e
return contract address
e
petition for training job
training job execution
register training results
send trained model metadata
store trained model metadata in original contract
return successful metadata storage
4 .....................................................
Model Sharing Blockchain Service Model Training Blockchain Instance

Figure 47 - Sequence diagram of the.Blo@kchain service's model verification operation

/.3 Model TrainingSepvice

The purpose of the Model/raining service is to schedule the execution of training jobs for
new models registered inth& system. This training jobs are sequential executions of a workflow
consisting of three container images, a pre-training container that provides the training
container with the appropriate datasets, the training container provided by the users, and a
post-fraining container that registers the training results in the platform.

/.3.1 HIOR REST API Operations

The MOdel Training service exposes the following operations through its HTTP REST API (
Table,16).

Table 16 - Model Training service HTTP REST APl operations

Method ‘ Route ’ Description

POST /train/{model_id} Schedule a model training job in the platform

We will now infroduce a more in-depth explanation for the implementation of this service’s
operations.

88 of 95



H2020 -957246 - 10T-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

/.3.2 Model training request

In Figure 48, we can observe the interactions between the platform’s services, from the
moment that an end user registers a new machine learning model in the platform, up until
the model fraining process is completed successfully, and the end user can retrieve the

resulting machine learning model. \/

User Model Sharing Model Training Argo Workflows Blockchain Service

petition for training job
=
S ;

register new model

schedule training workflow run

register trained model ’
o A 1

update stored metadat ‘
request model download
return trained model
et e /

User Model Sharing Model Training Q Argo Workflows Blockchain Service

Figure 48 - Sequence diagram of the o@ning service's training request operation

89 of 95



H2020 -957246 - IoT-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

Model Sharing Argo Workflows pre-training training post-training

run container

A

request dataset

F 3

fetch dataset artifact

-
Ll

run container V
mount dataset artifact v
erform model trainin
=T :“A
fetch trained model artifact >

run container

N >
~ "
mount trained model artifact
{ A3

register trained model

v

<
4

A .
|
Model Sharing Argo Workflows pre-training training post-training
Figure 49 - Sequence diagram of the Model Training %g%cﬂning job workflow implementation

7.4 Model Translation s;@e

The main purpose of the model trans| ice is to provide ONNX representations for the
machine learning models register platform, upon their successful tfraining process.

/.4.1 HTTP REST perations

The Model Training service exposes the following operations through its HTTP REST API (Table

17). /7
&Jble 17 - Model Translation service HTTP REST APl operations

POS /tfranslate/{mo | Request intermediate representation for a registered

O del_id} machine learning model

We will now infroduce a more in-depth explanation for the implementation of this service’s
operations.

90 of 95



H2020 -957246 - 10T-NGIN
loT-NGIN

D3.4 - ML models sharing and transfer learning implementation

/.4.2 Model translation request

The model translation request operation allows to translate a registered machine learning
model info the ONNX format (upon completion of its training job). The following sequence
diagram (Figure 50) illustrates the operation's implementation.

User Model Translation Model Sharing

request model translation
2 ~ E

retrieve trained mode

perform model translation

return intermediate model representation E
- r

"

User Model Translation Model Sharing

Figure 50 - Sequence diagram of the Mo @oﬂon service's model franslation operation
A .

91 of 95



H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

8 References

[1] 10T-NGIN, Dé.3 Interoperable [oT-NGIN meta-architecture & laboratory evaluation,
H2020 - 957246 - IoT-NGIN Deliverable Report, 2023.

[2] 10T-NGIN, D7.4 1oT-NGIN Living Labs use cases assessment and replication guidelines,
H2020 - 957246 - 10T-NGIN Deliverable Report, 2023.

[3] "The 5 V's of big data".,” Watson Health Perspectives, 17 September 2016. [Online].
Available: https://www.ibm.com/watson-health/merative-divestitures

[4] K. Morris, Infrastructure as code: managing servers in the cloud., O'Reilly Media, Inc,
2016.

[5] "Argo-CD," [Online]. Available: hitps://argo-cd.readtheddcsio/en/stable/.

[6] l0T-NGIN, D3.1 - Enhancing deep learning and reinfor¢cgment learning, H2020-957246
loT-NGIN Deliverable Report, 2021.

[7] 10T-NGIN, "D3.2 - Enhancing Confidentiality preserving federated ML," H2020 - 957246 -
loT-NGIN Deliverable Report, 2021.

[8] I0T-NGIN, D3.3 Enhanced loT federated“deep learning/ reinforcement ML, H2020-
957246 10T-NGIN Deliverable Report, 2022.

[?] BDVA, "Big Data Value (BDV)_ Stategic Research and Innovation Agenda (SRIA)"
[Online]. Available: hitps://bdva.gufsites/default/files/BDVA SRIA v4 Ed1.1.pdf.

[10] IoT-NGIN, D2.3 Enhanced+-ofUnderlying Technology, final version, H2020-957246 10T-
NGIN Deliverable Repori; 2023.

[11] "Kserve," [Online]. Available: hitps://kserve.github.io/website/0.10/.

[12] "Kubeflow,"4Online]. Available: https://www.kubeflow.org/.

[13] "MinlO," TONline]. Available: hitps://min.io/.

[14] "MQTT[Online]. Available: https://matt.org/.

[15]"Apache  Camel-K," [Online].  Available: https://camel.apache.org/camel-
kA .12.x/index.html.

[16] "FastAPL" [Online]. Available: hitps://fastapi.tiangolo.com.

[17] "Prometheus,” [Online]. Available: hitps://prometheus.io/ .

[18] "Grafana," [Online]. Available: hitps://arafana.com/ .

[19] "Evidently Al" [Online]. Available: htfps://www.evidentlyai.com/.

92 of 95


https://www.ibm.com/watson-health/merative-divestiture
https://argo-cd.readthedocs.io/en/stable/
https://bdva.eu/sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf
https://kserve.github.io/website/0.10/
https://www.kubeflow.org/
https://min.io/
https://mqtt.org/
https://camel.apache.org/camel-k/1.12.x/index.html
https://camel.apache.org/camel-k/1.12.x/index.html
https://fastapi.tiangolo.com/
https://prometheus.io/
https://grafana.com/
https://www.evidentlyai.com/

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

[20] "Apache Kafka," [Online]. Available: https://kafka.apache.org/.

[21] "Paho-MQTT," [Online]. Available: hitps://pypi.org/project/paho-magtt/ .

[22] "Online Learning GitLab Repository," [Online]. Available: hitps://gitlab.com/h2020-iot-
ngin/enhancing iot inteligence/t3 2/online learning/-/tree/maineref type=heads.

[23] "Captum," [Online]. Available: hitps://captum.ai/ .

[24] "PyTorch," [Online]. Available: https://pytorch.org/.

[25] A. G. P. &. K. A. Shrikumar, "Learning important features through propagating-activation
differences," International conference on machine learning, pp. 3146-3153.

[26] D. P. Kingma and J. Lei Ba, "ADAM: A method for stochastic optimization," 2014.

[27] B. W. &. S. C. H. Yap, "Comparisons of various types ofhormality tests," Journal of
Statistical Computation and Simulation, vol. 81, no. 12, pp."2141-2155, 2011.

[28] I0T-NGIN, "D4.3 - Enhancing loT Tactile & Contextual Sensing/Actuating,”" H2020 - 957246
- loT-NGIN Deliverable Report, 2022.

[29] "Tensorforce," [Online]. Available: hitps://qitluicEm/tensorforce/tensorforce.

[30] "Tensorflow," [Online]. Available: hitps:/fwway.tensorflow.org/ .

[31] "RL-Based Optimization GitLab Repository," [Online]. Available:
https://gitlab.com/h2020-iot-ngif&nhancing iot inteligence/t3 2/rl-optimization.

[32] "Pandapower,” [Online]. Available: hitp://www.pandapower.org/ .

[33] IoT-NGIN, D7.3 IoT-NGIN Living Labs use cases intermediate results, H2020 - 957246 - |oT-
NGIN Deliverable Report, 2023.

[34] "NVIDIA FLARE," [Online]. Available: https://developer.nvidia.com/flare.

[35] "TensorFlow'federated: Machine Learning on Decentralized Data," [Online]. Available:
https://mww.T8nsorflow.org/federated.

[36] "Flower,[©nline]. Available: https://flower.dev.

[3Z}-N.“Papernot, M. Abadi, U. Erlingsson, I. Goodfellow and K. Talwar, "Semi-supervised
knowledge transfer for deep learning from private training data," in ICLR, 2017.

[38] Docker Inc., "Docker hub," [Online]. Available: https://hub.docker.com/. [Accessed
2023].

[39] Argo, "Argo Workflows," GitHub, [Online]. Available: htfps://argopro].github.io/argo-
workflows/. [Accessed 2023].

[40] IETF OAuth Working Group, "OAuth 2.0," [Online]. Available: hitps://oauth.net/2/.

93 of 95


https://kafka.apache.org/
https://pypi.org/project/paho-mqtt/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
https://captum.ai/
https://pytorch.org/
https://github.com/tensorforce/tensorforce
https://www.tensorflow.org/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/rl-optimization
http://www.pandapower.org/
https://developer.nvidia.com/flare
https://www.tensorflow.org/federated
https://flower.dev/
https://hub.docker.com/
https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

[41] "OpenID Connect," [Online]. Available: hitps://openid.nef/connect/.

[42] "Ethereum Virtual Machine," [Online]. Available:
https://ethereum.org/en/developers/docs/evm/.

[43] "ConsenSys Quorum," [Online]. Available: hitps://consensys.net/quorum/gbs/.

[44] "Open Neural Network Exchange," [Online]. Available: https://onnx.ai/. \/

[45] "PostgreSQL," [Online]. Available: hitps://www.postgresgl.org/. ?\
[46] "Model Sharing GitLab project,” [Online]. Available: hTTDs://qi’rlogp\oAdQOQO—io’r—

ngin/enhancing iot inteligence/t3 4/ml-model-sharing.

[47] "Poetry," [Online]. Available: hitps://python-poetry.org. %

[48] "OpenAPI Schema," [Online]. Available: https://spec.opendnis. ra/oas/v3.1.0.

[49] "OpenAPITools' OpenAPI Generator," nline]. Available:
https://github.com/OpenAPITools/openapi-generator.

ngin/enhancing iot inteligence/t3 4/mi-m ~siaring/-/packages.

[50] "GitLab  Package Registry," [Online]. %v ilable: https://qgitlab.com/h2020-iot-

[51] Docker, "Dockerfile vilder," [Online]. Available:
https://docs.docker.com/engine/referencef/builder/.

[52] "Model Sharing Gitlab containerregistry,” [Online]. Available: hitps://gitlab.com/h2020-
iot-ngin/enhancing iot intelligBre 4/ml-model-sharing/container_registry.

[53] M. Aly, "Survey on mul’ri@ ification methods," Neural Netw, vol. 19, no. 1-9, p. 2,

2005. g/
[54] C.I.N.C.C. G. L. V% ¥J. B. Yann LeCun, "THE MNIST DATABASE of handwritten digits,"
Microsoft Research, fOnline]. Available: http://vann.lecun.com/exdb/mnist/.

7/
[55] K. &. N. /%:Ssheo, "An introduction to convolutional neural networks," arXiv preprint
arXiv:15 845, 2015.

[56] HELM, Im - The package manager for Kubernetes," [Online]. Available:
/Mhelm.sh. [Accessed 2022].
[@ome’rheus manifests for loT-NGIN MLaasS," [Online]. Available:
tps://qitlab.com/h2020-iot-ngin/enhancing iot_intelligence/t3 2/online learning/-
/free/main/monitoring/prometheus.

[58] "Dockerfile for MLaaS Prometheus," [Online]. Available: hitps://gitlab.com/h2020-iot-
ngin/enhancing iot inteligence/t3 2/online _learning/-
/blob/main/monitoring/Dockerfile.

94 of 95


https://argoproj.github.io/argo-workflows/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://onnx.ai/
https://www.postgresql.org/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing
https://python-poetry.org/
https://spec.openapis.org/oas/v3.1.0
https://github.com/OpenAPITools/openapi-generator.
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages
https://docs.docker.com/engine/reference/builder/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry
http://yann.lecun.com/exdb/mnist/
https://helm.sh/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/Dockerfile

H2020 -957246 - 1oT-NGIN

leT-NGIN

D3.4 - ML models sharing and transfer learning implementation

[59] "Kubernetes manifest for MLaaS$ Prometheus," [Online]. Available:
https://aitlab.com/h2020-iot-ngin/enhancing iot_intelligence/t3 2/online_learning/-
/tree/main/monitoring/deployment.

[60] "GitLab project for MLaaS Grafana," [Online]. Available: hitps://gitlab.com/h2020-iot-
ngin/enhancing iot inteligence/t3 2/online learning/-
/tree/main/monitoring/grafana/dashboards.

[61] Kubernetes, "Kubernetes," [Online]. Available: https://kubernetes.io/. Y&
[62] Keycloak, "https://www.keycloak.org," [Online]. Available: hTTQS:((WWW,Qgslo k.org.
[63] Postman, Inc., "Postman REST Client" [Onlir@ Available:

https://www.postman.com/product/rest-client/. [Accessed 2021@

[64] "Podman," [Online]. Available: hitps://podman.io.

[65] "Model Sharing GitLab Repository," [Online]. Avoiloble:Qos://qiﬂob.com/hQOQO—io’r—
ngin/enhancing iot_intelligence/t3 4/ml-model-sharin oYainer reqistry/.

[66] "Consensys Quorum official ide," [Online]. Available:
https://consensys.net/gquorum/products/quidgs e’r’rj’mq-s’ror’red-wi’rh-consensvs—

quorum/.
[67] "Minikube," [Online]. Available: h’r’ros://mbe.siqs.k8s.io/docs/.

[68] "ArgoCD Workflow user guide," el. Available: https://argoproj.github.io/argo-
workflows/workflow-concepts/. \

[69] "Kubernetes security Qes’r practices," [Online]. Available:
https://kubernetes.io/d /administer-cluster/securing-a-cluster/.

[70] "Solidity," [Online]. ble: hitps://docs.soliditylang.org/.

[71] IoT-NGIN, "D9.1 - Project Handbook," H2020-957246 10T-NGIN Deliverable Report, 2020.
A .

95 of 95


https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/deployment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/deployment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards
https://kubernetes.io/
https://www.keycloak.org/
https://www.postman.com/product/rest-client/
https://podman.io/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry/
https://consensys.net/quorum/products/guides/getting-started-with-consensys-quorum/
https://consensys.net/quorum/products/guides/getting-started-with-consensys-quorum/
https://minikube.sigs.k8s.io/docs/
https://argoproj.github.io/argo-workflows/workflow-concepts/
https://argoproj.github.io/argo-workflows/workflow-concepts/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://docs.soliditylang.org/

	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended Audience
	1.2 Relations to other activities
	1.3 Document overview

	2 IoT-NGIN Machine Learning
	2.1 Online Learning
	2.1.1 Description
	2.1.2 Technical design
	2.1.3 Implementation for IoT-NGIN LLs
	2.1.3.1 Smart Energy
	2.1.3.2 Smart Agriculture


	2.2 Reinforcement Learning
	2.2.1 Description
	2.2.2 Technical design
	2.2.3 Implementation for IoT-NGIN LLs


	3 IoT-NGIN Privacy Preserving Federated Learning
	3.1 Description
	3.2 Technical design
	3.2.1 Description of subcomponents
	3.2.2 Interfaces


	4 Polyglot Model Sharing
	4.1 Description
	4.2 Technical Design
	4.2.1 Architecture
	4.2.1.1 Components
	4.2.1.1.1 Model Sharing service
	4.2.1.1.2 Blockchain service
	4.2.1.1.3 Model Training service
	4.2.1.1.4 Model Translation service

	4.2.1.2 External Dependencies
	4.2.1.2.1 MLaaS PostgreSQL instance
	4.2.1.2.2 IoT-NGIN ConsenSys Quorum instance
	4.2.1.2.3 MLaaS Model Storage instance
	4.2.1.2.4 Argo Workflows instance


	4.2.2 Implementation
	4.2.2.1 Project Repository Structure
	4.2.2.2 Components


	4.3 Implementation for IoT-NGIN LLs

	5 Installation and User Guide
	5.1 Online Learning Service
	5.2 Reinforcement Learning Service
	5.3 Privacy-preserving Federated Learning Framework
	5.3.1 Prerequisites
	5.3.2 Installation Guide
	5.3.2.1 Local deployment
	5.3.2.2 Docker deployment
	5.3.2.3 Kubernetes Deployment

	5.3.3 User Guide

	5.4 Polyglot Model Sharing Framework
	5.4.1 External dependencies
	5.4.1.1 PostgreSQL instance
	5.4.1.2 ConsenSys Quorum Instance
	5.4.1.3 MinIO Instance
	5.4.1.4 Argo Workflows Instance

	5.4.2  Running Services Locally
	5.4.2.1 Running Services in Host OS
	5.4.2.2 Running Services in Containers
	5.4.2.3 Invoking the HTTP REST APIs

	5.4.3 Deployment on Kubernetes Clusters


	6 Conclusions
	7 Annex Components and Interfaces for Polyglot Model Sharing
	7.1 Model Sharing service
	7.1.1 HTTP REST API Operations
	7.1.2 Dataset Registration
	7.1.3 Model Registration, Training and Retrieval
	7.1.4 Model Metadata Retrieval

	7.2 Blockchain service
	7.2.1 Smart Contract Interfaces
	7.2.2 HTTP REST API Operations
	7.2.3 Dataset and Model Contract Deployment
	7.2.4 Contract metadata request
	7.2.5 Model verification

	7.3 Model Training service
	7.3.1 HTTP REST API Operations
	7.3.2 Model training request

	7.4 Model Translation service
	7.4.1 HTTP REST API Operations
	7.4.2 Model translation request


	8 References

