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Executive Summary 
 

Endowing IoT-based applications and devices with intelligence capabilities to take informed 

decisions based on the device environment is of paramount importance in nowadays 

application scenarios. IoT-NGIN offers a set of frameworks and services aimed for enhancing 
the intelligence of these IoT applications and devices, namely: I) The Machine Learning as a 
Service (MLaaS), as the the main IoT-NGIN MLOps platform for IoT, and II) the Privacy 

Preserving Federated Learning (PPFL) platform, specialized for federated Learning, and iii) 
complementary services and frameworks, including the online learning service and the 

model sharing framework, that are delivered with the MLaaS.  

This document describes the progress over D3.3, towards the fulfilment of these IoT-NGIN 

goals to endow IoT applications with intelligence. Specifically, the main outcomes towards 
this goal reported in this deliverable include: 

• Extended and new features for online learning, including: i)  a new internal pipeline 

implementation based on KServe that provides greater flexibility of reuse in multiple 

inference scenarios, ii) the support for eXplainable AI (XAI) to explain how models 
learn from features, iii) a learn monitoring system for detecting data drift. ML 

applications developed for the IoT-NGIN Living Lab (LL) use cases are also reported. 

• A Reinforcement Learning (RL) based implementation for system optimization, 

deployed within MLaaS, and tailored to optimize electric grids for the Smart Energy LL. 

• A common entry point API that harmonizes the access of third parties to the PPFL 

platform, common for all the FL frameworks supported. 

• A Model Sharing framework implementation, that enables an integrity-guarantee 

batch training of ML models, and their registrawithin the MLaaS model storage for 
futher sharing and reused, as well as their conversion into ONNX intermeditate model 

for inference in any environment compatible witn ONNX runtime. 

These MLOps platforms, frameworks and services are released as open source in the IoT-NGIN 

project’s public GitLab repository https://gitlab.com/h2020-iot-ngin, contributing to the IoT 

community. 

Planned future work includes extending the application of these MLOps plaforms and 

services in additional IoT-NGIN LL use cases, which will be reported in D6.3 [1] and D7.4 [2]. 

 

 

https://gitlab.com/h2020-iot-ngin
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1 Introduction 
 

Internet of Things (IoT) facilitates the extraction of information from systems, through devices 

and sensors connected to them. Companies owning those systems can infer knowledge 

about their behavior and performance, with the aim of improving them in diverse aspects. 
As an example, metrics gathered from sensors can be immediately used to trigger an alert 
on a detected malfunctioning situation. However, the overpopulation of devices and sensors 

is generating an increasing volume of information that companies need to face, a challenge 
identified by the Big Data 5 V’s [3]. As a result, a simple system service could not be capable 

anymore of coping with the data intricateness. Therefore, new solutions are required to face 
this complexity and effectively and purposely infer valuable information from it. With the 

development of new AI information extraction and ML-based inference techniques and 
algorithms and the advent of increasing computation power, notably based on Graphics 
Processing Units (GPUs) and Tensor Processing Units (TPUs), it is now achievable to extract 

value from huge volumes of data and even predict the future behavior of systems. These 
breakthroughs will enable systems’ stakeholders to better comprehend their company 

activities and improve future planning, leading to increase business value. 

Primary users of these ML-based techniques are data scientists and ML engineers, who 

require an ML platform that can provide all the necessary services to process data, train, 
share and deploy ML models. Implementing and maintaining such an ML platform is a 
complex, time-consuming and costly endeavor, requiring expertise most of companies lack 

of. Therefore, a leading industry trend is addressing the provisioning of this kind of ML 
platforms, by offering all the services required to build and execute ready-to-use ML models. 

In addition, these ML platforms support the development of custom-tailored ML systems for 
some specific use cases. Such ML platforms are commonly referred to as Machine Learning 

as a Service (MLaaS).  

Companies leverage MLaaS to reduce the time and cost of integrating their ML modelling 

and delivery procedures into their development and Continuous Integration/Continuous 

Delivery (CI/CD) environments. By using MLaaS, data scientists can procure and preprocess 
the data and train the model, by focusing on their core competency, that is, in the ML 

development, rather than on the burden of taking care of the underlying procedures and 
infrastructure, which are provided and managed by the MLaaS. 

The IoT-NGIN project has envisaged a holistic view for a complete MLaaS platform supporting 

ML development and delivery in the domain of IoT, addressing the functional and non-
functional requirements expressed in the project, and its high-level architecture. This task has 

been realized by seeking open-source projects, by selecting suitable components for 
specific purposes, and by determining the procedures to integrate them together in order to 

constitute a comprehensive framework. Besides, IoT-NGIN has adopted GitOps technologies, 
such as Infrastructure as Code (IaC) [4]and ArgoCD [5] to automate the platform building 
and delivery. 

The design and implementation of the IoT-NGIN MLaaS platform was described in a series of 

previous reports, namely D3.1 [6], D3.2 [7], D3.3 [8]. In those reports, a number of additional 

services and frameworks, extending the MLaaS platform with additional ML capabilities, were 

also reported (both functional and technically), including the online learning service, the 

reinforcement learning (RL) - based optimization service, and the privacy-preserving 

federated learning framework. Another service framework, the polyglot model sharing 
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service framework was also reported in the specification (D3.1) but its implementation was 

not described in detail until this document. 

The present document is a technical report, entitled “ML models sharing and Transfer learning 

implementation”, the fourth and last deliverable of the WP3 series (D3.4) and reports the 

results of the activities of Task 3.2 “Deep learning/reinforcement learning techniques to 
enhance training processes”, Task 3.3 “Confidentiality-preserving federated ML models” and 

T3.4 “Machine Learning Model Sharing”.  The results of the activities of Task 3.1 “Big Data and 
ML framework architecture” are not reported in this document as it ended by the time D3.3 
was released, where its results were reported in detail. 

Moreover, the activities reported in D3.4 align with the objectives of WP3: 

• Define, design and develop a big data management and privacy preserving 

federated ML layer, based on Big Data Value (BDV) Strategic Research and 

Innovation Agenda (SRIA)4.0 [9], to train and share ML models. 

• Implement innovative deep learning techniques to enhance training processes with 

inline adaptive self-learning that will improve the resulting machine learning models 
automatically.  

This document complements D3.3 with updates and new features implemented for the 

online learning service, the reinforcement learning (RL) - based optimization service, and the 

privacy-preserving federated learning framework. For these services, it focuses on describing 
these last updates and new features, and references D3.3 for other functional and technical 

aspects already reported, avoiding duplicating D3.3 content, unless needed for the sake of 
better understanding. 

1.1 Intended Audience 

The intended audience includes data scientists and ML engineers which may find this report 
inspiring for their research and development efforts as well as ML service providers who aim 

to adopt the IoT-NGIN MLOps paradigm and the enhancements towards reinforcement, 
online and federated learning and integrity-guarantee model sharing. The document 
provides technical specifications, as well as practical guidance allowing interested 

audience to test and adopt the IoT-NGIN developments. The document describes the design 
and implementation of the online learning and reinforcement learning techniques, the 

privacy-preserving federated learning API and the polyglot model sharing framework. 

Moreover, the document might be of interest to business users who wish to adopt different 

technical approaches for machine learning, privacy-preserving federated learning and 

sharing into their processes. The document provides insights for exploiting the IoT-NGIN tools 
in the context of the Living Lab (LL) use cases, which could be indicative for other use cases 

as well.  

Finally, this report is useful internally, for the project partners which develop ML related 

solutions, perform integration and validation activities, as well as for the Living Labs. Useful 
feedback could be also received from the Advisory Board, including both technical and 
impact creation comments. 
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1.2 Relations to other activities 

The activities of WP3 are strongly linked to other IoT-NGIN activities, as indicated its work 
package structure rendered in Figure 1. 

 

Figure 1 - Work packages structure 

 

 

 

Table 1 describes the relation between WP3 tasks and the other IoT-NGIN activities. 

 

Table 1 - Relation of WP3 activities with other WPs and tasks 

WP Relation to WP3 and D3.3 

WP1 The definition of the Living Labs’ use cases (UCs) inspires D3.4 for defining 

the design and implementation of the online and reinforcement 
learning services, the polyglot model sharing framework, and the 

federated learning framework, and for providing tailored 
implementations in the context of these use cases.  

WP2 Models trained with the online learning service have been integrated 

into the Secure Edge Cloud framework for IoT micro-services for secure 

execution of ML models (see D2.3 [10]). 

WP4 The object detection models of the IoT Device Discovery module have 

been served within the MLaaS platform as instances of the online 

learning service. 

WP5 WP5 develops cybersecurity tools for securing FL operation. These tools 

can work together with the FL modules of WP3 to ensure protection 



H2020 -957246    -   IoT-NGIN  

 
D3.4 – ML models sharing and transfer learning implementation 

 

17 of 95 

 

against data and model poisoning attacks. Moreover, the WP5 tools are 
based on ML functions, which may be trained and served via the MLaaS 
platform. 

WP6 WP3 components have been integrated with the rest of project’s 

technologies and frameworks in WP6, while the MLaaS platform and 

tools can be useful in the development of application logic for the use 
cases or the Open Calls. 

WP7 WP3 components have been implemented and used in several living 

labs and use cases. 

WP3 supports 3rd parties by offering ML models via MLaaS model training 

and sharing. 

WP8 WP3 provides notable outcomes and results for supporting impact 

creation activities. Moreover, it considers feedback (e.g., from the 
market analysis and business modelling tasks) which could be relevant 
for updating or enhancing the WP3 design and development. 
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1.3 Document overview 

The rema of the document is organized as follows. 

Section 2 introduces the updates and new features implemented during this reporting period 

for the IoT-NGIN online and reinforcement learning services, including their functional 
specification, technical design and implementation, as well as the specific implementation 

for the LL use cases where these techniques have been adopted. 

Section 3 introduces the updates and new features implemented for the Privacy-Preserving 

Federated Learning framework, focusing on the common access API for deploying FL tasks 

across the PPFL framework. 

Section 4 describes the functional specification, technical design and implementation of the 

Polyglot Model Sharing framework, and its in-lab validation with an example use case. 

Section 5 provides installation and user guidance, of above services and frameworks, which 

are published as open source. 

Section 6 draws conclusions and summarizes next steps for future work. 

Annex in Section 7 describes the main components of the Polyglot Model Sharing Framework, 

their REST APIs and the main processes they implement. 

 



H2020 -957246    -   IoT-NGIN  

 
D3.4 – ML models sharing and transfer learning implementation 

 

19 of 95 

 

2 IoT-NGIN Machine Learning 

2.1 Online Learning 

This section describes the updated and the new features implemented for the Online 

Learning (OL) Service, as part of the MLaaS platform, introduced in D3.3. For the sake of 

facilitating the reader understand these features and their implementation, this section may 

borrow some content from D3.3 when needed, but in most of situations, it will refer to it, to 

avoid extending the document unnecessarily. 

2.1.1 Description 

D3.3 described the first version of the Online Learning serv. The first version focused on 

providing a service capable of dynamically training ML models for IoT applications and also 
performing inferences on demand. 

Dynamic training, also known as Online Learning, concerns the training of ML models when 

new data is available. Thus, the model is trained continuously. This paradigm acquires great 
importance in the context of IoT due to the large number of sensors or devices that can be 

present on common scenarios, and the large amount of information captured by them 
dynamically.  

In addition, the OL service supports both API REST requests and streaming data since most IoT 

devices generate communication flows in real time. 

The OL service version reported in this document maintains these features and offers an 

improved implementation that offers i) greater flexibility and ii) new features. 

Greater flexibility is achieved with the incorporation of a pre/post processing module that 

mediates between the service clients and the model. This modification allows to deploy the 
pre/post processor and the OL service as two separate microservices, thus letting them to 

scale independently. 

Regarding the new features, a module has been implemented for XAI (eXplainable Artificial 

Intelligence), that attempts to explain the predictions made to answer the question: Why has 
the model made this prediction? XAI is a set of methods and processes that help to 
comprehend and trust the prediction driven by the ML model. Moreover, it helps to 

characterize the model performance by providing the impact of the input data for a given 
prediction, adding transparency to the prediction and capacity for model bias detection. 

This module is optional, that is, the OL service does not come with an explainer deployed by 
default since it is a use case dependent module. 

Finally, a complementary service to OL, called OL monitoring, has been implemented. This 

service monitors, in real time, the performance of the model and the input data sent to the 
OL service, both for training and inference, so that it can detect a degradation on the model 

performance and if data drift phenomenon has occurred. 

Data drift is defined as the variation between the data in the training phase and in the 

deployment phase. This phenomenon can be caused by different factors, the most common 
are that the training data did not include the entire population of the data or the distribution 
of the data varies over time. 
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2.1.2 Technical design 

The overall architecture design of the OL framework is shown in Figure 2. The internal 

architecture of the OL service in Figure 3. 

The OL service is deployed into MLaaS using Kserve [11] through Kubeflow. [12]. Kserve allows 

to deploy 3 types of components: Predictor, Transformer and Explainer. Each of these 
components expose a REST API as a HTTP service1.  

The Predictor2 is the ML model hosting service. It is responsible of performing dynamic training 

and providing inferences on demand. This component is designed to be reusable across 
specialize OL services for different use cases. It loads the model from MLaaS Model Storage 

(MinIO [13]) to make a prediction or updates it back when the model has been improved 
after training. A new strategy has been implemented so the model is only updated and 

stored back to MinIO when the training losses have been lowered.  

The Transformer is a service, located between the client and the Predictor, that is responsible 

for preparing the data, received in JSON format, so that the Predictor can train the model or 

make a prediction. In addition, the Transformer also performs the post-processing of the 
prediction returned by the Predictor. In this way, the inference obtained is processed so that 

the client gets the prediction in a more appropriate format. Thus, the Transformer that 
processes the input data is use-case specific. That is, each OL service will encompass a 
different Transformer. 

As the Transformer is the module that receives the input data, it must also support receiving 

data coming from MQTT [14] and Kafka services.  To cover this requirement, Camel-K [15] is 

used (as explained in D3.3). 

The Explainer service aims to provide justification to the predictions. This service is only 

accessible through HTTP and extracts the most significant features of the input data. In this 
way, it is possible to understand which part of the input data has had more influence in the 
final prediction and also the way by which the model has obtained the prediction. This 

service is also use-case specific since the XAI the algorithm depends on the input data type 
and the framework used to implement the ML model. 

The monitoring service consists of a HTTP endpoint deployed using FastAPI framework [16], a 

Prometheus engine [17] and a Grafana web tool [18]. This service monitors the input data 

and the model performance in real time by using the Evidently [19] package. To do this, the 
Predictor sends the input data and the inferences made to this service, and then, by using 
Evidently, statistical hypothesis tests to detect data drift are carried out, and evaluation 

metrics of the model in production are computed. 

To detect data drift, Evidently requires a reference dataset. This dataset is collected by the 

model developer following use-case specific methods. For instance, it could be the dataset 
the ML model developer uses to perform some tests during initial model development to 

validate the model architecture.  

The results obtained by Evidently are collected in Prometheus, mediated by an exporter that 

Evidently registers in Prometheus, which scrapes the data from the Evidently monitoring 

service. In Grafana a data source pointing to Prometheus is configured. Thus, Grafana can 

 
1 The REST API exposed by the Predictor is hidden so only the Transformer gets access 
2 Despite its name, the Predictor is used to either i) train the model online, ii) process an inference, 

through different APIs 
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access these results for visualization, in dashboards, where users can analyze the 
performance graphs. The dashboard provides different evaluation metrics: mean error3, 
mean absolute error 4and mean absolute percentage error5. It also shows the history of these 

metrics as a time series. Lastly, it provides the bias of the predictions both in the training and 
in the production phase. This bias indicates whether the model tends to overestimate or 

underestimate the value with its predictions.  

 

Figure 2 - Overall architecture of the OL service 

 

New OL modules have been implemented or updated from D3.3, using Python since it offers 

a large ecosystem of specialized libraries for AI. These modules are listed below: 

• Create Kserve Service (Predictor). It is responsible for deploying the REST API service 

within the OL service. It creates an HTTP endpoint that exposes the OL API for model 
update or prediction. The main library used in this module is Kserve. 

• Transformer. It receives a raw dataset and performs the data pre-processing stage. 

Therefore, it contains all the functions needed to prepare the data for the ML model. 
It also performs the post-processing stage, so the prediction is processed to be 

provided in more convenient format for the requester. The implementation of this 
module is use-case specific.  

• Explainer. It receives the preprocessed input data and returns the significance of 

each feature in the prediction. It is powered by Kserve and must be implemented by 

the ML model developer. 

• Online Learning Module. This API links the Predictor to the backend module. It is 

responsible for choosing the correct backend and transmitting the model update or 
the prediction requests. It also implements the model saving strategy. 
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• Streaming connector. This module provides tools to support real-time protocols. This 

module is not being used in current deployment because Kserve only supports HTTP 

connections, but it is implemented in case future versions of Kserve supports streaming 
data. The main libraries that have been used for its implementation and its testing are 

Kafka [20] and Paho-MQTT [21]. 

• MinIO Connector. Provides the required tools to download and upload the ML 

models. This version stores the trained ML model in MinIO storage in case the model 
performance gain overpass a given threshold during the training. This module is based 

on the MinIO library.  

• Backend. Modules responsible for including required functions to perform ML model 

updates or predictions for each ML framework. Current version supports the following 

frameworks: Sklearn, Vowpal Wabbit, TensorFlow and Pytorch. 

• OL Monitoring. It receives input data and model predictions to compute different 

model performance metrics and to carry out statistical hypothesis tests to detect 

data drift using Evidently. These results are scraped by the Prometheus agent 

periodically, to be displayed in the Grafana dashboards. 

 

Figure 3 - Technical architecture of the OL service 

As described in previous deliverable (D3.3), additional steps are required for deploying the 

recent releases of the OL services. The whole process is described in section 5.1. The main 
steps are:  

1- OL Service Adaptation: it is the initial step to configure the OL service. Three different 

modules are set and implemented: 
a. Predictor: it sets different parameters such as the MinIO host and the buckets 

where the ML models are stored, the backend (framework which was used to 
implement the model) to use in order to perform the model update or the 
prediction. 

b. Transformer: it Implements the use-case specific pre/post processing methods 
for the input data. 
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c. Explainer (Optional): it implements the XAI algorithm to provide explanations 
about the inferences made. 

2- Create the OL Docker images: once all Kserve components are configured, they are 

enclosed in Docker images, and registered in the registry from where Kubeflow 
retrieves them to build the deployment pipeline. There is a docker image per module. 

3- Define the Kserve YAML manifest: This manifest defines the configuration of the OL 

service during its deployment. It defines the name of the inference service, the 
number of replicas, the CPU limits and the Docker images to use, among other 

configurations.  
4- Create the Kubeflow pipeline: This step creates a Kubeflow pipeline that instantiates 

the Kserve YAML manifest when executed.  
5- Run the Kubeflow pipeline: This step deploys the OL service as an HTTP inference 

service. 

6- Define the Camel-k binding: Camel-K binding consists of a YAML file that defines the 

broker and topics where data is being dumped and the prediction service to where 
the data is transferred to. 

7- OL monitoring adaptation: This step configures the type of data to be monitored and 

the type of task (regression or classification) to be performed by the OL service. 

8- Create the OL monitoring Docker image: Once the OL monitoring is configured, it must 

be encapsulated in a Docker image and uploaded into the Docker registry. 
9- Create the monitoring YAML manifest: it configures some aspects of the monitoring 

service, before deploying, such as service name. 

 

The source code of the implementation of the Online Learning service is available at the IoT-

NGIN GitLab repository [22]. 

 

2.1.3 Implementation for IoT-NGIN LLs 

This section describes the application of the Online Learning services for the training and 
inference in some of the IoT-NGIN LL use cases, as a way to evaluate these services. The 

following describes a joint work between WP3 and WP6, included in this document for the 
sake of completeness. Incoming results of the application of these services to the LL use cases 
will be also reported in D6.3 [1]. 

2.1.3.1 Smart Energy 

D3.3 described the Smart Energy scenario and the procedure to deploy two power 
generation forecasting services for UC9 and UC10. These services have been improved with 

the inclusion of the explainer and also with the adoption of the monitoring service. 
Implemented services for UC9 and UC10 are shown at  

Table 2. 

Table 2 - Smart Energy LL MQTT topics for forecasting services 

Service Description 
MQTT Meter/Topic 

UC9 UC10 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
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Power 

Consumption 
Forecasting  

Use power data over the time to 

predict the consumption in next 24-36 
hours. 
 

Smart Meter/ 

BBB60XX 

Power Quality 

Analyzer/ 

W4 

Power 

Generation 

Forecasting 

Use power data over the time to 

predict the generation in next 24-36 

hours. 

PMU/ 

3640f24ba43a

423188979372
bae6277a 

Power Quality 

Analyzer/ 

W6 

 

To include the explainer component in both services, a XAI method that provides the 

explanations to the predictions is required. To implement this method, the Captum library [23] 
is used. It is an open-source Python library specialized in XAI for models implemented with 

Pytorch [24]. 

Captum allows to use different XAI methods to compute the importance of each input 

feature in the model prediction. Different methods have been tested, being DeepLIFT (Deep 
Learning Important FeaTures) [25] the one that provided the best explanations. This method 

belongs to the XAI backpropagation-based approach. These approach highlights the input 
features that are easily predictable from the output. 

DeepLIFT attempts to decompose the output prediction of a neural network on a specific 

input by backpropagating the contribution of each neuron to each input feature. It 
compares the activation of the neurons with its reference activation (a default or neutral 

input) and assigns contribution scores according to the difference. DeepLIFT has the 
capacity of detecting both positive and negative contributions, so the explanations 
distinguish features with positive impact on the prediction from those with a negative impact. 

To verify that DeepLIFT provides acceptable explanations, a small evaluation has been 

performed for both Smart Energy forecasting services. An input vector with 36 past power 

measurements (the forecasting model requires an input dataset with 36 features, see D3.3) 
is used with the DeepLIFT method to derive which features have the highest impact on the 

prediction. The impact of each feature is represented in Figure 4 and Figure 5 for UC9 and 
UC10, respectively. Features with a positive contribution are render in green, features with no 
major impact in yellow and the ones with negative contribution in red. The conclusion that 

can be extracted from DeepLIFT is that the features with highest impact are the last ones in 
the input tensor (represented in the x-axis in figures), that is, the most recent ones, as 

expected. 
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Figure 4 - DeepLIFT results for power generation forecasting in UC9 

 

 

Figure 5 - DeepLIFT results for power generation forecasting in UC10 

Once DeepLIFT explanations have been verified, the forecasting services can be updated 
to include the explainer component. To do so, some steps described in the previous section 

are followed. In particular, the creation of the docker image for the explainer and the 
addition of the explainer section in the manifest YAML. Then, the Kubeflow should be defined 

and executed.  

The procedure to deploy the monitoring service for the UC9 power generation forecasting 

service is detailed below.  

1. The first step is to configure the monitoring service:  the type of data to be monitored 

and the type of ML task (Classification or Regression) being performed. In addition, a 

reference dataset must be added as a baseline to compare the new data coming in 
with. Once this service and the reference dataset have been configured, its Docker 

image is created and uploaded into the Docker registry. Afterwards, the YAML 
manifest is applied, configuring the name of the service.  
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2. Next, the OL service is configured, in particular the predictor component, to enable 
monitoring. A boolean environment configuration flag enables/disables monitoring, 
and another one defines the endpoint of the monitoring REST API. 

Grafana dashboards are shown in Figure 6 and Figure 7. Figure 6 shows the performance 

monitoring of the model. As explained in section 2.1.2, this monitoring provides ME, MAE and 

MAPE evaluation metrics at the present time and over time. It also provides information about 
the bias of the model's predictions. In this way, it is possible to know if the model tends to 
overestimate or underestimate. Figure 7 shows the monitoring of the data drift. This 

dashboard provides information about the data drift in different ways. The Dataset Drift panel 
shows whether or not the data drift has been detected over time. The share of drifted 

features panel shows the percentage of features that suffer of data drift. Since this 
implementation only has a single variable (the generated power), when data drift is 

detected, 100% of the dataset presents data drift.  

 

Figure 6 - Model performance monitoring 
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Figure 7 - Data drift monitoring 

 

The last service that has been implemented for the Smart Energy LL UC10 is the forecasting 

of the consumed power. The scenario remains the same as described in D3.3. The electrical 
network is publishing messages with the consumed power in an MQTT broker, and the OL 

service has to infer what the power consumption will be like 24 hours later by using the 
previous 36 power samples. The pre-processing performed in the same way. 

The implementation of the DL model leverages transfer learning technique. Transfer learning 

is an ML technique that retrains a model, originally designed and trained for a specific 

purpose, to be reused for another inference objective. The rationale behind this technique is 
to take advantage of the "knowledge" acquired by the model in the first learning objective 
to learn more quickly on the second one. From the implementation point of view, Transfer 

Learning consists of freezing the input layers of the model that has already been trained. That 
is, the weights of these layers are not adjusted in the training phase with the dataset for the 

second learning purpose. 

Figure 8 shows the architecture of the model. The description of this architecture is described 

in section 3.1.3 of D3.3 [8]. The layer to be frozen is the first Gated Recurrent Unit (GRU) layer. 
Therefore, the weights of the rest of the layers will be retrained. 
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Figure 8 - DL architecture 

Before deploying the OL service with this architecture, a little experimentation has been 

conducted to verify that the technique is promising. For this, a dataset of consumed power 
has been collected for approximately 15 days and a small pre-analysis of this dataset has 
been carried out. Alike the UC10 power generation forecasting service, this dataset presents 

a 24-hour seasonality. Table 3 shows the chosen hyperparameters for training the predictive 
model. 

Table 3 - Transfer Learning hyper-parameters 

Hyper-parameter Value 

Epochs 50 

Learning rate 0.001 

Optimizer Adam [26] 

Loss function Mean Squared Error 

Batch size 128 

 

Training results are shown hereafter in the same way as in D3.3. Figure 9 shows the actual 

power data (orange line), inferences performed by the ML model (blue points) and the 

forecasting intervals with a 90% of confidence (blue area). Forecasting intervals can be 
computed since the errors between the actual data and the model predictions present a 

distribution that can be considered as Gaussian. Normality hypothesis tests have been 
carried out to assume that errors come from a gaussian distribution. The tests are Shapiro-
Wilk, Anderson-Darling and D’Agostino-Pearson [27]. The null hypothesis supports that the 

data probably comes from a normal distribution while the alternative hypothesis defends 
that the data present a different distribution. The statistical tests return a probability known 

as p-value. If this result presents a value lower than the defined significance level (0,05 in this 
case), the null hypothesis must be rejected, so the data distribution cannot be assumed as 
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normal. Therefore, it is correct to assume that errors come from gaussian distribution, as shown 
at Table 4.  

Table 4 - Normality test results (p-values) 

Normality Test 
Power consumption 

forecasting model 

Shapiro-Wilk 0.56 

Anderson-Darling 0.61 

Agostino-Pearson 0.15 

 

The model can learn seasonality in data. The MSE obtained using the validation subset is 

0.012. 

 

Figure 9 - Training results for power consumption forecasting of UC10 

 

The model is stored in MinIO so that the corresponding OL service can load it and perform 

updates and inferences.  

The deployment procedure for the OL service corresponding to this energy demand 

forecasting UC is the same as described in section 2.1.2.  

 

2.1.3.2 Smart Agriculture 

The Smart Agriculture LL offers different UCs that require ML modeling for different purposes, 

as described in D3.1. In the previous section, we have addressed some Smart Energy LL UCs 
that require dynamic training for ML models due to the nature of the source training datasets. 



H2020 -957246    -   IoT-NGIN  

 
D3.4 – ML models sharing and transfer learning implementation 

 

30 of 95 

 

On the contrary, other LL UCs require different approaches for ML training and inference in 
MLaaS. 

This section describes the deployment process of a service that hosts an AI-based object 

detection model, capable of detecting Synelixis’ SynField IoT devices in images taken by 
mobile phones. This model is the first step towards indexing of the SynField devices on the 

overall network and eventually the Smart Agriculture LL, as explained in D4.3 [28]. 

The service is deployed using the Kserve library, by adopting the same procedure described 

in section 2.1.2. This library only exposes a REST API endpoint that attends requests enclosing 

input data in JSON format, but it does not support images in its payload. As the object 
detection service requires images as input data, it is necessary to encode the images in 

base64 before they are sent to the service. Moreover, the model needs to be registered in 
the MLaaS Model Storage (MinIO). The object detection service retrieves the model from 

MinIO and then processes inferences on demand. The service receives a base64 encoded 
image. At the pre-processing stage, the Transformer component prepares the data for the 
model. The preprocessing consists of decoding the image and converting it into a 3-

dimensional tensor. This component makes use of the Base64 CV2 and Numpy libraries. Figure 
10 depicts the process. 

 

 

Figure 10 - Preprocessing stage object detection model  

Once the 3D tensor is ready, the Transformer component sends it to the Predictor 
component. As explained above, this component loads the model from MinIO, receives the 

tensor as input, and processes the prediction. It sends the prediction to the Transformer, 
which postprocesses it to include the detected object frame into the original image, base64-
encodes it, and sends it back in JSON format. 

The procedure described in section 2.1.2 has been applied to deploy the service in the 

MLaaS platform, including the creation of a Docker image that encapsulates the Transformer 

and its registration into the Docker registry, the creation of the YAML manifests for configuring 
the Transformer and Predictor components, and finally the definition and execution of the 

Kubeflow pipeline. 

 

2.2 Reinforcement Learning 

This section describes the functional specification, technical design and implementation and 

its application to the IoT-NGIN LL UCs of a Reinforcement Learning (RL) based optimization 

engine. The conceptual description of this RL-based optimizer for the Smart Energy LL UCs 

was introduced in D3.3. RL-based optimization engines are very use-case specific, although 

different standard RL-optimization techniques reported in the scientific literature can be 

applied. The following subsections provide an updated description of the RL-based 

Base64 encoded image Decoded image 3-D Tensor
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implementation for the UC9 Electric Grid optimization. A detailed evaluation of the 

performance of this optimizer will be reported in the deliverable D6.3 [1]. 

2.2.1 Description 

Reinforcement learning is an ML paradigm that consists of an agent that learns how to 

optimize a given system behavior from its interaction with the system environment. In each 
interaction with the environment, the agent takes an action, based on its own state in order 

to maximize a reward. This paradigm was described in D3.3. The following describes the RL-
based optimization model design and technical implementation, which is use-case specific, 

for the UC9 Grid Energy Optimization use case described in D3.3. The technical design and 
implementation of this optimization model is based on standard RL algorithms and 
implementation, and therefore reusable for application to other cases, such as the UC10 

described in D3.3. Therefore, section 2.2.2 provides a reusable technical design and 
implementation, and section 2.2.3 provides the details to concretize the implementation to 

the UC9 optimizer, by providing details on the action set, state set and rewards. 

2.2.2 Technical design 

In D3.3, the high-level architecture of the RL-based optimization service was presented. 
Figure 11 shows the description of the architecture at a high level. 

Alike OL, the RL service is deployed in MLaaS with Kserve, following the same procedure 

described in section 2.1.2. An interaction with the environment, through publish/subscribe 

protocols, may be required, so the possibility of creating a camel-k binding is conceived to 
support this functionality. 

The RL module is responsible for training the AI model with RL algorithms. For this purpose, the 

Tensorforce framework [29] has been selected. This open-source deep reinforcement 
learning library, implemented on Tensorflow [30], has been selected since it adopts a set of 

high-level design choices such as the modular component-based design, the separation 
between RL algorithm and application that make it suitable for our technical requirements. 

Tensorforce requires to define two objects, namely i) the agent and ii) the environment. The 

agent is the entity responsible for taking an action when the environment is in a certain state, 
aiming to maximize the reward. The environment is the entity that returns the reward and 

new state after applying the action. Then, the agent learns the actions that provide the 
highest reward.  

Tensorforce offers model free algorithms, which do not learn a model of the transition 

functions of the environment to make predictions of future states and rewards, from both 
families: Q-Learning and Policy Optimization. Q-Learning algorithms aim to learn optimal 

policy based on state-action value pair while Policy Optimization ones learn the optimal 
policy by optimizing the policy distribution.  

Within the Q-learning group, Tensorforce provides the Deep Q-Network (DQN), Double DQN, 

and Dueling DQN algorithms. While from the Policy Optimization group, it offers the Policy 

Gradient, Proximal Policy Optimization and Actor-Critic algorithms. 

 



H2020 -957246    -   IoT-NGIN  

 
D3.4 – ML models sharing and transfer learning implementation 

 

32 of 95 

 

 

Figure 11 - RL service high level scheme 

 

The environment the agent interacts with can be a real one or simulated. In any case, the 

Tensorforce entity transmits the action taken by the agent to the environment and waits for 

it to return a new state and reward. This process is shown in Figure 12. 

 

Figure 12 - Sequence diagram of interaction between Tensorforce and environment 
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2.2.3 Implementation for IoT-NGIN LLs 

In D3.3, the need to implement RL-based optimization model was presented to cover the use 

cases UC9 and UC10, namely “Move from Reacting to Acting in Smart Grid Monitoring” and 
“Control, and Driver-friendly dispatchable EV charging”, respectively, with the purpose of 

optimizing and controlling the electrical network. 

This section describes an implementation of a RL-based optimization for the UC9, based on 

the Tensorflow framework.  

 

Environment 

As we cannot get access to the real UC9 electric grid (EG) to interact with, a EG simulator 

has been implemented by the EG owners, using the pandapower framework [32]. This 
framework uses the Flow PYPOWER power solver to create a calculation network program 

with the aim of automating and optimizing power systems. As a result, the simulator describes 
the same environment state as the real EG network when connected with the same sources 

of power generation and consumption. 

The operation of the simulator is as follows: once the electrical network is specified in 

pandapower, the simulator reads the power loads demanded by all the consumer groups 
connected to the network and the power generated along a day. The data has a resolution 
of 15 minutes, so there are 96 values of domestic and industrial consumers’ demand and 

generated power. 

Then, the simulator introduces the data into the corresponding loads on the electric grid and 

performs a simulation. The simulation results consist of the different parameters of the grid 
state. those that are used as a reward are referenced in the following reward section. 

 

States 

The optimizer acts on the customers’ energy demand, that is, it modulates the distribution of 

energy demand throughout the day, so it is necessary to know what the energy demand 
state is they are in or equivalently, which is the distribution of current energy demand. 

Two types of customers can be distinguished: domestic and industrial. There are 13 loads 

(client groups) of each. To try to better understand what the data looks like, a pre-analysis of 
dataset collected over a year has been carried out. 

Figure 13 shows the average distribution of each domestic load for one day. It can be seen 

that all distributions are very similar. In addition, the load "Load_D_486" presents a much 

higher energy demand than the rest and accounts for 38.5% of the total energy demand. 
Also considering the loads "Load_D_491" and "Load_D_493", there is around 70% of the power 

demanded. 
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Figure 13 - Energy demand for Domestic clusters 

As for industrial loads shown in Figure 14, something similar occurs. All the groups present a 

very similar distribution, and the total energy demand is practically concentrated in 4 loads: 
Load_I_486, Load_I_491, Load_I_487 and Load_I_749. The energy demand of these loads 
accounts for 77% of the total. 

 

Figure 14 - Energy demand for Industrial clusters 

Therefore, this first version tries to simplify the problem by acting only on these 7 loads. In this 

way, the state set is much smaller, speeding up development thus. 

Actions 
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The RL-based optimizer seeks to optimize the energy demand of the electrical network. To 

do this, the distribution of energy demand of each load is modified, which, is turned into a 
shift in energy demand throughout the day. 

This version of the optimizer uses four sets of discrete actions. The first set is the load selection. 

As explained above, seven loads over which to act are considered. Therefore, the action set 

encompasses 7 possible actions. 

The second action set of actions determines the start time of the energy displacement. 

Therefore, this action set includes 24 different actions. 

The third action set determines the percentage of energy that is shifted at different times. 3 

different energy shifts have been established 1%, 5% and 10%. For example, if from 8:00 a.m. 

to 9:00 a.m. there is an energy demand of 10W and you want to make a 10% shift to the time 
slot between 9:00 a.m. and 10:00 a.m., this second time slot will increase your power demand 

by 1W, and the energy demand from 8:00 a.m. to 9:00 a.m. will decrease it by the same 
amount. 

The energy demand shift presents a number of restrictions. The first one is that the total energy 

demanded by a load must remain constant throughout the day. The second one is that the 
shift can only occur within 2 contiguous time slots, the displacement cannot be applied to 

any arbitrary distant time slots. 

These restrictions are considered in the model implementation phase. 

 

Rewards 

The objective of the system is to optimize the operation of the electrical grid. This version tries 

to maximize two grid performance parameters: SSR (self-sufficiency ratio) and SCR (self-
consumption ratio). SSR can be defined as the relation between the energy produced by 

the network and the energy consumed by the network. SCR is defined as the ratio between 
the power consumed by the network and the power produced. 

The employee reward function is mean of both ratios: 𝑅 =
1

2
(𝑆𝐶𝑅 + 𝑆𝑆𝑅). 

Experiments 

Results obtained from initial experiments with this first version of the RL-based optimizer for the 

Electric Grid optimization UC9 will be reported in D7.3 [33]. Following experiments will be 
conducted over more advanced releases of the optimizer in the context of WP6, and their 

results will be reported in D6.3 and D7.4. 

 

The source code of this first implementation of the Electric Grid optimizer is available at the 

IoT-NGIN GitLab repository [31]. 

 

 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/rl-optimization
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3 IoT-NGIN Privacy Preserving Federated 
Learning 

 

The parallel evolution of both edge computing and Federated Learning has brought 

valuable opportunities in the deeper penetration of intelligence into modern services and 
applications through the exploitation of available computational and energy resources at 

different levels of the devices’ hierarchy.  

Edge computing brings computation closer to the edge, i.e., basically closer to the end user. 

This implies significant benefits e.g., related to reduced latency and increased energy 
efficiency, since considerable communication cost is saved, as data and workloads remain 

local, rather than being transmitted to a remote cloud server. Moreover, data are kept at 
the data owner’s/controller’s side, rather than being transferred to (untrusty) cloud third 
parties.  

The edge computing paradigm is manifested for Machine Learning through Federated 

Learning (FL), which allows distributed ML model training among a set of collaborating 

(federated) edge nodes. In FL, data remain local, as local are the ML model training 
computations on that data, happening at edge devices. Then, local models are 

communicated to a central aggregation server, which combines the individual model 
updates received from individual edge nodes. A number of FL frameworks in literature 
support setting up and running training tasks in a federated way, which have diverse 

capabilities in real or simulated setups, number of nodes, ML techniques supported, etc. A 
comprehensive and comparative analysis of the state-of-the-art FL frameworks has been 

provided in D3.1 [6]. 

Yet, the “traditional” FL approach relies on the existence of trusted entities, both for the 

aggregation server and the FL participants, as well as on trusted communications among 
them. However, in realistic scenarios, this assumption is often optimistic. 

To address the lack of trust in FL systems, privacy preservation techniques have been 

suggested in literature, which span the local updates’ masking (e.g., through Differential 
Privacy - DP, Multi-party-computation), and identity protection (e.g., through homomorphic 

encryption, other cryptographic techniques, etc.). Such techniques have been analyzed in 
D3.1. 

However, the practical application of those approaches and their efficiency/cost in the ML 

model development of different domains is not common ground across FL frameworks, ML 
algorithms and application domains. In IoT-NGIN, we have extensively investigated the 

application of privacy preservation mechanisms for three state-of-the-art FL frameworks, 
namely NVIDIA FLARE [34], Tensorflow Federated (TFF) [35] and FedPATE, an adaptation of 

Flower [36] to the Private Aggregation of Teacher Ensembles (PATE) approach [37], as 
tabulated in Table 5. This work is reported in D3.3. 
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Table 5 - Details of the ML and FL frameworks analyzed in D3.3 

FL framework ML algorithm ML 

framework 

Privacy preservation 

technique  

NVIDIA FLARE Single-Stage Object 

Detector (Yolov5) 
Pytorch DP, HE 

FedPATE Convolutional Neural 

Networks (CNNs) for image 

classification (Image 
Classifier) 

PyTorch DP 

TFF Multi-Layer Perceptron-

Classifier 
Tensorflow DP 

Based on this work, analyzing the efficiency and impact of privacy preservation in FL training 

of indicative ML models through the selected three FL frameworks, the next logical step of 
IoT-NGIN contributions has been towards the facilitation of the execution of FL training tasks 

with the preferred FL framework. To this end, we introduce the Privacy-Preserving Federated 

Learning API (PPFL API), as a single-entry point for instantiating FL training tasks. 

 

3.1 Description 

Motivation 

Usually, the execution of FL training requires significant effort related to the manual 

configuration for both the setup of the selected FL framework, the porting of ML models into 
the framework and the instantiation of the training activities. This also assumes familiarity with 

the internal operation of each FL framework, which might not always be the case.  The great 
amount of manual work burdens the automation of the training tasks, required for 

accelerating operations in both real and simulation scenarios. To this end, IoT-NGIN 
introduces the PPFL API, as an indicative entry point for initiating FL training tasks through the 

analyzed frameworks and for the indicative ML models investigated, which represent 
indicative ML applications. 

 

Approach 

The introduction of a common entry point for the instantiation of FL training tasks would 

facilitate the work of the AI developer. Indeed, the PPFL API is implemented to hide the 
complexity and specificities of each FL framework and privacy preservation technique from 
the (API) user and to facilitate the automation of the FL training processes through simple API 

calls. Moreover, the integration with the MLaaS platform for model storage enables the use 
of the model through model sharing or model serving functionalities of the MLaaS platform 

via the relevant endpoints.  

Considering the computational overhead that FL training may require, the deployment of FL 

training tasks on the cloud has been addressed through the PPFL API, benefiting from the 
resilience and scaling features inherent in a cloud environment. As such, the PPFL API is 
designed as a cloud native application, which is also able to automate the deployment of 
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FL training tasks in a cloud native architecture. Based on these, the source code of each FL 
framework is containerized as Docker images, which are published in a Container repository, 
Dockerhub [38] in our case. The Docker images are instantiated as deployments described 

in K8S manifests, indicating the components and configuration for each FL framework as 
Kubernetes app. Then, a training task with the selected FL framework can be deployed, 

submitting it as an Argo Workflow [39] in the underlying K8S deployment. The deployment 
approach adopted for the PPFFL API is depicted in Figure 15. 

 

Figure 15 - The PPFLL API deployment approach through Docker containers, K8S and Argo Workflows 

 

The first step towards the realization of the PPFL API has been the homogenized presentation 

of the three FL frameworks. The parameterization of each of the three FL frameworks has 
been analyzed, so that the definition of the parameters’ values can be provided by the PPFL 

API user. Such parameters may include FL related ones, such as the number of clients, ML 
related ones, such as the number of rounds and epochs, or even privacy preservation 

techniques related, such as DP parameter, etc. 

Code updates have been applied to allow containerization and all three frameworks have 

been containerized as Docker images and described as K8S manifests. Specifically, the FL 
framework containers currently support operation in simulation mode for TFF and FedPATE, 
as well as operation on real nodes through NVIDIA FLARE. In addition, having the maximum 

level of automation possible in mind, no hardcoded information or configuration has been 
left within the containers. On the contrary, as the configuration parameters differ among the 

FL frameworks, they are provided by the user and are properly set for each FL framework by 
the PPFL API, e.g., as environmental variables or configuration files.  

3.2 Technical design 

The aim of the PPFL API is to enable the AI developer to easily deploy FL training tasks through 
NVIDIA FLARE, FedPATE or TFF, following a CI/CD paradigm for the integration and 

deployment of FL frameworks.  

In order to achieve this, the PPFL API incorporates the following functionalities: 

• User interface allowing interaction of the AI developer with the PPFL API 

• Management/execution of the received requests 

• Execution of training tasks as defined in the FL request 

• Access control-based API protection 
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• Integration with the model storage component of the MLaaS platform, in order to 

store the trained global model after each FL training execution and make it available 

to third parties via the MLaaS. 

The development view of the PPFL API is depicted in Figure 16. 

 

Figure 16 - The technical design of the PPFL API 

 

3.2.1 Description of subcomponents 

FL API 

The FL API is the interaction point of external users or services to the PPFL API. It provides a set 

of RESTful endpoints which allow for submitting requests for deployment of FL training 

activities. The API is Authentication, Authorization and Accounting (AAA)-protected through 
OAuth 2.0 [40] and OpenID Connect (OIDC) [41] based processes for access and identity 

management. Moreover, the validation of requests is within the functionalities of this 
subcomponent. 

These requests are forwarded to the FL Controller for being further managed and processed. 

 

FL Manager 

The PPFL API is designed on the premise of supporting automated, API-driven operation, 

without tight coupling with specific FL frameworks. The FL Manager acts as a link between an 

FL framework and external users, separating them properly, so that users do not need to 
interact with specific FL frameworks. Through this decoupling, adding or removing supported 
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FL frameworks is made easy, while additional feature development in each of these 
frameworks can vary from one to another with minimal impact on the external user.  The FL 
Manager receives the deployment requests, registers relevant information and 

communicates with the relevant controller in order to execute the request. Moreover, this 
subcomponent is responsible for managing the outcome of the execution and forwarding it 

to the API for the external users’ information. 

 

FL Controller 

The FL Controller is responsible for instantiating FL training tasks in the relevant FL framework. 

The Controller obtains the container images of the FL framework and deploys it within the 

Kubernetes cluster. Depending on the FL framework, the controller may trigger the training 
in simulation or in real mode. In the simulation mode, the Controller instantiates both the FL 

server and the user-specified number of FL clients, initiates the training session, receives the 
status of the execution result and the storage of the final model in the MLaaS platform. In the 
real mode, the Controller instantiates the FL server, while the FL clients need to be instantiated 

individually within the cluster, under the clients’ responsibility. The Controller will instantiate 
the training process and will collect any information about the status of the execution, as 

well as the storage of the training model in MLaaS. 

3.2.2 Interfaces 

The interfaces of the PPFL API through which the external user, e.g., an AI developer, may 
interact with the API are tabulated in Table 6. The API is also online documented via Swagger, 

which is accessible at https://ppfl-api.iot-ngin.onelab/swagger/, while examples of its usage 
are provided in section 5.3. 

Table 6 - PPFL API interfaces 

PPFL API 

Provided 

Interfaces 

  

FedPATE Interface 

Description The interface enables requests for training tasks through the FedPATE FL 

framework.  

End-point 

URL 
http://{BASE_URL}/fp/ 

http://{BASE_URL}/fp/{FP_ID} 

Protocol 

used 

HTTP 

Methods GET/POST/DELETE 

 

Message 
Request Body (POST): 

{ 

  "net_name": "name", 

  "num_rounds": 1, 

  "num_teachers": 1, 

  "teacher_epochs": 1, 
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  "student_epochs": 1, 

  "batch_size": 1, 

  "learning_rate": 1, 

  "noise": "noise", 

  "epsilon": 0, 

  "sigma": 0, 

  "num_queries": 1, 

  "noise_data": 1, 

  "bucket_name": "name", 

  "domain_name": "name", 

  "access_key": "key", 

  "secret_key": "key" 

} 

*values are indicative only 

 TensorFlow Federated 

 Description  The interface enables requests for training tasks through the TFF FL 

framework. 

 End-point 

URL 

http://{BASE_URL}/tff/ 

http://{BASE_URL}/tff/{tff_ID} 

 Protocol 

used 

 HTTP 

 Methods GET/POST/DELETE 

 Message 
Request Body (POST): 

{ 

  "imb_parameter": 1, 

  "dp_parameter": 1, 

  "n_clients": 1, 

  "n_samples": 1, 

  "target_label": "label", 

  "minio_repo": "repo_url", 

  "access_key": "key", 

  "secret_key": "key" 

} 

*values are indicative only 

NVIDIA FLARE - Server 

 Description  
The interface enables requests for starting or shutting down the server 

and the admin client of the NVIDIA FLARE FL framework. 

 End-point 

URL 
http://{BASE_URL}/nvoverser/ 

http://{BASE_URL}/nvoverser/{nvoverser_ID} 
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 Protocol 

used 

HTTP 

 Methods 
GET/POST/DELETE 

 Message 
Request Body (POST): 

{ 

  "start": true, 

  "shutdown": true 

} 

NVIDIA FLARE - Training 

 Description  
The interface enables requests for triggering training tasks through the 

NVIDIA FLARE FL framework. 

 End-point 

URL 

http://{BASE_URL}/nv/ 

http://{BASE_URL}/nv/{nv_ID} 

 Protocol 

used 

HTTP 

 Methods 
GET/POST/DELETE 

 Message 
Request Body (POST): 

{ 

  "epochs": 1, 

  "batch_size": 1, 

  "num_clients": 1, 

  "num_rounds": 1, 

  "bucket_name": "name", 

  "domain_name": "name", 

  "secret_key": "key", 

  "access_key": "key" 

} 

*values are indicative only 

Required 

Interfaces 

No interfaces are required for the PPFL API. 
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4 Polyglot Model Sharing 

4.1 Description 

The Machine Learning Models Sharing Platform offers a secure environment to manage 

datasets and the machine learning models' lifecycle, offering a user-friendly interface that 

abstracts end users from the complexities involved, such us, to cite a few of them:  the 

metadata management for enabling assets’ traceability, guaranteeing their immutability, as 

well as ensuring the reproducibility for all trained machine learning models. 

The platform offers a transparent data integrity mechanism, which guarantees the 

immutability and complete traceability of all artifacts stored (e.g., datasets, machine 

learning models, training results); this is achieved by using a Blockchain-based approach for 

storing relevant metadata for all its assets. 

The feature set that the framework offers is very useful for any applications that involve the 

management of machine learning models that involve sensitive information. Additionally, 

due to the implementation of the Polyglot Model service, the platform is especially suited for 

IoT applications, providing a simple solution for handling sensitive data, machine learning 

model training, and offering a platform-independent runtime machine learning model 

representation that enables a wider array of compatible hardware for inference purposes. 

4.2 Technical Design 

4.2.1 Architecture 

The Polyglot Model Sharing framework has been designed following a microservices-based 

approach, with distinct, single purpose services, namely the Model Sharing, the Blockchain, 
the Model Training and the Model translation services. This decision was taken in 

concordance to other key architectural aspects, mainly offering a Cloud native solution, with 
a strong focus on DevOps & Continuous Integration / Development and containerization. 

We will now introduce the main components of the platform (see its architecture in Figure 

17) in the following sub-sections. 
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Figure 17 - Architecture diagram of the Polyglot Model Sharing framework 

4.2.1.1 Components 

4.2.1.1.1 Model Sharing service 

This service provides an interface for registering (i.e., storing its metadata and artifacts) and 
retrieving ML models and datasets in the platform. 

It implements operations for registering and downloading datasets, as well as registering 

models, scheduling their training, and downloading the resulting trained models. 

For all the assets under its governance, it stores relevant metadata in the blockchain, with 

the help of the platform’s Blockchain service (see next subsection). 

By storing all relevant assets’ metadata in the platform’s blockchain instance, and 

overseeing the training phase of the models in a controlled environment, we can guarantee 
the replicability of all the trained models, and ensure that the training results were achieved 
exclusively with the specified inputs. Additionally, this metadata allows for guaranteeing the 

integrity of all stored assets. 

The operations implemented and offered by the service are further detailed in the 

implementation section. 

4.2.1.1.2 Blockchain service 

This service provides an interface for deploying and interacting with smart contracts in a EVM 
(Ethereum Virtual Machine) [42] blockchain (e.g., ConsenSys Quorum [43]). 

It implements operations for creating, retrieving, and interacting with smart contracts in the 

platform’s blockchain instance. 

The operations implemented and offered by the service are further detailed in the 

implementation section. 
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4.2.1.1.3 Model Training service 

This service is in charge of scheduling model training jobs to be executed in the training 

cluster. As mentioned in the platform’s introductory section, the main motivation for this 
service is offering a controlled environment for the training of machine learning models, to 

be able to guarantee the reproducibility and immutability of the resulting trained machine 
learning models. This service trains models in a batch manner, given complete train and test 
datasets, unlike the Online Learning service introduced in section 2.1, which trains models 

with data injected dynamically. Moreover, this service is only required to guarantee the 
integrity of a model stored in the MLaaS storage for a given dataset. 

Model training jobs are scheduled executions of containers that enclose the definition and 

instructions for the training of a registered machine learning model. 

Registered models must provide a training container image, stored in a container registry of 

choice, which will be provided with the training dataset indicated upon the model’s 
registration, and its resulting model will be automatically registered in the platform, making it 

available to the end user, and the rest of the platform’s features. 

The model training jobs are executed in the platform’s MLaaS Kubernetes Cluster, with the 

help of Argo Workflows [39]. 

The operations implemented and offered by the service are further detailed in the 

implementation section.  

 

4.2.1.1.4 Model Translation service 

This service offers the ability for the platform to transform registered machine learning models 
into the Open Neural Network Exchange (ONNX) [44] format upon training, offering a 

compatibility layer for all stored models in the platform. 

By providing this compatibility layer, model developers can implement their machine 

learning models in their backend of choice (i.e., TensorFlow, PyTorch), without compromising 
on the limited hardware support provided by their backend of choice. 

The operations implemented and offered by the service are further detailed in the 

implementation section. 

 

4.2.1.2 External Dependencies 

The platform relies on several external components for the implementation of its core 
features. 

We will proceed to introduce the platform’s external dependencies in the following sub-

sections. 

4.2.1.2.1 MLaaS PostgreSQL instance 

The MLaaS PostgreSQL [45] instance is required in order to host the relational database that 

the Model Sharing service depends on for storing additional information about the models 
registered in the platform. 
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4.2.1.2.2 IoT-NGIN ConsenSys Quorum instance 

The IoT-NGIN ConsenSys Quorum Blockchain instance is required by the Blockchain service, 

in order to store the metadata of the datasets and machine learning models registered in 
the platform. 

The metadata is stored in smart contracts, which are immutable programs stored in the 

blockchain, which control the access and actions of their implementation, based on the 
contract’s definition. 

For our use case, contracts are used as means of storage of the relevant metadata of 

datasets and models registered in the platform.  

4.2.1.2.3 MLaaS Model Storage instance 

The MLaaS Model Storage instance, based on MinIO, is required by the Model Sharing 

service, as the platform of choice for object storage solution. 

The choice of object storage as the platform’s artifact storage solution is justified by the 

flexibility provided in its organizational structure, and its content-agnostic approach to 
storage. 

The MLaaS MinIO instance for the project stores all the platform’s persistent assets, i.e., 

datasets and machine learning models. 

4.2.1.2.4 Argo Workflows instance 

The Argo Workflows instance is required by the Model Training service, in order to schedule 
the model training jobs. 

Argo Workflows allows for the execution of sequential jobs in Kubernetes Clusters. In our use 

case, each model registered on the platform triggers a model training job, which executes 

a user-defined container image, providing it with the associated model dataset, and 
registers the resulting model in the platform. The registration step, in this context, involves 

storing the training results in the Model Sharing service, which, in turn, coordinates the update 
of the model metadata in the blockchain instance by means of interfacing with the 
Blockchain service. A more in-depth explanation of this process can be found in the section 

4.3. 
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4.2.2 Implementation 

The repository containing the implementation of the platform is hosted in the IoT-NGIN GitLab 

project [46]. 

4.2.2.1 Project Repository Structure 

We will now further detail the project’s repository structure (see Figure 18). 

 

 

Figure 18 - Polyglot Model Sharing framework implementation repository directory structure 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing


H2020 -957246    -   IoT-NGIN  

 
D3.4 – ML models sharing and transfer learning implementation 

 

48 of 95 

 

- /docs: directory containing platform documentation and technical diagrams  

- /services: directory containing the platform’s services implementations 

o /services/{service}: directory containing the service’s implementation 

▪ .kube/: contains the service’s Kubernetes resource definitions 

▪ app/: contains the Python project implementation 

▪ .env.sample: reference file for the service’s required environment variables 

▪ Dockerfile: contains the instructions for building the service’s container 

image 
▪ poetry.lock: service’s Poetry dependencies lockfile 

▪ pyproject.toml: configuration file for the Python project’s tooling 

▪ requirements.txt: compiled form of the Python project’s dependencies 

▪ {service}_client.json: OpenAPI schema for the service’s HTTP REST API 

- generate_clients.sh: script for programmatically generating SDK for interacting with the 

platform service’s HTTP REST APIs, based off their OpenAPI specification definitions 

- openapitools.json: OpenAPI Generator configuration file 

- README.md: project’s repository introductory documentation 

The platform components (services) have been implemented following a microservices-

based approach, with distinct, single purpose services.  

They have been developed in Python, using the FastApi framework. The service's 

dependency management is handled using Poetry [47]. 

Each service exposes a REST API, along with its specification and the documentation 

available on the OpenAPI format; a Swagger UI instance is always accessible at the /docs 

HTTP route. The OpenAPI schema [48] for the REST API is dynamically generated by FastAPI 

when running the server, and can be accessed via HTTP at /openapi.json. 

In order to interact with the service, a Python client for each service is provided, providing a 

SDK for interacting with the service's REST API. This client is generated programmatically using 

the OpenAPITools' OpenAPI Generator [49], using the aforementioned OpenAPI schema. 

The Python clients are published in the project's GitLab Package Registry [50]. 

A Dockerfile [51] is provided for each service, in order to build a container image that runs 

the service in a containerized way. 

In a similar manner, the container image, built from the included Dockerfile instructions, is 

published in the project's registry [52]. 

The set of Kubernetes resources required for deploying the service in a Kubernetes cluster 

can be found at the .kube directory in the service's code repository. 

 

4.2.2.2 Components 

In section 7 Annex, the main components of the Polyglot Model Sharing Framework are 

described in terms of their exposed interfaces and their main supported processes. 

https://fastapi.tiangolo.com/
https://python-poetry.org/
https://spec.openapis.org/oas/v3.1.0
https://github.com/OpenAPITools/openapi-generator
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages
https://docs.docker.com/engine/reference/builder/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry
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4.3 Implementation for IoT-NGIN LLs 

 

Figure 19 - Sequence diagram of the Polyglot Model Sharing Framework demo use case 

 

At the time of writing, the Polyglot Model Sharing Framework has not been used by the IoT-

NGIN Living Labs’ use cases, but it is expected some of them (e.g., Smart Agriculture and 

Smart Energy LLs) will use it during the final validation, reported by WP6. In this section, we 
provide our own use case to showcase (Figure 19) the overall end-to-end usage of the 

platform. 

In the sequence diagram shown in Figure 19, we can see in further detail the interactions 

between the platform’s services, as well as the platform’s external dependencies for our own 

use case. 

1. We register the dataset to be used in the training phase in the platform 

2. We register the machine learning model in the platform, referencing the registered 
dataset 

3. Wait for the model training step to complete. 
4. Retrieve (download) the model 
5. Request model in ONNX format (polyglot service) 

 

For our example use case, we document, in the following, the workflow for registering and 

training an image classification model on the platform. 

The implementation for this demo case can be found in the project’s GitLab repository, in 

the /demo directory (Figure 20). 
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Figure 20 - Demo use case's implementation directory structure 

 

The machine learning task is a multinomial image classification [53] for handwritten digits. We 

will use the MNIST [54]dataset for training this model. 

We implement the image classification model in Pytorch [24]. This image classification model 

will be based on a CNN architecture [55] (Listing 1).  

 

MNISTNetwork( 

  (features): Sequential( 

    (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1)) 

    (1): ReLU() 
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, 

ceil_mode=False) 

    (3): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1)) 
    (4): ReLU() 

    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, 
ceil_mode=False) 

  ) 

  (classifier): Sequential( 
    (0): Flatten(start_dim=1, end_dim=-1) 

    (1): Linear(in_features=800, out_features=1024, bias=True) 

    (2): ReLU() 

    (3): Linear(in_features=1024, out_features=512, bias=True) 

    (4): ReLU() 
    (5): Linear(in_features=512, out_features=10, bias=True) 

    (6): Softmax(dim=1) 
  ) 

) 

Listing 1 - Demo use case classification machine learning model definition 
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For us to be able to register and train our machine learning model in the platform, we need 

to provide our model definition and training process as a container image (Listing 2). This 

container image must conform to the guidelines specified in the implementation section  7.3 
of the Model Training service. 

 

FROM python:3.8.16-slim 

 
RUN apt-get update 

 

WORKDIR /code 
 

COPY requirements.txt /code/requirements.txt 

RUN pip install -r requirements.txt 

 

COPY ./app /code 
 

CMD ["python","main.py"] 

Listing 2 - Dockerfile instructions for the demo use case's model training container image 

 

In our use case, we are using this platform’s GitLab project container registry for hosting our 

training image. 

Once we have all the required pre-requisites, we will further proceed with the model 

registration process. 

Before registering the model in the platform, we first must register the dataset that we want 

to use for our model training job. 

We will do this by executing the following HTTP request: 

bash 

curl --request POST \ 

  --url http://localhost:9005/dataset \ 

  --header 'content-type: multipart/form-data' \ 
  --form dataset=@mnist-original.mat \ 

  --form 'metadata={ 
    "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947", 

    "samples_dimension": "(1,32,32)" 

}' 
 

 

Upon the successful registration of the dataset, the service will respond to our request with a 

unique identifier (UUID) for the dataset. We will use the received UUID for referring to our 
dataset when registering our model in the platform. 

json 
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{ 
    "dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9" 

} 

 

We will now check the platform’s MinIO instance to check that the dataset artifact has 

been registered in the object storage (Figure 21): 

 

Figure 21 - Dataset artifact stored in the object storage  

As we can see, the dataset has been stored in the datasets bucket, named with the UUID 

that we received upon registration. 

We can additionally check that the dataset’s metadata has been successfully registered in 

the platform’s blockchain instance by verifying that a smart contract for this dataset has 
been deployed. 

This is possible by executing the following request to the Blockchain service, indicating the 

address of the deployed contract (which can be found in the project’s internal PostgreSQL 
database. 

bash 

curl --request GET \ 

  --url 

http://127.0.0.1:9007/contract/0x9ab7CA8a88F8e351f9b0eEEA5777929210199295 

 

The service responds with the following JSON-encoded text, which represents the metadata 

stored in the smart contract. 

json 

{ 

  "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947", 
  "samples_dimension": "(1,32,32)", 

  "size_bytes": 55426379, 
  "hash": "adbc812a1f0ab4c881a41fc872cb643e" 

} 

 

We will now register our model in the platform, referring to our dataset with the UUID received 

in the previous step. We will do so by executing the following HTTP request. 

bash 
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curl --request POST \ 
  --url http://localhost:9005/model/ \ 

  --header 'content-type: multipart/form-data' \ 
  --form 'metadata={ 

    "model_params": { 

        "developer_id": "dd8fca81-a999-40f5-81f0-68627e303a27", 
        "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947", 

    }, 

    "data_params": { 

        "dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9" 

    } 
}' \ 

  --form train_image=registry.gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/demo_model_image 

Upon the successful registration of the model in the platform, the service will respond to our 
request with a unique identifier (UUID) for the model. We will use the received UUID for 

referring to our model in the platform. 

json 

{ 

    "model_id": "62e8efbc-47e5-4e60-abe5-8fb8a7b676ba" 

} 

 

We will now wait for the model training job to finish. We can check the status of the training 

job by invoking the model retrieval procedure in the Model Sharing service.  

json 

curl --request GET \ 

  --url http://localhost:9005/model/62e8efbc-47e5-4e60-abe5-8fb8a7b676ba 

 

If the training job is still not finished, the service will respond in this way: 

text 

"Model 62e8efbc-47e5-4e60-abe5-8fb8a7b676ba has not been trained yet. Please, 

try again later." 

 

Otherwise, we will receive the resulting artifact from the training job. 

We will now, as in the case of the dataset registration, check that the trained model has 

been stored in the platform’s MinIO instance (Figure 22). 
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Figure 22 - Trained model in MLaaS storage 

As in the previous case, we can find our model stored in the models’ bucket, with the UUID 

we received when retrieving the model from the Model Sharing service. 

We will also check that the model’s metadata stored in the blockchain includes the training 

results (i.e., it has been verified): 

bash 

curl --request GET \ 
  --url 

http://127.0.0.1:9007/contract/0x43D1F9096674B5722D359B6402381816d5B22F28 

 

Inspecting the response received from the service, we can identify that the res_hash 

parameter is present, and that it matches the one we can calculate in the trained model 

previously retrieved. 

json 

{ 

    "model_params": { 

        "developer_id": "dd8fca81-a999-40f5-81f0-68627e303a27", 
        "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947", 

        "train_image_hash": "5b4d62ed98ebaaf764a63ae31eaaf8d6", 

        "res_hash": "f73b9eb23dcf464a1916d8e991dfaff4" 
    }, 

    "data_params": { 

        "dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9" 

    } 

 

For the last step of our demo, we will invoke the model translation service in order to translate 

our trained model into the ONNX format. We will do so by executing the following request. 

json 

curl --request POST \ 
  --url http://localhost:9008/translate/62e8efbc-47e5-4e60-abe5-8fb8a7b676ba 

 

The service will then respond to our request with the trained model in the ONNX format. 
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5 Installation and User Guide 

5.1 Online Learning Service 

This section focuses on the updates required to create, deploy and use an OL service within 
the MLaaS, w.r.t. the procedure described in D3.3. Figure 23 shows the procedure for creating 

and deploying an OL service. 

 

 

 

 

 

 

 

 

Alike D3.3, it is required to have a ML/DL model implemented before creating the OL service. 

The model creation stage is out of the scope of OL framework and must be provided by ML 
engineers. In addition, the model also must be registered in the Model Sharing. 

The first step is the OL service adaptation. This stage involves the provisioning of three different 

components: 

i. Predictor: Configuration of different parameters that are specific for each OL service 

such as the MinIO location, the framework used for implementing the ML/DL model, 
the service name, etc. 

ii. Transformer: Implementation of the data pre and post processing pipeline. Each OL 
service requires its own Transformer since the input data is use-case specific. 

iii. Explainer (Optional): Implementation to provide explanations to the inferences made. 
This component is optional and the XAI algorithm must be implemented by the ML 
engineers and stored in MinIO so the Explainer can load it. 

Once the components are implemented and configured, each of them needs to be 

encapsulated in a Docker image. This Docker image must be uploaded to a Docker registry 

in order for Kubeflow to include it to the pipeline. An example of Dockerfile is provided in 
D3.3. 

At this point, each OL component is containerized, and Docker images are available in 

Docker registry.  

Before deploying the OL service by executing a Kubeflow pipeline, Kserve YAML manifest is 

defined (Listing 3). This file specifies the Docker image of each component, name of service 
and configuration of environment variables.  

 

 

  

OL service 
adaption

Docker image of 
each 

component

YAML 
configuration 

for Kserve 
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Pipeline 

implementation

Execute 
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Pipeline
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Figure 23 - Workflow to deploy OL service 
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apiVersion: serving.kserve.io/v1beta1 

kind: InferenceService 

metadata: 

    name: # <Inference Service Name> 

    namespace: # <Namespace> 

spec: 

    predictor: 

        containers: 

        - name: # Conatiner name 

          image: # <OL_Predictor_Image> 

          imagePullPolicy: Always 

          envFrom: 

          - configMapRef: 

              name: # <Env_Config_Map> 

          - secretRef: 

              name: # <Env_Secret> 

    transformer: 

        containers: 

        - image: # <OL_Transformer_Image>  

          name: # Conatiner name 

          imagePullPolicy: Always 

          envFrom: 

          - configMapRef: 

              name: # <Env_Config_Map> 

          - secretRef: 

              name: # <Env_Secret> 

    explainer: 

        containers: 

        - image: # <OL_Explainer_Image> 

          name: # Conatiner name 

          imagePullPolicy: Always 

          envFrom: 

          - configMapRef: 

              name: # <Env_Config_Map> 

          - secretRef: 

              name: # <Env_Secret> 

Listing 3 - Kserve YAML manifest 

 

Once Kserve YAML manifest is created, the next steps are the same as described in D3.3. At 

Kubeflow, a Jupyter Notebook is created and the Kubeflow pipeline is implemented. Once 
the execution is finished, the OL API REST service will be deployed. 

Optionally, Camel-K binding can be created to support pub/sub communications. The 

binding creation is also available in D3.3. 
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Section 2.1.2 described OL monitoring service. This is an additional service, so its 

implementation and deployment are outside of the Kubeflow Pipeline. This service needs 
Grafana and Prometheus to be deployed in the cluster so its metrics can be visualized. 

Both Grafana and Prometheus have been deployed using Helm [56]. Helm allows to 

configurate applications by applying a configuration YAML manifest. Therefore, Prometheus 

is configured so it can scrap new OL monitoring service. The configuration file can be find in 
the GitLab repository [57]. 

 

Figure 24 depicts the deployment steps. 

 

 

 

 

 

 

 

The first step is the OL monitoring service adaptation. This step aims to configure some aspects 

such as the data type to be monitored, the reference data and kind of metrics to be 
registered. The service implementation can be founded in the Monitoring for MLaaS GitLab 

repository [57]. Once the service is ready, it must be containerized in a docker image and 
upload to a Docker registry. The Dockerfile can be found in the GitLab repository for MLaaS 
Prometheus [58]. Finally, the YAML manifest is defined (Manifest for MLaaS Prometheus [59]) 

and applied so the service is deployed. 

After following the steps described above, there are two API REST services i) the OL service 

and ii) the OL monitoring service. OL Service presents two endpoints, one corresponds to the 
Transformer and the other to the Explainer. The Transformer is waiting to receive data in JSON 

format either to update the model or to perform an inference. The Explainer is expecting 
data in JSON format, however in this case it is to provide an explanation of the inference. 
The way to invoke the OL services is described in D3.3. 

Regarding the OL monitoring service, this service does not present any endpoint accessible 

from outside of MLaaS. However, the Grafana GUI can be accessed to observe the OL 

monitoring service metrics. Grafana allows you to create dashboards or import them in JSON 
format. Any of the 2 options is valid and works. Some of the dashboards that have been 
shown in section 2.1.3.1 can be located in the  GitLab project for MLaaS Grafana [60]. 

 

  

OL Monitoring 
adaptation

Docker image
OL Monitoring 
YAML manifest

Figure 24 - Workflow to deploy OL monitoring service. 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/deployment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards
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5.2 Reinforcement Learning Service 

Instructions to install the RL-based Optimizer as an MLaaS service and to use it will be given 
in D6.3 [1]. At the time of writing, a first version of the RL-based Optimizer has been provided, 

which needs preliminary evaluation (planned to be reported in D7.3 [33]), further 
development and improvement, and therefore, it is not yet ready to be delivered for wide 

usage within the IoT-NGIN pilot. 

5.3 Privacy-preserving Federated Learning 

Framework 

The following instructions refer to the installation of PPFL API. 

5.3.1 Prerequisites 

The prerequisite technologies to successful installation of the PPFL API include: 

• Docker [51] 

• Kubernetes [61] 

• Argo Workflows [39] 

• Keycloak [62] 

• Helm [56] 

• Linux OS, ideally Ubuntu 20.04 LTS 

5.3.2 Installation Guide 

5.3.2.1 Local deployment 

First, the repository for the PPFL API must be cloned in the desired local directory. 

bash  

git clone https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-
preserving-federated-learning/privacy-preserving-federated-learning-api.git  

 

Next, the required packages must be installed. 

bash  

pipenv install  

 

As the PPFL API relies on Keycloak for AAA services, the environmental variables must be 

defined in the host OS as follows. 

 

 

 

Table 7 - Environmental variables’ configuration for local deployment 



H2020 -957246    -   IoT-NGIN  

 
D3.4 – ML models sharing and transfer learning implementation 

 

59 of 95 

 

Variable Description Example 

KEYCLOAK_SERVER_URL The URL of the Keycloak server https://keycloak.iot-

ngin.onelab.eu/ 

KEYCLOAK_REALM The name of the Keycloak realm iot-ngin 

KEYCLOAK_CLIENT_ID The ID of the Keycloak client ppfl 

KEYCLOAK_CLIENT_SECR

ET_KEY 

The client secret key used to 

authenticate with Keycloak 

<set to the key ' ' in 

secret ' '> 

 

The values for KEYCLOAK_SERVER_URL, KEYCLOAK_REALM, KEYCLOAK_CLIENT_ID, 

KEYCLOAK_CLIENT_SECRET_KEY must be replaced with the appropriate values for the 

Keycloak instance that will be used. 

 

Finally, in order to run the API server, the following command should be hit. 

bash  

python manage.py runserver 

 

The API server is now running at http://localhost:8000/.  

 

Finally, the user may call the PPFL API at http://localhost:8000/{fl_framework}/, providing a 

valid JWT token in the authorization header, where fl_framework could be tff, fp, nv for 

TensorFlow Federated, FedPATE or NVIDIA Flare, respectively. 

 

5.3.2.2 Docker deployment 

To deploy the API using Docker, the steps provided below must be followed. 

First, build the Docker image using the following command. 

bash  

docker build -t your-image-name  

Next, push the Docker image to a registry, replacing docker-registry and image-name with 

the appropriate values for your environment. 

bash  

docker login 
docker tag image-name docker-registry/image-name 
docker push docker-registry/image-name 

 

Copy the docker-compose.yml located under the fl-api directory to a server supporting 

docker and docker-compose. Then, create a .env file under the same directory with the 
configuration presented in Table 8. 

http://localhost:8000/
http://localhost:8000/%7bfl_framework%7d/
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Table 8 - Environmental variables’ configuration for Docker deployment 

Env variable name Description 

POSTGRES_HOST The hostname of the PostgreSQL server 

POSTGRES_DB The name of the PostgreSQL database 

POSTGRES_USER The username for the PostgreSQL user 

POSTGRES_PASSWORD The password for the PostgreSQL user 

DJANGO_SETTINGS_MODULE The settings module used by Django 

SECRET_KEY The secret key of the PPFL API app 

ARGO_HOST The URL of the Argo Workflows server 

NAMESPACE The K8S namespace in which the application is 

deployed. 

KEYCLOAK_SERVER_URL The URL of the Keycloak server 

KEYCLOAK_REALM The name of the Keycloak realm 

KEYCLOAK_CLIENT_ID The ID of the Keycloak client 

KEYCLOAK_CLIENT_SECRET_KEY The client secret key used to authenticate with 

Keycloak 

 

Deploy the Docker image to a Docker host, issuing the command. 

bash  

sudo docker-compose up --build 

 

Finally, the user may call the PPFL API Docker container at 

http://localhost:8000/{fl_framework}/, providing their token as authorization header 
(acquired as explained in section 5.3.2.1), where fl_framework could be tff, fp, nv for 

TensorFlow Federated, FedPATE or NVIDIA Flare, respectively. 

 

5.3.2.3 Kubernetes Deployment 

For the installation of the API in Kubernetes, the PPFL API repository must first be cloned with 
the following command. 

bash  
git clone https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-
preserving-federated-learning/privacy-preserving-federated-learning-api.git 

Then, the environmental variables for the PPFL-API Kubernetes deployment must be 

configured. 

http://localhost:8000/%7bfl_framework%7d/
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bash  
cd ppfl-api/fl-api/Kubernetes/ppfl 

The PPFL-API relies on a Postgres instance, on ArgoWorkflows and a Keycloak instance, as 

e.g., the one integrated with IoT-NGIN Access Control component. Before deploying the 

PPFL API, the secrets located in kubernetes/postgres/secrets.yaml and 
kubernetes/ppfl/secrets.yaml have to be configured. Ιn addition, the environmental 

variables in the PPFL API deployment, located in kubernetes/ppfl/deployment.yaml, must be 
filled in with the appropriate values, as presented in Table 9.  

Table 9 - Environmental variables’ configuration for K8S deployment 

Env variable name Description Value* 

POSTGRES_HOST The hostname of the PostgreSQL 

server 

iot-ngin-ppfl-api-

postgres 

POSTGRES_DB The name of the PostgreSQL 

database 

database 

POSTGRES_USER The username for the PostgreSQL 

user 

user 

POSTGRES_PASSWORD The password for the PostgreSQL user <set to the key 'postgres-

password' in secret 'iot-
ngin-ppfl-api-postgres'> 

DJANGO_SETTINGS_MO

DULE 

The settings module used by Django flapi.settings.prod 

SECRET_KEY Te secret key of the PPFL API app <Set the key 

‘SECRET_KEY’ in secret 
‘iot-ppfl-api’> 

ARGO_HOST The URL of the Argo Workflows server http://argocd-argo-

workflows-server 

NAMESPACE The K8S namespace in which the 

application is deployed. 

iot-ngin 

KEYCLOAK_SERVER_URL The URL of the Keycloak server https://keycloak.iot-

ngin.onelab.eu/ 

KEYCLOAK_REALM The name of the Keycloak realm iot-ngin 

KEYCLOAK_CLIENT_ID The ID of the Keycloak client ppfl 

KEYCLOAK_CLIENT_SECR

ET_KEY 

The client secret key used to 

authenticate with Keycloak 

<set to the key 

'KEYCLOAK_CLIENT_SEC

RET_KEY' in secret 'iot-
ppfl-api'> 

*Indicative values from a test deployment used for exemplary purposes in this guide 

The installation of the auxiliary components is described in the following. 
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Argo Workflows 

The PPFL-API relies on the Argo Workflows component to deploy the dockerized FL 

frameworks. The installation of the component is performed via Helm, particularly using the 
bitnami chart. To install, the following step must be performed. 

bash  
cd ppfl-api/fl-api/Kubernetes/argoworkflows  
helm repo add bitnami https://charts.bitnami.com/bitnami 
helm install argocd -f values.yaml bitnami/argo-workflows 
kubectl apply -f role.yaml 

 

POSTGRES 

To install the Postgres instance, the secrets.yaml file found in (ppfl-api/fl-

apj/kubernetes/postgres/secrets.yaml) needs to be configured with the login credentials of 

the Database and deployed, with the following command. 

bash  
kubectl apply -f kubernetes/postgres/secrets.yaml 
 

Also, the name of the global.postgresql.auth.database key must be changed in the 

values.yaml file of the Postgres (ppfl-api/fl-apj/kubernetes/postgres/values.yaml) to match 

the environmental variables POSTGRES_DB in the Kubernetes deployment manifest of PPFL-
API. Then, it can be deployed with the following command. 

bash  
helm install iot-ppfl-api-postgres bitnami/postgresql -n iot-ngin --version 
12.1.3 -f kubernetes/postgres/values.yaml 

 

PPFL-API deployment 

Finally, to deploy the PPFL-API, the following command must be executed. 

bash  
kubectl apply -f kubernetes/ppfl 
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5.3.3 User Guide 

Keycloak 

As the PPFL API is AAA-protected, authentication token from the deployed Keycloak 

instance must be obtained and provided in the API call request, in order to be able to trigger 

the PPFL API services. To obtain an access token from Keycloak, a request needs to be made 
to the token endpoint with the use of the Keycloak credentials, for a particular user. Figure 
25 shows an example call to this endpoint in the Postman REST Client [63], indicating how to 

use the Keycloak username and password to authorize the request and successfully obtain 
a Keycloak access token. 

 

 

Figure 25 - REST call to retrieve a user access token. 

 

In the following, the use of the PPFL API for using each of the three FL frameworks is 

demonstrated. In any case, the access token retrieved previously is necessary for authorizing 

any interaction with the PPFL API. 

 

FedPATE 

The interaction with the PPFL API for the FedPATE framework is realized under the /fp/ 

endpoint. To run the FedPATE model, the relevant parameters have to be set in the request 

body, as shown in Figure 26. Specifically, the required parameters can be described as 
follows. 

• --net_name: str, name of your model.  

• --num_rounds: int, number of rounds for FL.  
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• --num_teachers: int, the number of teachers/clients.  

• --teacher_epochs: int, number of epochs to train the teachers.  

• --student_epochs: int, number of epochs to train the student.  

• --batch_size: int, batch size (32 or 16).  

• --learning_rate: float, learning rate (default=0.001).  

• --noise: str, type of noise for the aggregation mechanism ('laplacian' or 'gaussian', 

default='laplacian').  

• --epsilon: float, epsilon for laplacian distribution (if --noise='laplacian').  

• --sigma: float, standard deviation for gaussian-normal distribution (if --noise='gaussian').  

• --num_queries: int, number of queries to the student.  

• --noise_data: int, the number of data to add Laplacian noise (must be less than 

num_queries).  

• --bucket_name: str, the bucket in MinIO where the best student model will be stored.  

• --domain_name: str, the domain where the model will be stored. 

• --access_key: str, access key for accessing MinIO.  

• --secret_key: str, secret key for accessing MinIO. 

 

Figure 26 - Parameters setting in the POST request body for running the FedPATE framework. 

 

After a successful request, a container is deployed and the training of the model starts in 

FedPATE in simulation mode. 

Figure 27 shows that the pod for FedPATE (Flower PATE) has been created successfully. This 

view is available to the administrator of the MLaaS platform.  
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Figure 27 - Deployed pods for FedPATE training 

 

Then, the logs in Figure 28 show the execution of the training process in FedPATE, as well as 

its completion. 

 

Figure 28 - Training through FedPATE ran and completed 

 

At the end of the training, the trained model is stored in an external storage. In the context 

of the IoT-NGIN project, the Minio storage integrated in MLaaS platform is utilized. Figure 29 

shows that the final trained student model (i.e., best_student_model_test.pth) is available at 
MLaaS' MinIO object storage, after the training procedure is finished. 
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Figure 29 - Final model trained through FedPATE has been stored in MLaaS’ Minio storage 

 

NVIDIA FLARE 

Here, an indicative execution of FL training process under real nodes is demonstrated 

through NVIDIA FLARE. As a first step, the NVIDIA FLARE server (federated server or 

aggregator) and the observer services have to be started, in order for the clients later to be 
able to connect to the server and start their training. 

 

Server and Observer 

Figure 30 shows the request to start the server and the observer of the NVIDIA FLARE 

framework. The request parameters include: 

• --start:  Boolean; When set to true, the request asks for the server to start. 

• --shutdown: Boolean; When set to true, the request asks for the server to shut down. 
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Figure 30 - Starting the NVIDIA FLARE server through the PPFL API 

 

The previous POST request successfully creates the observer and server pods, as shown in 

Figure 31. 

 

Figure 31 - NVIDIA FLARE server and observer pods  
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Clients 

The next step for initiating a training session is the instantiation of the clients and their 

connection to the Federated server already running. As this is a real deployment, the clients 

are instantiated individually, running the relevant client software. Particularly, each client 
should download and pull a clients' specific docker image from Synelixis' docker registry 

called "synelixis/nvflare-yolo:v7-client". Afterwards, in order for the ML model to be trained on 
each client's private data, a docker volume has to be created in the above docker image 
as the ML model must have access to these data. This can be done with the following 

command: "docker run -it --gpus all -v /path/to/client's-private-data:/nvflare-
yolo/voc_pascal_small synelixis/nvflare-yolo:v7-client /bin/bash", where the flag "--gpus all" is 

used for gpu acceleration, which also opens an interactive terminal. Finally, in order to 
connect to the Federated Learning system and thus with the FL server, each client should run 

the script "./clients/client-<client-index>/startup/start.sh", where client-index identifies the 
client. Figure 32 shows the described procedure for the first client out of the 3 of our FL system. 
As we can see, the client has made a docker volume in order to give access to its private 

data and then it successfully connects to the FL system by running the script "./clients/client-
1/startup/start.sh", as it is the first client to our FL system. The remaining clients follow similar 

procedure with indices "2" and "3" set for the client-index in the script for the second and the 
third one, respectively. 

 

Figure 32 - Running NVIDIA FLARE client software for client-1 

 

Training 

After the server has been created and the clients have connected to it successfully, a 

training process may be triggered through a POST request with the parameters shown in 

Figure 33. 
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Figure 33 - Indicative parameter setting for starting a training process though NVIDIA FLARE 

 

Assuming valid request parameter setting, the FL controller for NVIDIA FLARE starts the model 

training. 

Indicatively, Figure 34 depicts the training process in one of the three clients. 

 

Figure 34 - Logs of the training process at the client side. 

 

After the training procedure has finished, the final model is stored in the Minio instance of the 

MLaaS platform, as shown in Figure 35. 
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Figure 35 - Final model of NVIDIA FLARE training stored in Minio model storage component of the 

MLaaS platform 

 

TensorFlow Federated 

Last, but not least, the instantiation of the FL training process (simulation mode) through 

TensorFlow Federated is presented. First, the training parameters are provided in the POST 
request for triggering the training, under the /tff endpoint, as shown in Figure 36. Specifically, 

the following parameters must be set: 

• --epochs: int, number of epochs to train. 

• --batch_size: int, batch size (32 or 16). 

• --num_clients: int, the number of clients.  

• --num_rounds: int, number of rounds for FL.  
• --bucket_name: str, the bucket in MinIO where model will be stored.  

• --domain_name: str, the domain where the model will be stored. 

• --secret_key: str, secret key for accessing MinIO. 

• --access_key: str, access key for accessing MinIO. 

Assuming valid parameter setting, this request will result in the relevant pod being deployed 

in the cluster via the FL Controller. 



H2020 -957246    -   IoT-NGIN  

 
D3.4 – ML models sharing and transfer learning implementation 

 

71 of 95 

 

 

Figure 36 - Instantiating TFF training through the PPFL API 

The training process gets started and completed, as indicated in the logs of Figure 37. 

 

Figure 37 - The training process through TFF has been completed 

 

As with the other two FL frameworks, the final model gets stored in the Minio component of 

the MLaaS platform, as depicted in Figure 38. 
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Figure 38 - Final model trained through TFF stored in MLaaS’ Minio storage 

 

5.4 Polyglot Model Sharing Framework  

This section describes the way to launch the Model Sharing framework in a computational 
environment. A similar procedure has been followed to install the framework in MLaaS, by 

using their K8s manifests.  

There are two main ways of running the Model Sharing platform in a local environment: 

1. Running each service's project in the host OS 

2. Running each service as a container 

Each services provides a container image, which can be run using Podman [64]i. The source 
Dockerfiles including the instructions of the container images for each service are located in 

their respective containing directories, as previously described in the implementation 
section. The project's container image registry offers a visual interface (Figure 39) for 
inspecting the hosted artifacts, which can be accessed from the project's GitLab repository 

[65]. 

https://podman.io/
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Figure 39 - Project's GitLab container registry interface 

The environment variables required by each service are documented in their respective 

.env.sample files (Listing 4). 

plain 

DB_HOST=localhost 

DB_USER=test 

DB_PASS=test 
DB_NAME=test 

DB_PORT=5432 
MINIO_ENDPOINT=127.0.0.1:9000 

MINIO_ACCESS=w88MSWdgwM51PBN1 

MINIO_SECRET=RBlcEFACZzzMx59JgGapIJ7iVnkA3B5S 

MINIO_DATASETS_BUCKET=datasets 

MINIO_MODELS_RES_BUCKET=models_res 
MINIO_SECURE=false 

BLOCKCHAIN_ENDPOINT=http://localhost:9005 

DOWNLOAD_DIR=/tmp/model-sharing/download 

Listing 4 - Model Sharing service's .env.sample file 

In this section, we will detail how to setup a local environment. 

5.4.1 External dependencies 

5.4.1.1 PostgreSQL instance 

You can run a PostgreSQL instance locally with Podman using the following command: 

bash 

podman run --name postgres-model-sharing -e POSTGRES_PASSWORD=<password> -e 

POSTGRES_USER=<user> -e POSTGRES_PASSWORD=<pass> -e POSTGRES_DB=<db_name> -d -p 
8080:8080 postgres 
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5.4.1.2 ConsenSys Quorum Instance 

Please, refer to the following official guide [66] for running a Quorum instance locally, using 
a local Kubernetes cluster (e.g. minikube [67]). 

bash 

podman run --name postgres-model-sharing -e POSTGRES_PASSWORD=<password> -e 

POSTGRES_USER=<user> -e POSTGRES_PASSWORD=<pass> -e POSTGRES_DB=<db_name> -d -p 

8080:8080 postgres 

5.4.1.3 MinIO Instance 

You can run a MinIO instance locally with Podman using the following command: 

bash 

podman run -d -p 9000:9000 -p 9001:9001   quay.io/minio/minio server /data --

console-address ":9001"  

5.4.1.4 Argo Workflows Instance 

Please, refer to the official guide [68] for running an Argo Workflows instance locally, using a 
local Kubernetes cluster (e.g., minikube). 

 

5.4.2  Running Services Locally  

As the project has been designed following a microservices-based approach, it is possible to 

launch the platform's components individually; however, please note that in most scenarios 
the platform's features are result of the collaboration with multiple services, and integration 

tests will usually require multiple services to be running concurrently.  
 

5.4.2.1 Running Services in Host OS  

For each service, it's recommended to setup a Python virtual environment in order to avoid 
conflicts in the project's dependencies. The dependencies required by each service are 

compiled in their respective requirements.txt, and can be installed using the pip CLI tool.  

 
The recommended way to setup the virtual environment and install the dependencies of the 

services is by using Poetry. For this, execute the following command in the service's root 
directory:  
 

bash  

poetry install  

 
By default, by running this command, Poetry will create a virtual environment, installing on it 
all of the required dependencies. Additionally, upon completion of the command, Poetry 

will activate the virtual environment.  
 

https://consensys.net/quorum/products/guides/getting-started-with-consensys-quorum/
https://minikube.sigs.k8s.io/docs/
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When running the services in the host OS (not containerized), they will look, by default, for a 
.env file in their root directory. This .env file must conform to the structure defined in the 

service's .env, .sample file.  

 
You can launch any of the services using the following command:  

 

bash  

python -m uvicorn services.<service>.app.main:app --port <port> --reload --log-
level trace  

 

5.4.2.2 Running Services in Containers  

You can run any of the services containers locally with Podman using the following 

command:  
 

bash  

podman run -d -p <port>:<port> -env-file .env registry.gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/<service> 
<service_name_podman>    

 

Note that we are providing the service with the required environment variables by pointing 
to a .env file; this .env file must conform to the structure defined in the service's .env.sample 

file.  
 

5.4.2.3 Invoking the HTTP REST APIs 

Please, refer to section 4.3 (Implementation for IoT-NGIN LLs) for an in-depth, guided demo 

use case in which the process for invoking the services' REST APIs is further detailed. 

5.4.3 Deployment on Kubernetes Clusters 

In order to deploy any of the framework's services in a Kubernetes cluster, it is recommended 
to use the provided Kubernetes manifests as a starting point. 

Each service's Kubernetes manifest files are stored in their containing implementation 

directory in the project's GitLab repository (Figure 40), on the .kube directory. 
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Figure 40 - Model Sharing service's Kubernetes manifests 

 

Please, note that it is required to specify the correct values for the environment variables 

required by each service for their deployment. This environment variables are located in their 
respective deployment.yaml Kubernetes manifest template files (Listing 5). 

 

yaml 

spec: 

      containers: 
      - image: registry.gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/sharing:latest 
        name: sharing-service 

        ports: 

        - containerPort: 80           
        resources: {} 

        env: 
          # MLAAS POSTGRESQL 

          - name: DB_HOST:  

            value: localhost 
          - name: DB_USER:  

            value: test 
          - name: DB_PASS:  

            valueFrom: 

              secretKeyRef: 
                name: sharing 

                key: DB_PASS 
          - name: DB_NAME:  

            value: test 

          - name: DB_PORT:  
            value: 5432 

Listing 5 - Excerpt from Model Sharing service's deployment.yaml Kubernetes manifest template file 
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Additionally, some of the environmental variables are specified using Kubernetes secrets, 

following Kubernetes's security best practices [69]. It is therefore required to create these 
secrets in the target Kubernetes cluster. A template for these secrets is provided for all the 

required secrets (Listing 6). 

 

yaml 

apiVersion: v1 

kind: Secret 
metadata: 

  name: sharing 

  namespace: mlaas #Same namespace services/pods are deployed 
type: Opaque 

stringData: 

  # MLAAS POSTGRESQL  

  DB_PASS: test 

  # MLAAS MINIO 
  MINIO_SECRET: RBlcEFACZzzMx59JgGapIJ7iVnkA3B5S 

 

Listing 6 - Model Sharing service's secret.yaml Kubernetes manifest template file 
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6 Conclusions 
This document is the last one of a series that have been reporting the development of the 

IoT-NGIN MLOps platforms and services, including the MLaaS platform, the PPFL platform, 
and a number of frameworks and services that have been built and delivered with MLaaS, 

namely the Online Learning service, and the Polyglot Model Sharing service. While the MLaaS 
architecture and technical specification of its reference implementation was described in 
D3.3, this document has reported the main progress beyond D3.3 on the development of the 

final versions of the Online Learning service, the first version of the RL-based optimization, the 
PPFL platform and the Polyglot Model Sharing framework. 

The Online Learning service has been reimplemented to take advantage of the further 

flexibility of KServe pipeline, to foster its reusability across multiple inference scenarios for other 

models. Additionally, XAI explainers have been injected, aiming to provide insights to explain 
how the trained models learn from features. A new monitoring plaform has been integrated, 
featuring the detection of data drift and accounting for model learning error over the time. 

Model transfer techniques have been adopted to re-train models to infer similar knowledge, 
as evaluted for energy demand forecasting in the Smart Energy LL. Another example of 

exposing a model inference service with MLaaS for WP4 object detection has been 
described as well. 

The PPFL framework has been extended with a common entry-point API that gives a 

harmonized operational interface to the different integrated FL frameworks. Moreover, a 
CI/CD Cloud based approach for FL task deployment has been followed for the API 

implementation. 

The model sharing framework has been specified both functionally and technically, and 

details of its micro-service implementation have been given. Evaluation of the framework 
has been conducted in a dedicated use case that has been conceived for such purpose. 

The software implementations of the components presented in this deliverable are offered 

as open source on the project’s page on the public Gitlab repository, at 
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/. Details about installation 

and usage are also provided in this report for convenience of interested audience. 

As future work, all the components described in this report will be further adopted and 

evaluated in the IoT-NGIN LL use cases, as well as with the open call projects, during the last 
evaluation period of the project and will be reported in forthcoming D6.3 and D7.4 
deliverables. 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/
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7 Annex Components and Interfaces for 
Polyglot Model Sharing 

7.1 Model Sharing service 

The main purpose of the Model Sharing service is coordinating the storage and retrieval of 
all the assets in the platform (i.e., datasets and machine learning models). To achieve this, it 
will exclusively manage access to the platform’s object storage instance, and coordinates 

with the Blockchain service for the deployment, verification and retrieval of smart contracts 
in the platform’s blockchain instance. Additionally, it coordinates the scheduling of model 

training jobs for newly registered machine learning models by coordinating with the Model 
Training service. 

 

7.1.1 HTTP REST API Operations 

The Model Sharing service exposes the following operations (see Table 10) through its HTTP 
REST API: 

Table 10 - Model Sharing service HTTP REST API operations 

Method Route Description 

POST /dataset Register and store a new dataset in the 

platform 

POST /model Register and schedule the training of a 

machine learning model 

GET /model/{model_id} Retrieve a registered model upon successful 

training job 

GET /dataset/{dataset_id} Retrieve a registered dataset 

 

 

PUT 

/model/{model_id} Stores the resulting model from the model 

training job, and makes it available for 
retrieval 

 

GET 

/model/{model_id}/metadata Retrieves the metadata stored in the 

blockchain for a registered model 
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7.1.2 Dataset Registration 

In Figure 41, we describe the implementation of the dataset registration operation, which 

involves the storage of the dataset artifact on the platform’s object storage instance, as well 
as deployment of its associated smart contract in the platform’s blockchain instance through 

the Blockchain service. 

The dataset contents are stored in the object storage instance, on the dataset bucket, 

identified by the UUID assigned by the Model Sharing service. Notice that all the original file's 

metadata, including filename and content type are not preserved upon its storage on the 
object storage instance. This original metadata is stored externally, on the MLaaS Relational 

Database instance. 

The additional metadata required for ensuring the immutability of the registered dataset is 

stored in the blockchain instance. This metadata can be retrieved at any time by the other 
services through the Blockchain Service. 

 

Figure 41 - Sequence diagram of the Model Sharing service's dataset registration operation 

 

7.1.3 Model Registration, Training and Retrieval 

In Figure 42, we describe the implementation of the model registration operation, which 

involves the storage of its metadata in the Blockchain instance, and model training job 
scheduling via the Model Training service. Upon the successful execution of the training job, 

the resulting artifacts are registered, and the model's smart contract is verified, updating its 
stored metadata. From this moment, the model can be retrieved by the end users. 

Upon successful training of the registered model, the resulting artifacts are stored in the 

object storage instance, on the model bucket, identified by the UUID assigned by the Model 
Sharing service. Notice that all the original artifact's metadata, including filename and 

content type are not preserved upon its storage on the object storage instance. This original 
metadata is stored externally, on the MLaaS Relational Database instance. 

The additional metadata required for ensuring the reproducibility of the training results, as 

well as the immutability of the resulting artifacts, is stored in the blockchain instance. This 

metadata can be retrieved at any time by the other services through the Blockchain Service. 
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Figure 42 - Sequence diagram of the Model Sharing service's model registration and retrieval 

 

7.1.4 Model Metadata Retrieval 

In Figure 43, we can visualize the metadata retrieval operation implementation, in which we 

retrieve the metadata of a registered machine learning model, which is stored in a smart 
contract deployed in the project’s blockchain instance – which we access through the 
Blockchain service. 
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Figure 43 - Sequence diagram of the Model Sharing service's model metadata retrieval operation 

 

7.2 Blockchain service 

The Blockchain service provides the interface for interacting with the blockchain instance, 
for all the other platform components. 

This service is responsible for managing all the information registered in the blockchain 

instance, in the form of smart contracts. 

These smart contracts are deployed into the blockchain for all registered assets in the 

platform (datasets and models). 

For each asset type, there exists a smart contract definition that contains the machine code 

and rules for interacting with the deployed contracts. This smart contract definition is 
implemented in Solidity [70], a high-level language used for smart contract definitions, which 

compiles to EVM executable bytecode (ABI – Application Binary Interface). 

 

7.2.1 Smart Contract Interfaces 

The metadata stored depends on the contract interface; in our platform, we have two 

contract interfaces: 

- Dataset contract [16] 

- Machine learning model contract 

The dataset contract (Table 11) stores the following pieces of metadata: 
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Table 11 - Dataset smart contract metadata specification 

Field 
Data 

Type 
Description Example 

 

organization_id 

 

string 

Unique identifier of the dataset’s 

owner organization 

5d066d58-06de-

47ab-a2f6-

c8f413e21947 

 

samples_dimension 

 

string 

Dataset sample dimension (128,128,3) 

 

size_bytes 

 

int256 

Stores the metadata of a resulting 

model training job 

1840000 

 

hash 

 

string 

MD5 hash of the dataset contents 0cc175b9c0f1b6

a831c399e26977
2661 

 

The dataset contract (Table 12) implements the following operations: 

Table 12 - Dataset smart contract operations 

Method Returns Description Example 

get_dataset_params string 

memory 

Returns the UUID of the 

associated dataset 

5d066d58-06de-47ab-

a2f6-c8f413e21947 
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The machine learning model contract (Table 13) stores the following pieces of metadata: 

Table 13 - Model smart contract metadata specification 

Field Data Type Description Example 

 

organization_id 

 

string 

Unique identifier of the 

machine learning model 

developer’s company 

5d066d58-06de-

47ab-a2f6-

c8f413e21947 

 

developer_id 

 

string 

Unique identifier of the 

machine learning model 

developer 

5d066d58-06de-

47ab-a2f6-

c8f413e21947 

 

dataset_id 

 

string 

Unique identifier of the dataset 

specified for the model training 
job 

5d066d58-06de-

47ab-a2f6-
c8f413e21947 

 

train_image_hash 

 

string 

MD5 hash of the model’s 

training container image 

0cc175b9c0f1b6a831

c399e269772661 

 

res_hash 

 

string 

MD5 hash of the resulting 

artifacts from the model 
training job 

0cc175b9c0f1b6a831

c399e269772661 

 

The machine learning model contract (Table 14) implements the following operations: 

Table 14 - Model smart contract operations 

Method Returns Description 

get_model_params (string memory, 

string memory,          

string memory, 

string memory) 

Returns all model-related metadata stored in the 

contract 

get_data_params string memory Returns the UUID of the associated dataset 

 

verify 

 

Void 

Stores the MD5 hash of the resulting artifacts from 

the model training job 
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7.2.2 HTTP REST API Operations 

The Blockchain service exposes the following operations through its HTTP REST API (Table 15): 

Table 15 - Blockchain service HTTP REST API operations 

Method Route Description 

POST /contract Deploy a smart contract into the blockchain 

GET /contract/{address} Fetch a deployed contract’s metadata 

 

 

POST 

/contract/{address}/

verify 
Stores the metadata of a resulting model training job 

Note: the REST API exposed by this service is not intended for the end users of the platform, 

but only to be accessed directly by the rest of the services of the system. 

We will now introduce a more in-depth explanation for the implementation of this service’s 

operations. 

 

7.2.3 Dataset and Model Contract Deployment 

In these diagrams (Figure 44, Figure 45), we detail the deployment of the contract of a 
dataset or model registered in the platform, in the context of the registration of a new 

dataset or model in the platform. Note that both processes differ, especially due to the extra 
step involved in the model registration process (further detailed in section 4.2.2.2.2.5), the 
model verification, which requires an update of the stored metadata in its smart contract. 
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Figure 44 - Sequence diagram of a dataset's contract deployment operation 

 

 

Figure 45 - Sequence diagram of a model's contract deployment operation 
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7.2.4 Contract metadata request 

In Figure 46, we detail the metadata request operation, performed for contracts deployed 

in the blockchain. 

 

 

Figure 46 - Sequence diagram of the Blockchain service's contract metadata request operation 

 

7.2.5 Model verification 

In Figure 47, we can observe the verification step of a model training job, in which 

metadata of the resulting artifacts from the model training job is stored in the original smart 
contract of the machine learning model. 

The verification step is handled by the verification operation of the Blockchain Service. This 

operation invokes a function in the deployed smart contract of a registered model, which 
stores the MD5 digest (I.e., hash) of the resulting artifact from the model training job. 

This function is implemented on the smart contract's definition and ensures that the digest 

of the resulting model training artifact is only stored once (I.e., the field is immutable). 
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Figure 47 - Sequence diagram of the Blockchain service's model verification operation 

7.3 Model Training service 

The purpose of the Model Training service is to schedule the execution of training jobs for 

new models registered in the system. This training jobs are sequential executions of a workflow 
consisting of three container images, a pre-training container that provides the training 

container with the appropriate datasets, the training container provided by the users, and a 
post-training container that registers the training results in the platform. 

7.3.1 HTTP REST API Operations 

The Model Training service exposes the following operations through its HTTP REST API ( 

Table 16). 

Table 16 - Model Training service HTTP REST API operations 

Method Route Description 

POST /train/{model_id} Schedule a model training job in the platform 

We will now introduce a more in-depth explanation for the implementation of this service’s 

operations. 
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7.3.2 Model training request 

In Figure 48, we can observe the interactions between the platform’s services, from the 
moment that an end user registers a new machine learning model in the platform, up until 

the model training process is completed successfully, and the end user can retrieve the 
resulting machine learning model. 

 

 

Figure 48 - Sequence diagram of the Model Training service's training request operation 

 

In Figure 49, we further detail the internal workflow of a model training job, coordinated 

with Argo Workflows, and the steps taken in a model training job.  
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Figure 49 - Sequence diagram of the Model Training service's training job workflow implementation 

7.4 Model Translation service 

The main purpose of the model translation service is to provide ONNX representations for the 

machine learning models registered in the platform, upon their successful training process. 

 

7.4.1 HTTP REST API Operations 

The Model Training service exposes the following operations through its HTTP REST API (Table 

17). 

Table 17 - Model Translation service HTTP REST API operations 

Method Route Description 

POST /translate/{mo

del_id} 

Request intermediate representation for a registered 

machine learning model 

We will now introduce a more in-depth explanation for the implementation of this service’s 

operations. 
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7.4.2 Model translation request 

The model translation request operation allows to translate a registered machine learning 

model into the ONNX format (upon completion of its training job). The following sequence 
diagram (Figure 50) illustrates the operation's implementation. 

 

Figure 50 - Sequence diagram of the Model Translation service's model translation operation 
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