

© Copyright by the IoT-NGIN Consortium

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 957246

WORKPACKAGE WP3 PROGRAMME IDENTIFIER
H2020-ICT-

2020-1

DOCUMENT D3.4 GRANT AGREEMENT ID 957246

REVISION V1.0
START DATE OF THE

PROJECT
01/10/2020

DELIVERY DATE 31/03/2023 DURATION 3 YEARS

D3.4

ML models sharing and
transfer learning
implementation

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

2 of 95

DISCLAIMER
This document does not represent the opinion of the European Commission, and the European

Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain IoT-NGIN consortium parties,
and may not be reproduced or copied without permission. All IoT-NGIN consortium parties have

agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the proprietor of that information.

Neither the IoT-NGIN consortium as a whole, nor a certain party of the IoT-NGIN consortium warrant

that the information contained in this document is capable of use, nor that use of the information is

free from risk, and does not accept any liability for loss or damage suffered using this information.

ACKNOWLEDGEMENT
This document is a deliverable of IoT-NGIN project. This project has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement Nº

957246.

The opinions expressed in this document reflect only the author’s view and in no way reflect the

European Commission’s opinions. The European Commission is not responsible for any use that may

be made of the information it contains.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

3 of 95

PROJECT ACRONYM IoT-NGIN

PROJECT TITLE Next Generation IoT as part of Next Generation Internet

CALL ID H2020-ICT-2020-1

CALL NAME Information and Communication Technologies

TOPIC ICT-56-2020 - Next Generation Internet of Things

TYPE OF ACTION Research and Innovation Action

COORDINATOR Capgemini Technology Services (CAP)

PRINCIPAL

CONTRACTORS

Atos Spain S.A. (ATOS), ERICSSON GmbH (EDD), ABB Oy (ABB),
NETCOMPANY-INTRASOFT SA (INTRA), Engineering-Ingegneria Informatica

SPA (ENG), Robert Bosch Espana Fabrica Aranjuez SA (BOSCHN), ASM Terni

SpA (ASM), Forum Virium Helsinki (FVH), ENTERSOFT SA (OPT), eBOS
Technologies Ltd (EBOS), Privanova SAS (PRI), Synelixis Solutions S.A. (SYN),

CUMUCORE Oy (CMC), Emotion s.r.l. (EMOT), AALTO-Korkeakoulusaatio

(AALTO), i2CAT Foundation (I2CAT), Rheinisch-Westfälische Technische

Hochschule Aachen (RWTH), Sorbonne Université (SU)

WORKPACKAGE WP3

DELIVERABLE TYPE REPORT

DISSEMINATION

LEVEL

PUBLIC

DELIVERABLE STATE FINAL

CONTRACTUAL DATE

OF DELIVERY

31/03/2023

ACTUAL DATE OF

DELIVERY

31/03/2023

DOCUMENT TITLE ML models sharing and transfer learning implementation

AUTHOR(S)
J. Mira (ATOS), I. Moreno(ATOS), J. Gorroñogoitia Cruz (ATOS), T. Velivassaki

(SYN), Ch. Betzelos (SYN), D. Skias (INTRA)

REVIEWER(S) A. Voulkidis (SYN), Dimitrios Skias (INTRA)

ABSTRACT SEE EXECUTIVE SUMMARY

HISTORY SEE DOCUMENT HISTORY

KEYWORDS
Deep Learning, Reinforcement Learning, Online Learning, Federated

Learning, Machine Learning, Privacy Preservation, AI, ML

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

4 of 95

Document History

Version Date Contributor(s) Description

V0.1 27/01/2023 ATOS Table of Cοntents

V0.2 17/03/2023 ATOS, SYN Sections 1-5

V0.3 21/03/2023 ATOS Peer-review version

V0.4 24/03/2023 ATOS, SYN, INTRA Peer-review

V0.5 28/03/2023 ATOS, SYN Post-Peer-Review version

V0.6 29/03/2023 ATOS Camera-ready version

V0.7 30/03/2023 CAP Final quality check

V1.0 31/03/2023 ATOS Final version

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

5 of 95

Table of Contents
Document History .. 4

Table of Contents .. 5

List of Figures ... 7

List of Tables .. 9

List of Acronyms and Abbreviations.. 10

Executive Summary ... 13

1 Introduction ... 14

1.1 Intended Audience ... 15

1.2 Relations to other activities .. 16

1.3 Document overview ... 18

2 IoT-NGIN Machine Learning .. 19

2.1 Online Learning .. 19

2.1.1 Description .. 19

2.1.2 Technical design .. 20

2.1.3 Implementation for IoT-NGIN LLs ... 23

2.2 Reinforcement Learning ... 30

2.2.1 Description .. 31

2.2.2 Technical design .. 31

2.2.3 Implementation for IoT-NGIN LLs ... 33

3 IoT-NGIN Privacy Preserving Federated Learning .. 36

3.1 Description .. 37

3.2 Technical design .. 38

3.2.1 Description of subcomponents ... 39

3.2.2 Interfaces .. 40

4 Polyglot Model Sharing .. 43

4.1 Description .. 43

4.2 Technical Design.. 43

4.2.1 Architecture.. 43

4.2.2 Implementation ... 47

4.3 Implementation for IoT-NGIN LLs ... 49

5 Installation and User Guide ... 55

5.1 Online Learning Service .. 55

5.2 Reinforcement Learning Service ... 58

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

6 of 95

5.3 Privacy-preserving Federated Learning Framework .. 58

5.3.1 Prerequisites .. 58

5.3.2 Installation Guide ... 58

5.3.3 User Guide .. 63

5.4 Polyglot Model Sharing Framework .. 72

5.4.1 External dependencies ... 73

5.4.2 Running Services Locally... 74

5.4.3 Deployment on Kubernetes Clusters .. 75

6 Conclusions ... 78

7 Annex Components and Interfaces for Polyglot Model Sharing .. 79

7.1 Model Sharing service ... 79

7.1.1 HTTP REST API Operations .. 79

7.1.2 Dataset Registration .. 80

7.1.3 Model Registration, Training and Retrieval .. 80

7.1.4 Model Metadata Retrieval ... 81

7.2 Blockchain service ... 82

7.2.1 Smart Contract Interfaces .. 82

7.2.2 HTTP REST API Operations .. 85

7.2.3 Dataset and Model Contract Deployment ... 85

7.2.4 Contract metadata request .. 87

7.2.5 Model verification.. 87

7.3 Model Training service .. 88

7.3.1 HTTP REST API Operations .. 88

7.3.2 Model training request .. 89

7.4 Model Translation service ... 90

7.4.1 HTTP REST API Operations .. 90

7.4.2 Model translation request... 91

8 References .. 92

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

7 of 95

List of Figures
Figure 1 - Work packages structure .. 16

Figure 2 - Overall architecture of the OL service .. 21

Figure 3 - Technical architecture of the OL service .. 22

Figure 4 - DeepLIFT results for power generation forecasting in UC9 ... 25

Figure 5 - DeepLIFT results for power generation forecasting in UC10 25

Figure 6 - Model performance monitoring ... 26

Figure 7 - Data drift monitoring .. 27

Figure 8 - DL architecture ... 28

Figure 9 - Training results for power consumption forecasting of UC10 29

Figure 10 - Preprocessing stage object detection model ... 30

Figure 11 - RL service high level scheme .. 32

Figure 12 - Sequence diagram of interaction between Tensorforce and environment 32

Figure 13 - Energy demand for Domestic clusters... 34

Figure 14 - Energy demand for Industrial clusters .. 34

Figure 15 - The PPFLL API deployment approach through Docker containers, K8S and Argo

Workflows .. 38

Figure 16 - The technical design of the PPFL API ... 39

Figure 17 - Architecture diagram of the Polyglot Model Sharing framework 44

Figure 18 - Polyglot Model Sharing framework implementation repository directory structure

 .. 47

Figure 19 - Sequence diagram of the Polyglot Model Sharing Framework demo use case .. 49

Figure 20 - Demo use case's implementation directory structure .. 50

Figure 21 - Dataset artifact stored in the object storage... 52

Figure 22 - Trained model in MLaaS storage .. 54

Figure 23 - Workflow to deploy OL service ... 55

Figure 24 - Workflow to deploy OL monitoring service. .. 57

Figure 25 - REST call to retrieve a user access token. ... 63

Figure 26 - Parameters setting in the POST request body for running the FedPATE framework.

 .. 64

Figure 27 - Deployed pods for FedPATE training ... 65

Figure 28 - Training through FedPATE ran and completed .. 65

Figure 29 - Final model trained through FedPATE has been stored in MLaaS’ Minio storage 66

Figure 30 - Starting the NVIDIA FLARE server through the PPFL API ... 67

Figure 31 - NVIDIA FLARE server and observer pods ... 67

file://///Users/yosu/Documents/Atos/IoT-NGIN/IoT-NGIN_D3.4_v0.7.docx%23_Toc131059610
file://///Users/yosu/Documents/Atos/IoT-NGIN/IoT-NGIN_D3.4_v0.7.docx%23_Toc131059611

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

8 of 95

Figure 32 - Running NVIDIA FLARE client software for client-1 ... 68

Figure 33 - Indicative parameter setting for starting a training process though NVIDIA FLARE

 .. 69

Figure 34 - Logs of the training process at the client side. ... 69

Figure 35 - Final model of NVIDIA FLARE training stored in Minio model storage component of

the MLaaS platform ... 70

Figure 36 - Instantiating TFF training through the PPFL API ... 71

Figure 37 - The training process through TFF has been completed .. 71

Figure 38 - Final model trained through TFF stored in MLaaS’ Minio storage 72

Figure 39 - Project's GitLab container registry interface .. 73

Figure 40 - Model Sharing service's Kubernetes manifests ... 76

Figure 41 - Sequence diagram of the Model Sharing service's dataset registration operation

 .. 80

Figure 42 - Sequence diagram of the Model Sharing service's model registration and retrieval

 .. 81

Figure 43 - Sequence diagram of the Model Sharing service's model metadata retrieval

operation .. 82

Figure 44 - Sequence diagram of a dataset's contract deployment operation 86

Figure 45 - Sequence diagram of a model's contract deployment operation 86

Figure 46 - Sequence diagram of the Blockchain service's contract metadata request

operation .. 87

Figure 47 - Sequence diagram of the Blockchain service's model verification operation 88

Figure 48 - Sequence diagram of the Model Training service's training request operation ... 89

Figure 49 - Sequence diagram of the Model Training service's training job workflow

implementation ... 90

Figure 50 - Sequence diagram of the Model Translation service's model translation operation

 .. 91

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

9 of 95

List of Tables
Table 1 - Relation of WP3 activities with other WPs and tasks ... 17

Table 2 - Smart Energy LL MQTT topics for forecasting services .. 23

Table 3 - Transfer Learning hyper-parameters ... 28

Table 4 - Normality test results (p-values) ... 29

Table 5 - Details of the ML and FL frameworks analyzed in D3.3 .. 37

Table 6 - PPFL API interfaces... 40

Table 7 - Environmental variables’ configuration for local deployment 58

Table 8 - Environmental variables’ configuration for Docker deployment 60

Table 9 - Environmental variables’ configuration for K8S deployment 61

Table 10 - Model Sharing service HTTP REST API operations ... 79

Table 11 - Dataset smart contract metadata specification ... 83

Table 12 - Dataset smart contract operations .. 83

Table 13 - Model smart contract metadata specification .. 84

Table 14 - Model smart contract operations ... 84

Table 15 - Blockchain service HTTP REST API operations... 85

Table 16 - Model Training service HTTP REST API operations .. 88

Table 17 - Model Translation service HTTP REST API operations ... 90

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

10 of 95

List of Acronyms and Abbreviations

AAA Authentication, Authorization and Accounting

ABI Application Binary Interface

AI Artificial Intelligence

AP Average Precision

API Application Programming Interface

BCE Binary Cross-Entropy

BDVA Big Data Value Association

CA Certificate Authority

CI/CD Continuous Integration/Continuous Delivery

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DP Differential Privacy

DQN Deep Q-Network

D<X> Deliverable

ECG Electric Charging Station

EG Electric Grid

EIP Enterprise Integration Patterns

EV Electric Vehicle

EVM Ethereum Virtual Machine

FC Federated Core

FL Federated Learning

FQDN Fully-Qualified Domain Name

GAN Generative Adversarial Network

GitOps Git Operations

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HE Homomorphic encryption

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

11 of 95

HTTP HyperText Transfer Protocol

IaC Infrastructure as Code

ID Identifier

IDS Intrusion Detection System

IoT Internet of Things

IoU Intersection over Union

JSON JavaScript Object Notation

LL Living Labs

mAP mean Average Precision

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ME Mean Error

ML Machine Learning

MLaaS Machine Learning as a Service

MLOps ML Operations

MQTT MQ Telemetry Transport

MSE Mean Squared Error

NNI Neural Network Intelligence

NV FLARE NVIDIA Federated Learning Application Runtime Environment

OL Online Learning

ONNX Open Neural Network Exchange

OS Operating System

PATE Private Aggregation of Teacher Ensembles

POC Proof-Of-Concept

PPFL Privacy-Preserving Federated Learning

PPFLaaS Privacy-Preserving Federated Learning as a Service

REST Representational State Transfer

RL Reinforcement Learning

RNN Recurrent Neural Network

SCR Self-Consumption Ratio

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

12 of 95

SDK Software Development Toolkit

SGD Stochastic Gradient Descent

SRIA Strategic Research and Innovation Agenda

SSL Secure Sockets Layer

SSR Self-Sufficiency Ratio

SVT Sparse Vector Technique

TFF TensorFlow Federated

TPU Tensor Processing Unit

UC Use Case

UI User Interface

UUID Universal Unique Identifier

VOC Visual Object Class

WP Work Package

w.r.t. With regards to

XAI eXplainable Artificial Intelligence

YAML Yet Another Markup Language

YOLO You Only Look Once

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

13 of 95

Executive Summary

Endowing IoT-based applications and devices with intelligence capabilities to take informed

decisions based on the device environment is of paramount importance in nowadays

application scenarios. IoT-NGIN offers a set of frameworks and services aimed for enhancing
the intelligence of these IoT applications and devices, namely: I) The Machine Learning as a
Service (MLaaS), as the the main IoT-NGIN MLOps platform for IoT, and II) the Privacy

Preserving Federated Learning (PPFL) platform, specialized for federated Learning, and iii)
complementary services and frameworks, including the online learning service and the

model sharing framework, that are delivered with the MLaaS.

This document describes the progress over D3.3, towards the fulfilment of these IoT-NGIN

goals to endow IoT applications with intelligence. Specifically, the main outcomes towards
this goal reported in this deliverable include:

• Extended and new features for online learning, including: i) a new internal pipeline

implementation based on KServe that provides greater flexibility of reuse in multiple

inference scenarios, ii) the support for eXplainable AI (XAI) to explain how models
learn from features, iii) a learn monitoring system for detecting data drift. ML

applications developed for the IoT-NGIN Living Lab (LL) use cases are also reported.

• A Reinforcement Learning (RL) based implementation for system optimization,

deployed within MLaaS, and tailored to optimize electric grids for the Smart Energy LL.

• A common entry point API that harmonizes the access of third parties to the PPFL

platform, common for all the FL frameworks supported.

• A Model Sharing framework implementation, that enables an integrity-guarantee

batch training of ML models, and their registrawithin the MLaaS model storage for
futher sharing and reused, as well as their conversion into ONNX intermeditate model

for inference in any environment compatible witn ONNX runtime.

These MLOps platforms, frameworks and services are released as open source in the IoT-NGIN

project’s public GitLab repository https://gitlab.com/h2020-iot-ngin, contributing to the IoT

community.

Planned future work includes extending the application of these MLOps plaforms and

services in additional IoT-NGIN LL use cases, which will be reported in D6.3 [1] and D7.4 [2].

https://gitlab.com/h2020-iot-ngin

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

14 of 95

1 Introduction

Internet of Things (IoT) facilitates the extraction of information from systems, through devices

and sensors connected to them. Companies owning those systems can infer knowledge

about their behavior and performance, with the aim of improving them in diverse aspects.
As an example, metrics gathered from sensors can be immediately used to trigger an alert
on a detected malfunctioning situation. However, the overpopulation of devices and sensors

is generating an increasing volume of information that companies need to face, a challenge
identified by the Big Data 5 V’s [3]. As a result, a simple system service could not be capable

anymore of coping with the data intricateness. Therefore, new solutions are required to face
this complexity and effectively and purposely infer valuable information from it. With the

development of new AI information extraction and ML-based inference techniques and
algorithms and the advent of increasing computation power, notably based on Graphics
Processing Units (GPUs) and Tensor Processing Units (TPUs), it is now achievable to extract

value from huge volumes of data and even predict the future behavior of systems. These
breakthroughs will enable systems’ stakeholders to better comprehend their company

activities and improve future planning, leading to increase business value.

Primary users of these ML-based techniques are data scientists and ML engineers, who

require an ML platform that can provide all the necessary services to process data, train,
share and deploy ML models. Implementing and maintaining such an ML platform is a
complex, time-consuming and costly endeavor, requiring expertise most of companies lack

of. Therefore, a leading industry trend is addressing the provisioning of this kind of ML
platforms, by offering all the services required to build and execute ready-to-use ML models.

In addition, these ML platforms support the development of custom-tailored ML systems for
some specific use cases. Such ML platforms are commonly referred to as Machine Learning

as a Service (MLaaS).

Companies leverage MLaaS to reduce the time and cost of integrating their ML modelling

and delivery procedures into their development and Continuous Integration/Continuous

Delivery (CI/CD) environments. By using MLaaS, data scientists can procure and preprocess
the data and train the model, by focusing on their core competency, that is, in the ML

development, rather than on the burden of taking care of the underlying procedures and
infrastructure, which are provided and managed by the MLaaS.

The IoT-NGIN project has envisaged a holistic view for a complete MLaaS platform supporting

ML development and delivery in the domain of IoT, addressing the functional and non-
functional requirements expressed in the project, and its high-level architecture. This task has

been realized by seeking open-source projects, by selecting suitable components for
specific purposes, and by determining the procedures to integrate them together in order to

constitute a comprehensive framework. Besides, IoT-NGIN has adopted GitOps technologies,
such as Infrastructure as Code (IaC) [4]and ArgoCD [5] to automate the platform building
and delivery.

The design and implementation of the IoT-NGIN MLaaS platform was described in a series of

previous reports, namely D3.1 [6], D3.2 [7], D3.3 [8]. In those reports, a number of additional

services and frameworks, extending the MLaaS platform with additional ML capabilities, were

also reported (both functional and technically), including the online learning service, the

reinforcement learning (RL) - based optimization service, and the privacy-preserving

federated learning framework. Another service framework, the polyglot model sharing

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

15 of 95

service framework was also reported in the specification (D3.1) but its implementation was

not described in detail until this document.

The present document is a technical report, entitled “ML models sharing and Transfer learning

implementation”, the fourth and last deliverable of the WP3 series (D3.4) and reports the

results of the activities of Task 3.2 “Deep learning/reinforcement learning techniques to
enhance training processes”, Task 3.3 “Confidentiality-preserving federated ML models” and

T3.4 “Machine Learning Model Sharing”. The results of the activities of Task 3.1 “Big Data and
ML framework architecture” are not reported in this document as it ended by the time D3.3
was released, where its results were reported in detail.

Moreover, the activities reported in D3.4 align with the objectives of WP3:

• Define, design and develop a big data management and privacy preserving

federated ML layer, based on Big Data Value (BDV) Strategic Research and

Innovation Agenda (SRIA)4.0 [9], to train and share ML models.

• Implement innovative deep learning techniques to enhance training processes with

inline adaptive self-learning that will improve the resulting machine learning models
automatically.

This document complements D3.3 with updates and new features implemented for the

online learning service, the reinforcement learning (RL) - based optimization service, and the

privacy-preserving federated learning framework. For these services, it focuses on describing
these last updates and new features, and references D3.3 for other functional and technical

aspects already reported, avoiding duplicating D3.3 content, unless needed for the sake of
better understanding.

1.1 Intended Audience

The intended audience includes data scientists and ML engineers which may find this report
inspiring for their research and development efforts as well as ML service providers who aim

to adopt the IoT-NGIN MLOps paradigm and the enhancements towards reinforcement,
online and federated learning and integrity-guarantee model sharing. The document
provides technical specifications, as well as practical guidance allowing interested

audience to test and adopt the IoT-NGIN developments. The document describes the design
and implementation of the online learning and reinforcement learning techniques, the

privacy-preserving federated learning API and the polyglot model sharing framework.

Moreover, the document might be of interest to business users who wish to adopt different

technical approaches for machine learning, privacy-preserving federated learning and

sharing into their processes. The document provides insights for exploiting the IoT-NGIN tools
in the context of the Living Lab (LL) use cases, which could be indicative for other use cases

as well.

Finally, this report is useful internally, for the project partners which develop ML related

solutions, perform integration and validation activities, as well as for the Living Labs. Useful
feedback could be also received from the Advisory Board, including both technical and
impact creation comments.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

16 of 95

1.2 Relations to other activities

The activities of WP3 are strongly linked to other IoT-NGIN activities, as indicated its work
package structure rendered in Figure 1.

Figure 1 - Work packages structure

Table 1 describes the relation between WP3 tasks and the other IoT-NGIN activities.

Table 1 - Relation of WP3 activities with other WPs and tasks

WP Relation to WP3 and D3.3

WP1 The definition of the Living Labs’ use cases (UCs) inspires D3.4 for defining

the design and implementation of the online and reinforcement
learning services, the polyglot model sharing framework, and the

federated learning framework, and for providing tailored
implementations in the context of these use cases.

WP2 Models trained with the online learning service have been integrated

into the Secure Edge Cloud framework for IoT micro-services for secure

execution of ML models (see D2.3 [10]).

WP4 The object detection models of the IoT Device Discovery module have

been served within the MLaaS platform as instances of the online

learning service.

WP5 WP5 develops cybersecurity tools for securing FL operation. These tools

can work together with the FL modules of WP3 to ensure protection

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

17 of 95

against data and model poisoning attacks. Moreover, the WP5 tools are
based on ML functions, which may be trained and served via the MLaaS
platform.

WP6 WP3 components have been integrated with the rest of project’s

technologies and frameworks in WP6, while the MLaaS platform and

tools can be useful in the development of application logic for the use
cases or the Open Calls.

WP7 WP3 components have been implemented and used in several living

labs and use cases.

WP3 supports 3rd parties by offering ML models via MLaaS model training

and sharing.

WP8 WP3 provides notable outcomes and results for supporting impact

creation activities. Moreover, it considers feedback (e.g., from the
market analysis and business modelling tasks) which could be relevant
for updating or enhancing the WP3 design and development.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

18 of 95

1.3 Document overview

The rema of the document is organized as follows.

Section 2 introduces the updates and new features implemented during this reporting period

for the IoT-NGIN online and reinforcement learning services, including their functional
specification, technical design and implementation, as well as the specific implementation

for the LL use cases where these techniques have been adopted.

Section 3 introduces the updates and new features implemented for the Privacy-Preserving

Federated Learning framework, focusing on the common access API for deploying FL tasks

across the PPFL framework.

Section 4 describes the functional specification, technical design and implementation of the

Polyglot Model Sharing framework, and its in-lab validation with an example use case.

Section 5 provides installation and user guidance, of above services and frameworks, which

are published as open source.

Section 6 draws conclusions and summarizes next steps for future work.

Annex in Section 7 describes the main components of the Polyglot Model Sharing Framework,

their REST APIs and the main processes they implement.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

19 of 95

2 IoT-NGIN Machine Learning

2.1 Online Learning

This section describes the updated and the new features implemented for the Online

Learning (OL) Service, as part of the MLaaS platform, introduced in D3.3. For the sake of

facilitating the reader understand these features and their implementation, this section may

borrow some content from D3.3 when needed, but in most of situations, it will refer to it, to

avoid extending the document unnecessarily.

2.1.1 Description

D3.3 described the first version of the Online Learning serv. The first version focused on

providing a service capable of dynamically training ML models for IoT applications and also
performing inferences on demand.

Dynamic training, also known as Online Learning, concerns the training of ML models when

new data is available. Thus, the model is trained continuously. This paradigm acquires great
importance in the context of IoT due to the large number of sensors or devices that can be

present on common scenarios, and the large amount of information captured by them
dynamically.

In addition, the OL service supports both API REST requests and streaming data since most IoT

devices generate communication flows in real time.

The OL service version reported in this document maintains these features and offers an

improved implementation that offers i) greater flexibility and ii) new features.

Greater flexibility is achieved with the incorporation of a pre/post processing module that

mediates between the service clients and the model. This modification allows to deploy the
pre/post processor and the OL service as two separate microservices, thus letting them to

scale independently.

Regarding the new features, a module has been implemented for XAI (eXplainable Artificial

Intelligence), that attempts to explain the predictions made to answer the question: Why has
the model made this prediction? XAI is a set of methods and processes that help to
comprehend and trust the prediction driven by the ML model. Moreover, it helps to

characterize the model performance by providing the impact of the input data for a given
prediction, adding transparency to the prediction and capacity for model bias detection.

This module is optional, that is, the OL service does not come with an explainer deployed by
default since it is a use case dependent module.

Finally, a complementary service to OL, called OL monitoring, has been implemented. This

service monitors, in real time, the performance of the model and the input data sent to the
OL service, both for training and inference, so that it can detect a degradation on the model

performance and if data drift phenomenon has occurred.

Data drift is defined as the variation between the data in the training phase and in the

deployment phase. This phenomenon can be caused by different factors, the most common
are that the training data did not include the entire population of the data or the distribution
of the data varies over time.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

20 of 95

2.1.2 Technical design

The overall architecture design of the OL framework is shown in Figure 2. The internal

architecture of the OL service in Figure 3.

The OL service is deployed into MLaaS using Kserve [11] through Kubeflow. [12]. Kserve allows

to deploy 3 types of components: Predictor, Transformer and Explainer. Each of these
components expose a REST API as a HTTP service1.

The Predictor2 is the ML model hosting service. It is responsible of performing dynamic training

and providing inferences on demand. This component is designed to be reusable across
specialize OL services for different use cases. It loads the model from MLaaS Model Storage

(MinIO [13]) to make a prediction or updates it back when the model has been improved
after training. A new strategy has been implemented so the model is only updated and

stored back to MinIO when the training losses have been lowered.

The Transformer is a service, located between the client and the Predictor, that is responsible

for preparing the data, received in JSON format, so that the Predictor can train the model or

make a prediction. In addition, the Transformer also performs the post-processing of the
prediction returned by the Predictor. In this way, the inference obtained is processed so that

the client gets the prediction in a more appropriate format. Thus, the Transformer that
processes the input data is use-case specific. That is, each OL service will encompass a
different Transformer.

As the Transformer is the module that receives the input data, it must also support receiving

data coming from MQTT [14] and Kafka services. To cover this requirement, Camel-K [15] is

used (as explained in D3.3).

The Explainer service aims to provide justification to the predictions. This service is only

accessible through HTTP and extracts the most significant features of the input data. In this
way, it is possible to understand which part of the input data has had more influence in the
final prediction and also the way by which the model has obtained the prediction. This

service is also use-case specific since the XAI the algorithm depends on the input data type
and the framework used to implement the ML model.

The monitoring service consists of a HTTP endpoint deployed using FastAPI framework [16], a

Prometheus engine [17] and a Grafana web tool [18]. This service monitors the input data

and the model performance in real time by using the Evidently [19] package. To do this, the
Predictor sends the input data and the inferences made to this service, and then, by using
Evidently, statistical hypothesis tests to detect data drift are carried out, and evaluation

metrics of the model in production are computed.

To detect data drift, Evidently requires a reference dataset. This dataset is collected by the

model developer following use-case specific methods. For instance, it could be the dataset
the ML model developer uses to perform some tests during initial model development to

validate the model architecture.

The results obtained by Evidently are collected in Prometheus, mediated by an exporter that

Evidently registers in Prometheus, which scrapes the data from the Evidently monitoring

service. In Grafana a data source pointing to Prometheus is configured. Thus, Grafana can

1 The REST API exposed by the Predictor is hidden so only the Transformer gets access
2 Despite its name, the Predictor is used to either i) train the model online, ii) process an inference,

through different APIs

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

21 of 95

access these results for visualization, in dashboards, where users can analyze the
performance graphs. The dashboard provides different evaluation metrics: mean error3,
mean absolute error 4and mean absolute percentage error5. It also shows the history of these

metrics as a time series. Lastly, it provides the bias of the predictions both in the training and
in the production phase. This bias indicates whether the model tends to overestimate or

underestimate the value with its predictions.

Figure 2 - Overall architecture of the OL service

New OL modules have been implemented or updated from D3.3, using Python since it offers

a large ecosystem of specialized libraries for AI. These modules are listed below:

• Create Kserve Service (Predictor). It is responsible for deploying the REST API service

within the OL service. It creates an HTTP endpoint that exposes the OL API for model
update or prediction. The main library used in this module is Kserve.

• Transformer. It receives a raw dataset and performs the data pre-processing stage.

Therefore, it contains all the functions needed to prepare the data for the ML model.
It also performs the post-processing stage, so the prediction is processed to be

provided in more convenient format for the requester. The implementation of this
module is use-case specific.

• Explainer. It receives the preprocessed input data and returns the significance of

each feature in the prediction. It is powered by Kserve and must be implemented by

the ML model developer.

• Online Learning Module. This API links the Predictor to the backend module. It is

responsible for choosing the correct backend and transmitting the model update or
the prediction requests. It also implements the model saving strategy.

3 ME: 𝑀𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)
𝑁
𝑖=1 , where N, 𝑦𝑖 and 𝑦�̂� are the number of predictions, actual and forecast value

respectively.
4 MAE: 𝑀𝐴𝐸 =

1

𝑁
∑ |𝑦𝑖 − 𝑦�̂�|
𝑁
𝑖=1 , where N, 𝑦𝑖 and 𝑦�̂� are the number of predictions, actual and forecast

value respectively.

5 MAPE: 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
|𝑁

𝑖=1 , where N, 𝑦𝑖 and 𝑦�̂� are the number of predictions, actual and forecast

value respectively.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

22 of 95

• Streaming connector. This module provides tools to support real-time protocols. This

module is not being used in current deployment because Kserve only supports HTTP

connections, but it is implemented in case future versions of Kserve supports streaming
data. The main libraries that have been used for its implementation and its testing are

Kafka [20] and Paho-MQTT [21].

• MinIO Connector. Provides the required tools to download and upload the ML

models. This version stores the trained ML model in MinIO storage in case the model
performance gain overpass a given threshold during the training. This module is based

on the MinIO library.

• Backend. Modules responsible for including required functions to perform ML model

updates or predictions for each ML framework. Current version supports the following

frameworks: Sklearn, Vowpal Wabbit, TensorFlow and Pytorch.

• OL Monitoring. It receives input data and model predictions to compute different

model performance metrics and to carry out statistical hypothesis tests to detect

data drift using Evidently. These results are scraped by the Prometheus agent

periodically, to be displayed in the Grafana dashboards.

Figure 3 - Technical architecture of the OL service

As described in previous deliverable (D3.3), additional steps are required for deploying the

recent releases of the OL services. The whole process is described in section 5.1. The main
steps are:

1- OL Service Adaptation: it is the initial step to configure the OL service. Three different

modules are set and implemented:
a. Predictor: it sets different parameters such as the MinIO host and the buckets

where the ML models are stored, the backend (framework which was used to
implement the model) to use in order to perform the model update or the
prediction.

b. Transformer: it Implements the use-case specific pre/post processing methods
for the input data.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

23 of 95

c. Explainer (Optional): it implements the XAI algorithm to provide explanations
about the inferences made.

2- Create the OL Docker images: once all Kserve components are configured, they are

enclosed in Docker images, and registered in the registry from where Kubeflow
retrieves them to build the deployment pipeline. There is a docker image per module.

3- Define the Kserve YAML manifest: This manifest defines the configuration of the OL

service during its deployment. It defines the name of the inference service, the
number of replicas, the CPU limits and the Docker images to use, among other

configurations.
4- Create the Kubeflow pipeline: This step creates a Kubeflow pipeline that instantiates

the Kserve YAML manifest when executed.
5- Run the Kubeflow pipeline: This step deploys the OL service as an HTTP inference

service.

6- Define the Camel-k binding: Camel-K binding consists of a YAML file that defines the

broker and topics where data is being dumped and the prediction service to where
the data is transferred to.

7- OL monitoring adaptation: This step configures the type of data to be monitored and

the type of task (regression or classification) to be performed by the OL service.

8- Create the OL monitoring Docker image: Once the OL monitoring is configured, it must

be encapsulated in a Docker image and uploaded into the Docker registry.
9- Create the monitoring YAML manifest: it configures some aspects of the monitoring

service, before deploying, such as service name.

The source code of the implementation of the Online Learning service is available at the IoT-

NGIN GitLab repository [22].

2.1.3 Implementation for IoT-NGIN LLs

This section describes the application of the Online Learning services for the training and
inference in some of the IoT-NGIN LL use cases, as a way to evaluate these services. The

following describes a joint work between WP3 and WP6, included in this document for the
sake of completeness. Incoming results of the application of these services to the LL use cases
will be also reported in D6.3 [1].

2.1.3.1 Smart Energy

D3.3 described the Smart Energy scenario and the procedure to deploy two power
generation forecasting services for UC9 and UC10. These services have been improved with

the inclusion of the explainer and also with the adoption of the monitoring service.
Implemented services for UC9 and UC10 are shown at

Table 2.

Table 2 - Smart Energy LL MQTT topics for forecasting services

Service Description
MQTT Meter/Topic

UC9 UC10

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

24 of 95

Power

Consumption
Forecasting

Use power data over the time to

predict the consumption in next 24-36
hours.

Smart Meter/

BBB60XX

Power Quality

Analyzer/

W4

Power

Generation

Forecasting

Use power data over the time to

predict the generation in next 24-36

hours.

PMU/

3640f24ba43a

423188979372
bae6277a

Power Quality

Analyzer/

W6

To include the explainer component in both services, a XAI method that provides the

explanations to the predictions is required. To implement this method, the Captum library [23]
is used. It is an open-source Python library specialized in XAI for models implemented with

Pytorch [24].

Captum allows to use different XAI methods to compute the importance of each input

feature in the model prediction. Different methods have been tested, being DeepLIFT (Deep
Learning Important FeaTures) [25] the one that provided the best explanations. This method

belongs to the XAI backpropagation-based approach. These approach highlights the input
features that are easily predictable from the output.

DeepLIFT attempts to decompose the output prediction of a neural network on a specific

input by backpropagating the contribution of each neuron to each input feature. It
compares the activation of the neurons with its reference activation (a default or neutral

input) and assigns contribution scores according to the difference. DeepLIFT has the
capacity of detecting both positive and negative contributions, so the explanations
distinguish features with positive impact on the prediction from those with a negative impact.

To verify that DeepLIFT provides acceptable explanations, a small evaluation has been

performed for both Smart Energy forecasting services. An input vector with 36 past power

measurements (the forecasting model requires an input dataset with 36 features, see D3.3)
is used with the DeepLIFT method to derive which features have the highest impact on the

prediction. The impact of each feature is represented in Figure 4 and Figure 5 for UC9 and
UC10, respectively. Features with a positive contribution are render in green, features with no
major impact in yellow and the ones with negative contribution in red. The conclusion that

can be extracted from DeepLIFT is that the features with highest impact are the last ones in
the input tensor (represented in the x-axis in figures), that is, the most recent ones, as

expected.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

25 of 95

Figure 4 - DeepLIFT results for power generation forecasting in UC9

Figure 5 - DeepLIFT results for power generation forecasting in UC10

Once DeepLIFT explanations have been verified, the forecasting services can be updated
to include the explainer component. To do so, some steps described in the previous section

are followed. In particular, the creation of the docker image for the explainer and the
addition of the explainer section in the manifest YAML. Then, the Kubeflow should be defined

and executed.

The procedure to deploy the monitoring service for the UC9 power generation forecasting

service is detailed below.

1. The first step is to configure the monitoring service: the type of data to be monitored

and the type of ML task (Classification or Regression) being performed. In addition, a

reference dataset must be added as a baseline to compare the new data coming in
with. Once this service and the reference dataset have been configured, its Docker

image is created and uploaded into the Docker registry. Afterwards, the YAML
manifest is applied, configuring the name of the service.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

26 of 95

2. Next, the OL service is configured, in particular the predictor component, to enable
monitoring. A boolean environment configuration flag enables/disables monitoring,
and another one defines the endpoint of the monitoring REST API.

Grafana dashboards are shown in Figure 6 and Figure 7. Figure 6 shows the performance

monitoring of the model. As explained in section 2.1.2, this monitoring provides ME, MAE and

MAPE evaluation metrics at the present time and over time. It also provides information about
the bias of the model's predictions. In this way, it is possible to know if the model tends to
overestimate or underestimate. Figure 7 shows the monitoring of the data drift. This

dashboard provides information about the data drift in different ways. The Dataset Drift panel
shows whether or not the data drift has been detected over time. The share of drifted

features panel shows the percentage of features that suffer of data drift. Since this
implementation only has a single variable (the generated power), when data drift is

detected, 100% of the dataset presents data drift.

Figure 6 - Model performance monitoring

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

27 of 95

Figure 7 - Data drift monitoring

The last service that has been implemented for the Smart Energy LL UC10 is the forecasting

of the consumed power. The scenario remains the same as described in D3.3. The electrical
network is publishing messages with the consumed power in an MQTT broker, and the OL

service has to infer what the power consumption will be like 24 hours later by using the
previous 36 power samples. The pre-processing performed in the same way.

The implementation of the DL model leverages transfer learning technique. Transfer learning

is an ML technique that retrains a model, originally designed and trained for a specific

purpose, to be reused for another inference objective. The rationale behind this technique is
to take advantage of the "knowledge" acquired by the model in the first learning objective
to learn more quickly on the second one. From the implementation point of view, Transfer

Learning consists of freezing the input layers of the model that has already been trained. That
is, the weights of these layers are not adjusted in the training phase with the dataset for the

second learning purpose.

Figure 8 shows the architecture of the model. The description of this architecture is described

in section 3.1.3 of D3.3 [8]. The layer to be frozen is the first Gated Recurrent Unit (GRU) layer.
Therefore, the weights of the rest of the layers will be retrained.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

28 of 95

Figure 8 - DL architecture

Before deploying the OL service with this architecture, a little experimentation has been

conducted to verify that the technique is promising. For this, a dataset of consumed power
has been collected for approximately 15 days and a small pre-analysis of this dataset has
been carried out. Alike the UC10 power generation forecasting service, this dataset presents

a 24-hour seasonality. Table 3 shows the chosen hyperparameters for training the predictive
model.

Table 3 - Transfer Learning hyper-parameters

Hyper-parameter Value

Epochs 50

Learning rate 0.001

Optimizer Adam [26]

Loss function Mean Squared Error

Batch size 128

Training results are shown hereafter in the same way as in D3.3. Figure 9 shows the actual

power data (orange line), inferences performed by the ML model (blue points) and the

forecasting intervals with a 90% of confidence (blue area). Forecasting intervals can be
computed since the errors between the actual data and the model predictions present a

distribution that can be considered as Gaussian. Normality hypothesis tests have been
carried out to assume that errors come from a gaussian distribution. The tests are Shapiro-
Wilk, Anderson-Darling and D’Agostino-Pearson [27]. The null hypothesis supports that the

data probably comes from a normal distribution while the alternative hypothesis defends
that the data present a different distribution. The statistical tests return a probability known

as p-value. If this result presents a value lower than the defined significance level (0,05 in this
case), the null hypothesis must be rejected, so the data distribution cannot be assumed as

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

29 of 95

normal. Therefore, it is correct to assume that errors come from gaussian distribution, as shown
at Table 4.

Table 4 - Normality test results (p-values)

Normality Test
Power consumption

forecasting model

Shapiro-Wilk 0.56

Anderson-Darling 0.61

Agostino-Pearson 0.15

The model can learn seasonality in data. The MSE obtained using the validation subset is

0.012.

Figure 9 - Training results for power consumption forecasting of UC10

The model is stored in MinIO so that the corresponding OL service can load it and perform

updates and inferences.

The deployment procedure for the OL service corresponding to this energy demand

forecasting UC is the same as described in section 2.1.2.

2.1.3.2 Smart Agriculture

The Smart Agriculture LL offers different UCs that require ML modeling for different purposes,

as described in D3.1. In the previous section, we have addressed some Smart Energy LL UCs
that require dynamic training for ML models due to the nature of the source training datasets.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

30 of 95

On the contrary, other LL UCs require different approaches for ML training and inference in
MLaaS.

This section describes the deployment process of a service that hosts an AI-based object

detection model, capable of detecting Synelixis’ SynField IoT devices in images taken by
mobile phones. This model is the first step towards indexing of the SynField devices on the

overall network and eventually the Smart Agriculture LL, as explained in D4.3 [28].

The service is deployed using the Kserve library, by adopting the same procedure described

in section 2.1.2. This library only exposes a REST API endpoint that attends requests enclosing

input data in JSON format, but it does not support images in its payload. As the object
detection service requires images as input data, it is necessary to encode the images in

base64 before they are sent to the service. Moreover, the model needs to be registered in
the MLaaS Model Storage (MinIO). The object detection service retrieves the model from

MinIO and then processes inferences on demand. The service receives a base64 encoded
image. At the pre-processing stage, the Transformer component prepares the data for the
model. The preprocessing consists of decoding the image and converting it into a 3-

dimensional tensor. This component makes use of the Base64 CV2 and Numpy libraries. Figure
10 depicts the process.

Figure 10 - Preprocessing stage object detection model

Once the 3D tensor is ready, the Transformer component sends it to the Predictor
component. As explained above, this component loads the model from MinIO, receives the

tensor as input, and processes the prediction. It sends the prediction to the Transformer,
which postprocesses it to include the detected object frame into the original image, base64-
encodes it, and sends it back in JSON format.

The procedure described in section 2.1.2 has been applied to deploy the service in the

MLaaS platform, including the creation of a Docker image that encapsulates the Transformer

and its registration into the Docker registry, the creation of the YAML manifests for configuring
the Transformer and Predictor components, and finally the definition and execution of the

Kubeflow pipeline.

2.2 Reinforcement Learning

This section describes the functional specification, technical design and implementation and

its application to the IoT-NGIN LL UCs of a Reinforcement Learning (RL) based optimization

engine. The conceptual description of this RL-based optimizer for the Smart Energy LL UCs

was introduced in D3.3. RL-based optimization engines are very use-case specific, although

different standard RL-optimization techniques reported in the scientific literature can be

applied. The following subsections provide an updated description of the RL-based

Base64 encoded image Decoded image 3-D Tensor

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

31 of 95

implementation for the UC9 Electric Grid optimization. A detailed evaluation of the

performance of this optimizer will be reported in the deliverable D6.3 [1].

2.2.1 Description

Reinforcement learning is an ML paradigm that consists of an agent that learns how to

optimize a given system behavior from its interaction with the system environment. In each
interaction with the environment, the agent takes an action, based on its own state in order

to maximize a reward. This paradigm was described in D3.3. The following describes the RL-
based optimization model design and technical implementation, which is use-case specific,

for the UC9 Grid Energy Optimization use case described in D3.3. The technical design and
implementation of this optimization model is based on standard RL algorithms and
implementation, and therefore reusable for application to other cases, such as the UC10

described in D3.3. Therefore, section 2.2.2 provides a reusable technical design and
implementation, and section 2.2.3 provides the details to concretize the implementation to

the UC9 optimizer, by providing details on the action set, state set and rewards.

2.2.2 Technical design

In D3.3, the high-level architecture of the RL-based optimization service was presented.
Figure 11 shows the description of the architecture at a high level.

Alike OL, the RL service is deployed in MLaaS with Kserve, following the same procedure

described in section 2.1.2. An interaction with the environment, through publish/subscribe

protocols, may be required, so the possibility of creating a camel-k binding is conceived to
support this functionality.

The RL module is responsible for training the AI model with RL algorithms. For this purpose, the

Tensorforce framework [29] has been selected. This open-source deep reinforcement
learning library, implemented on Tensorflow [30], has been selected since it adopts a set of

high-level design choices such as the modular component-based design, the separation
between RL algorithm and application that make it suitable for our technical requirements.

Tensorforce requires to define two objects, namely i) the agent and ii) the environment. The

agent is the entity responsible for taking an action when the environment is in a certain state,
aiming to maximize the reward. The environment is the entity that returns the reward and

new state after applying the action. Then, the agent learns the actions that provide the
highest reward.

Tensorforce offers model free algorithms, which do not learn a model of the transition

functions of the environment to make predictions of future states and rewards, from both
families: Q-Learning and Policy Optimization. Q-Learning algorithms aim to learn optimal

policy based on state-action value pair while Policy Optimization ones learn the optimal
policy by optimizing the policy distribution.

Within the Q-learning group, Tensorforce provides the Deep Q-Network (DQN), Double DQN,

and Dueling DQN algorithms. While from the Policy Optimization group, it offers the Policy

Gradient, Proximal Policy Optimization and Actor-Critic algorithms.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

32 of 95

Figure 11 - RL service high level scheme

The environment the agent interacts with can be a real one or simulated. In any case, the

Tensorforce entity transmits the action taken by the agent to the environment and waits for

it to return a new state and reward. This process is shown in Figure 12.

Figure 12 - Sequence diagram of interaction between Tensorforce and environment

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

33 of 95

2.2.3 Implementation for IoT-NGIN LLs

In D3.3, the need to implement RL-based optimization model was presented to cover the use

cases UC9 and UC10, namely “Move from Reacting to Acting in Smart Grid Monitoring” and
“Control, and Driver-friendly dispatchable EV charging”, respectively, with the purpose of

optimizing and controlling the electrical network.

This section describes an implementation of a RL-based optimization for the UC9, based on

the Tensorflow framework.

Environment

As we cannot get access to the real UC9 electric grid (EG) to interact with, a EG simulator

has been implemented by the EG owners, using the pandapower framework [32]. This
framework uses the Flow PYPOWER power solver to create a calculation network program

with the aim of automating and optimizing power systems. As a result, the simulator describes
the same environment state as the real EG network when connected with the same sources

of power generation and consumption.

The operation of the simulator is as follows: once the electrical network is specified in

pandapower, the simulator reads the power loads demanded by all the consumer groups
connected to the network and the power generated along a day. The data has a resolution
of 15 minutes, so there are 96 values of domestic and industrial consumers’ demand and

generated power.

Then, the simulator introduces the data into the corresponding loads on the electric grid and

performs a simulation. The simulation results consist of the different parameters of the grid
state. those that are used as a reward are referenced in the following reward section.

States

The optimizer acts on the customers’ energy demand, that is, it modulates the distribution of

energy demand throughout the day, so it is necessary to know what the energy demand
state is they are in or equivalently, which is the distribution of current energy demand.

Two types of customers can be distinguished: domestic and industrial. There are 13 loads

(client groups) of each. To try to better understand what the data looks like, a pre-analysis of
dataset collected over a year has been carried out.

Figure 13 shows the average distribution of each domestic load for one day. It can be seen

that all distributions are very similar. In addition, the load "Load_D_486" presents a much

higher energy demand than the rest and accounts for 38.5% of the total energy demand.
Also considering the loads "Load_D_491" and "Load_D_493", there is around 70% of the power

demanded.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

34 of 95

Figure 13 - Energy demand for Domestic clusters

As for industrial loads shown in Figure 14, something similar occurs. All the groups present a

very similar distribution, and the total energy demand is practically concentrated in 4 loads:
Load_I_486, Load_I_491, Load_I_487 and Load_I_749. The energy demand of these loads
accounts for 77% of the total.

Figure 14 - Energy demand for Industrial clusters

Therefore, this first version tries to simplify the problem by acting only on these 7 loads. In this

way, the state set is much smaller, speeding up development thus.

Actions

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

35 of 95

The RL-based optimizer seeks to optimize the energy demand of the electrical network. To

do this, the distribution of energy demand of each load is modified, which, is turned into a
shift in energy demand throughout the day.

This version of the optimizer uses four sets of discrete actions. The first set is the load selection.

As explained above, seven loads over which to act are considered. Therefore, the action set

encompasses 7 possible actions.

The second action set of actions determines the start time of the energy displacement.

Therefore, this action set includes 24 different actions.

The third action set determines the percentage of energy that is shifted at different times. 3

different energy shifts have been established 1%, 5% and 10%. For example, if from 8:00 a.m.

to 9:00 a.m. there is an energy demand of 10W and you want to make a 10% shift to the time
slot between 9:00 a.m. and 10:00 a.m., this second time slot will increase your power demand

by 1W, and the energy demand from 8:00 a.m. to 9:00 a.m. will decrease it by the same
amount.

The energy demand shift presents a number of restrictions. The first one is that the total energy

demanded by a load must remain constant throughout the day. The second one is that the
shift can only occur within 2 contiguous time slots, the displacement cannot be applied to

any arbitrary distant time slots.

These restrictions are considered in the model implementation phase.

Rewards

The objective of the system is to optimize the operation of the electrical grid. This version tries

to maximize two grid performance parameters: SSR (self-sufficiency ratio) and SCR (self-
consumption ratio). SSR can be defined as the relation between the energy produced by

the network and the energy consumed by the network. SCR is defined as the ratio between
the power consumed by the network and the power produced.

The employee reward function is mean of both ratios: 𝑅 =
1

2
(𝑆𝐶𝑅 + 𝑆𝑆𝑅).

Experiments

Results obtained from initial experiments with this first version of the RL-based optimizer for the

Electric Grid optimization UC9 will be reported in D7.3 [33]. Following experiments will be
conducted over more advanced releases of the optimizer in the context of WP6, and their

results will be reported in D6.3 and D7.4.

The source code of this first implementation of the Electric Grid optimizer is available at the

IoT-NGIN GitLab repository [31].

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/rl-optimization

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

36 of 95

3 IoT-NGIN Privacy Preserving Federated
Learning

The parallel evolution of both edge computing and Federated Learning has brought

valuable opportunities in the deeper penetration of intelligence into modern services and
applications through the exploitation of available computational and energy resources at

different levels of the devices’ hierarchy.

Edge computing brings computation closer to the edge, i.e., basically closer to the end user.

This implies significant benefits e.g., related to reduced latency and increased energy
efficiency, since considerable communication cost is saved, as data and workloads remain

local, rather than being transmitted to a remote cloud server. Moreover, data are kept at
the data owner’s/controller’s side, rather than being transferred to (untrusty) cloud third
parties.

The edge computing paradigm is manifested for Machine Learning through Federated

Learning (FL), which allows distributed ML model training among a set of collaborating

(federated) edge nodes. In FL, data remain local, as local are the ML model training
computations on that data, happening at edge devices. Then, local models are

communicated to a central aggregation server, which combines the individual model
updates received from individual edge nodes. A number of FL frameworks in literature
support setting up and running training tasks in a federated way, which have diverse

capabilities in real or simulated setups, number of nodes, ML techniques supported, etc. A
comprehensive and comparative analysis of the state-of-the-art FL frameworks has been

provided in D3.1 [6].

Yet, the “traditional” FL approach relies on the existence of trusted entities, both for the

aggregation server and the FL participants, as well as on trusted communications among
them. However, in realistic scenarios, this assumption is often optimistic.

To address the lack of trust in FL systems, privacy preservation techniques have been

suggested in literature, which span the local updates’ masking (e.g., through Differential
Privacy - DP, Multi-party-computation), and identity protection (e.g., through homomorphic

encryption, other cryptographic techniques, etc.). Such techniques have been analyzed in
D3.1.

However, the practical application of those approaches and their efficiency/cost in the ML

model development of different domains is not common ground across FL frameworks, ML
algorithms and application domains. In IoT-NGIN, we have extensively investigated the

application of privacy preservation mechanisms for three state-of-the-art FL frameworks,
namely NVIDIA FLARE [34], Tensorflow Federated (TFF) [35] and FedPATE, an adaptation of

Flower [36] to the Private Aggregation of Teacher Ensembles (PATE) approach [37], as
tabulated in Table 5. This work is reported in D3.3.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

37 of 95

Table 5 - Details of the ML and FL frameworks analyzed in D3.3

FL framework ML algorithm ML

framework

Privacy preservation

technique

NVIDIA FLARE Single-Stage Object

Detector (Yolov5)
Pytorch DP, HE

FedPATE Convolutional Neural

Networks (CNNs) for image

classification (Image
Classifier)

PyTorch DP

TFF Multi-Layer Perceptron-

Classifier
Tensorflow DP

Based on this work, analyzing the efficiency and impact of privacy preservation in FL training

of indicative ML models through the selected three FL frameworks, the next logical step of
IoT-NGIN contributions has been towards the facilitation of the execution of FL training tasks

with the preferred FL framework. To this end, we introduce the Privacy-Preserving Federated

Learning API (PPFL API), as a single-entry point for instantiating FL training tasks.

3.1 Description

Motivation

Usually, the execution of FL training requires significant effort related to the manual

configuration for both the setup of the selected FL framework, the porting of ML models into
the framework and the instantiation of the training activities. This also assumes familiarity with

the internal operation of each FL framework, which might not always be the case. The great
amount of manual work burdens the automation of the training tasks, required for

accelerating operations in both real and simulation scenarios. To this end, IoT-NGIN
introduces the PPFL API, as an indicative entry point for initiating FL training tasks through the

analyzed frameworks and for the indicative ML models investigated, which represent
indicative ML applications.

Approach

The introduction of a common entry point for the instantiation of FL training tasks would

facilitate the work of the AI developer. Indeed, the PPFL API is implemented to hide the
complexity and specificities of each FL framework and privacy preservation technique from
the (API) user and to facilitate the automation of the FL training processes through simple API

calls. Moreover, the integration with the MLaaS platform for model storage enables the use
of the model through model sharing or model serving functionalities of the MLaaS platform

via the relevant endpoints.

Considering the computational overhead that FL training may require, the deployment of FL

training tasks on the cloud has been addressed through the PPFL API, benefiting from the
resilience and scaling features inherent in a cloud environment. As such, the PPFL API is
designed as a cloud native application, which is also able to automate the deployment of

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

38 of 95

FL training tasks in a cloud native architecture. Based on these, the source code of each FL
framework is containerized as Docker images, which are published in a Container repository,
Dockerhub [38] in our case. The Docker images are instantiated as deployments described

in K8S manifests, indicating the components and configuration for each FL framework as
Kubernetes app. Then, a training task with the selected FL framework can be deployed,

submitting it as an Argo Workflow [39] in the underlying K8S deployment. The deployment
approach adopted for the PPFFL API is depicted in Figure 15.

Figure 15 - The PPFLL API deployment approach through Docker containers, K8S and Argo Workflows

The first step towards the realization of the PPFL API has been the homogenized presentation

of the three FL frameworks. The parameterization of each of the three FL frameworks has
been analyzed, so that the definition of the parameters’ values can be provided by the PPFL

API user. Such parameters may include FL related ones, such as the number of clients, ML
related ones, such as the number of rounds and epochs, or even privacy preservation

techniques related, such as DP parameter, etc.

Code updates have been applied to allow containerization and all three frameworks have

been containerized as Docker images and described as K8S manifests. Specifically, the FL
framework containers currently support operation in simulation mode for TFF and FedPATE,
as well as operation on real nodes through NVIDIA FLARE. In addition, having the maximum

level of automation possible in mind, no hardcoded information or configuration has been
left within the containers. On the contrary, as the configuration parameters differ among the

FL frameworks, they are provided by the user and are properly set for each FL framework by
the PPFL API, e.g., as environmental variables or configuration files.

3.2 Technical design

The aim of the PPFL API is to enable the AI developer to easily deploy FL training tasks through
NVIDIA FLARE, FedPATE or TFF, following a CI/CD paradigm for the integration and

deployment of FL frameworks.

In order to achieve this, the PPFL API incorporates the following functionalities:

• User interface allowing interaction of the AI developer with the PPFL API

• Management/execution of the received requests

• Execution of training tasks as defined in the FL request

• Access control-based API protection

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

39 of 95

• Integration with the model storage component of the MLaaS platform, in order to

store the trained global model after each FL training execution and make it available

to third parties via the MLaaS.

The development view of the PPFL API is depicted in Figure 16.

Figure 16 - The technical design of the PPFL API

3.2.1 Description of subcomponents

FL API

The FL API is the interaction point of external users or services to the PPFL API. It provides a set

of RESTful endpoints which allow for submitting requests for deployment of FL training

activities. The API is Authentication, Authorization and Accounting (AAA)-protected through
OAuth 2.0 [40] and OpenID Connect (OIDC) [41] based processes for access and identity

management. Moreover, the validation of requests is within the functionalities of this
subcomponent.

These requests are forwarded to the FL Controller for being further managed and processed.

FL Manager

The PPFL API is designed on the premise of supporting automated, API-driven operation,

without tight coupling with specific FL frameworks. The FL Manager acts as a link between an

FL framework and external users, separating them properly, so that users do not need to
interact with specific FL frameworks. Through this decoupling, adding or removing supported

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

40 of 95

FL frameworks is made easy, while additional feature development in each of these
frameworks can vary from one to another with minimal impact on the external user. The FL
Manager receives the deployment requests, registers relevant information and

communicates with the relevant controller in order to execute the request. Moreover, this
subcomponent is responsible for managing the outcome of the execution and forwarding it

to the API for the external users’ information.

FL Controller

The FL Controller is responsible for instantiating FL training tasks in the relevant FL framework.

The Controller obtains the container images of the FL framework and deploys it within the

Kubernetes cluster. Depending on the FL framework, the controller may trigger the training
in simulation or in real mode. In the simulation mode, the Controller instantiates both the FL

server and the user-specified number of FL clients, initiates the training session, receives the
status of the execution result and the storage of the final model in the MLaaS platform. In the
real mode, the Controller instantiates the FL server, while the FL clients need to be instantiated

individually within the cluster, under the clients’ responsibility. The Controller will instantiate
the training process and will collect any information about the status of the execution, as

well as the storage of the training model in MLaaS.

3.2.2 Interfaces

The interfaces of the PPFL API through which the external user, e.g., an AI developer, may
interact with the API are tabulated in Table 6. The API is also online documented via Swagger,

which is accessible at https://ppfl-api.iot-ngin.onelab/swagger/, while examples of its usage
are provided in section 5.3.

Table 6 - PPFL API interfaces

PPFL API

Provided

Interfaces

FedPATE Interface

Description The interface enables requests for training tasks through the FedPATE FL

framework.

End-point

URL
http://{BASE_URL}/fp/

http://{BASE_URL}/fp/{FP_ID}

Protocol

used

HTTP

Methods GET/POST/DELETE

Message
Request Body (POST):

{

 "net_name": "name",

 "num_rounds": 1,

 "num_teachers": 1,

 "teacher_epochs": 1,

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

41 of 95

 "student_epochs": 1,

 "batch_size": 1,

 "learning_rate": 1,

 "noise": "noise",

 "epsilon": 0,

 "sigma": 0,

 "num_queries": 1,

 "noise_data": 1,

 "bucket_name": "name",

 "domain_name": "name",

 "access_key": "key",

 "secret_key": "key"

}

*values are indicative only

 TensorFlow Federated

 Description The interface enables requests for training tasks through the TFF FL

framework.

 End-point

URL

http://{BASE_URL}/tff/

http://{BASE_URL}/tff/{tff_ID}

 Protocol

used

 HTTP

 Methods GET/POST/DELETE

 Message
Request Body (POST):

{

 "imb_parameter": 1,

 "dp_parameter": 1,

 "n_clients": 1,

 "n_samples": 1,

 "target_label": "label",

 "minio_repo": "repo_url",

 "access_key": "key",

 "secret_key": "key"

}

*values are indicative only

NVIDIA FLARE - Server

 Description
The interface enables requests for starting or shutting down the server

and the admin client of the NVIDIA FLARE FL framework.

 End-point

URL
http://{BASE_URL}/nvoverser/

http://{BASE_URL}/nvoverser/{nvoverser_ID}

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

42 of 95

 Protocol

used

HTTP

 Methods
GET/POST/DELETE

 Message
Request Body (POST):

{

 "start": true,

 "shutdown": true

}

NVIDIA FLARE - Training

 Description
The interface enables requests for triggering training tasks through the

NVIDIA FLARE FL framework.

 End-point

URL

http://{BASE_URL}/nv/

http://{BASE_URL}/nv/{nv_ID}

 Protocol

used

HTTP

 Methods
GET/POST/DELETE

 Message
Request Body (POST):

{

 "epochs": 1,

 "batch_size": 1,

 "num_clients": 1,

 "num_rounds": 1,

 "bucket_name": "name",

 "domain_name": "name",

 "secret_key": "key",

 "access_key": "key"

}

*values are indicative only

Required

Interfaces

No interfaces are required for the PPFL API.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

43 of 95

4 Polyglot Model Sharing

4.1 Description

The Machine Learning Models Sharing Platform offers a secure environment to manage

datasets and the machine learning models' lifecycle, offering a user-friendly interface that

abstracts end users from the complexities involved, such us, to cite a few of them: the

metadata management for enabling assets’ traceability, guaranteeing their immutability, as

well as ensuring the reproducibility for all trained machine learning models.

The platform offers a transparent data integrity mechanism, which guarantees the

immutability and complete traceability of all artifacts stored (e.g., datasets, machine

learning models, training results); this is achieved by using a Blockchain-based approach for

storing relevant metadata for all its assets.

The feature set that the framework offers is very useful for any applications that involve the

management of machine learning models that involve sensitive information. Additionally,

due to the implementation of the Polyglot Model service, the platform is especially suited for

IoT applications, providing a simple solution for handling sensitive data, machine learning

model training, and offering a platform-independent runtime machine learning model

representation that enables a wider array of compatible hardware for inference purposes.

4.2 Technical Design

4.2.1 Architecture

The Polyglot Model Sharing framework has been designed following a microservices-based

approach, with distinct, single purpose services, namely the Model Sharing, the Blockchain,
the Model Training and the Model translation services. This decision was taken in

concordance to other key architectural aspects, mainly offering a Cloud native solution, with
a strong focus on DevOps & Continuous Integration / Development and containerization.

We will now introduce the main components of the platform (see its architecture in Figure

17) in the following sub-sections.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

44 of 95

Figure 17 - Architecture diagram of the Polyglot Model Sharing framework

4.2.1.1 Components

4.2.1.1.1 Model Sharing service

This service provides an interface for registering (i.e., storing its metadata and artifacts) and
retrieving ML models and datasets in the platform.

It implements operations for registering and downloading datasets, as well as registering

models, scheduling their training, and downloading the resulting trained models.

For all the assets under its governance, it stores relevant metadata in the blockchain, with

the help of the platform’s Blockchain service (see next subsection).

By storing all relevant assets’ metadata in the platform’s blockchain instance, and

overseeing the training phase of the models in a controlled environment, we can guarantee
the replicability of all the trained models, and ensure that the training results were achieved
exclusively with the specified inputs. Additionally, this metadata allows for guaranteeing the

integrity of all stored assets.

The operations implemented and offered by the service are further detailed in the

implementation section.

4.2.1.1.2 Blockchain service

This service provides an interface for deploying and interacting with smart contracts in a EVM
(Ethereum Virtual Machine) [42] blockchain (e.g., ConsenSys Quorum [43]).

It implements operations for creating, retrieving, and interacting with smart contracts in the

platform’s blockchain instance.

The operations implemented and offered by the service are further detailed in the

implementation section.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

45 of 95

4.2.1.1.3 Model Training service

This service is in charge of scheduling model training jobs to be executed in the training

cluster. As mentioned in the platform’s introductory section, the main motivation for this
service is offering a controlled environment for the training of machine learning models, to

be able to guarantee the reproducibility and immutability of the resulting trained machine
learning models. This service trains models in a batch manner, given complete train and test
datasets, unlike the Online Learning service introduced in section 2.1, which trains models

with data injected dynamically. Moreover, this service is only required to guarantee the
integrity of a model stored in the MLaaS storage for a given dataset.

Model training jobs are scheduled executions of containers that enclose the definition and

instructions for the training of a registered machine learning model.

Registered models must provide a training container image, stored in a container registry of

choice, which will be provided with the training dataset indicated upon the model’s
registration, and its resulting model will be automatically registered in the platform, making it

available to the end user, and the rest of the platform’s features.

The model training jobs are executed in the platform’s MLaaS Kubernetes Cluster, with the

help of Argo Workflows [39].

The operations implemented and offered by the service are further detailed in the

implementation section.

4.2.1.1.4 Model Translation service

This service offers the ability for the platform to transform registered machine learning models
into the Open Neural Network Exchange (ONNX) [44] format upon training, offering a

compatibility layer for all stored models in the platform.

By providing this compatibility layer, model developers can implement their machine

learning models in their backend of choice (i.e., TensorFlow, PyTorch), without compromising
on the limited hardware support provided by their backend of choice.

The operations implemented and offered by the service are further detailed in the

implementation section.

4.2.1.2 External Dependencies

The platform relies on several external components for the implementation of its core
features.

We will proceed to introduce the platform’s external dependencies in the following sub-

sections.

4.2.1.2.1 MLaaS PostgreSQL instance

The MLaaS PostgreSQL [45] instance is required in order to host the relational database that

the Model Sharing service depends on for storing additional information about the models
registered in the platform.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

46 of 95

4.2.1.2.2 IoT-NGIN ConsenSys Quorum instance

The IoT-NGIN ConsenSys Quorum Blockchain instance is required by the Blockchain service,

in order to store the metadata of the datasets and machine learning models registered in
the platform.

The metadata is stored in smart contracts, which are immutable programs stored in the

blockchain, which control the access and actions of their implementation, based on the
contract’s definition.

For our use case, contracts are used as means of storage of the relevant metadata of

datasets and models registered in the platform.

4.2.1.2.3 MLaaS Model Storage instance

The MLaaS Model Storage instance, based on MinIO, is required by the Model Sharing

service, as the platform of choice for object storage solution.

The choice of object storage as the platform’s artifact storage solution is justified by the

flexibility provided in its organizational structure, and its content-agnostic approach to
storage.

The MLaaS MinIO instance for the project stores all the platform’s persistent assets, i.e.,

datasets and machine learning models.

4.2.1.2.4 Argo Workflows instance

The Argo Workflows instance is required by the Model Training service, in order to schedule
the model training jobs.

Argo Workflows allows for the execution of sequential jobs in Kubernetes Clusters. In our use

case, each model registered on the platform triggers a model training job, which executes

a user-defined container image, providing it with the associated model dataset, and
registers the resulting model in the platform. The registration step, in this context, involves

storing the training results in the Model Sharing service, which, in turn, coordinates the update
of the model metadata in the blockchain instance by means of interfacing with the
Blockchain service. A more in-depth explanation of this process can be found in the section

4.3.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

47 of 95

4.2.2 Implementation

The repository containing the implementation of the platform is hosted in the IoT-NGIN GitLab

project [46].

4.2.2.1 Project Repository Structure

We will now further detail the project’s repository structure (see Figure 18).

Figure 18 - Polyglot Model Sharing framework implementation repository directory structure

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

48 of 95

- /docs: directory containing platform documentation and technical diagrams

- /services: directory containing the platform’s services implementations

o /services/{service}: directory containing the service’s implementation

▪ .kube/: contains the service’s Kubernetes resource definitions

▪ app/: contains the Python project implementation

▪ .env.sample: reference file for the service’s required environment variables

▪ Dockerfile: contains the instructions for building the service’s container

image
▪ poetry.lock: service’s Poetry dependencies lockfile

▪ pyproject.toml: configuration file for the Python project’s tooling

▪ requirements.txt: compiled form of the Python project’s dependencies

▪ {service}_client.json: OpenAPI schema for the service’s HTTP REST API

- generate_clients.sh: script for programmatically generating SDK for interacting with the

platform service’s HTTP REST APIs, based off their OpenAPI specification definitions

- openapitools.json: OpenAPI Generator configuration file

- README.md: project’s repository introductory documentation

The platform components (services) have been implemented following a microservices-

based approach, with distinct, single purpose services.

They have been developed in Python, using the FastApi framework. The service's

dependency management is handled using Poetry [47].

Each service exposes a REST API, along with its specification and the documentation

available on the OpenAPI format; a Swagger UI instance is always accessible at the /docs

HTTP route. The OpenAPI schema [48] for the REST API is dynamically generated by FastAPI

when running the server, and can be accessed via HTTP at /openapi.json.

In order to interact with the service, a Python client for each service is provided, providing a

SDK for interacting with the service's REST API. This client is generated programmatically using

the OpenAPITools' OpenAPI Generator [49], using the aforementioned OpenAPI schema.

The Python clients are published in the project's GitLab Package Registry [50].

A Dockerfile [51] is provided for each service, in order to build a container image that runs

the service in a containerized way.

In a similar manner, the container image, built from the included Dockerfile instructions, is

published in the project's registry [52].

The set of Kubernetes resources required for deploying the service in a Kubernetes cluster

can be found at the .kube directory in the service's code repository.

4.2.2.2 Components

In section 7 Annex, the main components of the Polyglot Model Sharing Framework are

described in terms of their exposed interfaces and their main supported processes.

https://fastapi.tiangolo.com/
https://python-poetry.org/
https://spec.openapis.org/oas/v3.1.0
https://github.com/OpenAPITools/openapi-generator
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages
https://docs.docker.com/engine/reference/builder/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

49 of 95

4.3 Implementation for IoT-NGIN LLs

Figure 19 - Sequence diagram of the Polyglot Model Sharing Framework demo use case

At the time of writing, the Polyglot Model Sharing Framework has not been used by the IoT-

NGIN Living Labs’ use cases, but it is expected some of them (e.g., Smart Agriculture and

Smart Energy LLs) will use it during the final validation, reported by WP6. In this section, we
provide our own use case to showcase (Figure 19) the overall end-to-end usage of the

platform.

In the sequence diagram shown in Figure 19, we can see in further detail the interactions

between the platform’s services, as well as the platform’s external dependencies for our own

use case.

1. We register the dataset to be used in the training phase in the platform

2. We register the machine learning model in the platform, referencing the registered
dataset

3. Wait for the model training step to complete.
4. Retrieve (download) the model
5. Request model in ONNX format (polyglot service)

For our example use case, we document, in the following, the workflow for registering and

training an image classification model on the platform.

The implementation for this demo case can be found in the project’s GitLab repository, in

the /demo directory (Figure 20).

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

50 of 95

Figure 20 - Demo use case's implementation directory structure

The machine learning task is a multinomial image classification [53] for handwritten digits. We

will use the MNIST [54]dataset for training this model.

We implement the image classification model in Pytorch [24]. This image classification model

will be based on a CNN architecture [55] (Listing 1).

MNISTNetwork(

 (features): Sequential(

 (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1))

 (1): ReLU()
 (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,

ceil_mode=False)

 (3): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1))
 (4): ReLU()

 (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
ceil_mode=False)

)

 (classifier): Sequential(
 (0): Flatten(start_dim=1, end_dim=-1)

 (1): Linear(in_features=800, out_features=1024, bias=True)

 (2): ReLU()

 (3): Linear(in_features=1024, out_features=512, bias=True)

 (4): ReLU()
 (5): Linear(in_features=512, out_features=10, bias=True)

 (6): Softmax(dim=1)
)

)

Listing 1 - Demo use case classification machine learning model definition

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

51 of 95

For us to be able to register and train our machine learning model in the platform, we need

to provide our model definition and training process as a container image (Listing 2). This

container image must conform to the guidelines specified in the implementation section 7.3
of the Model Training service.

FROM python:3.8.16-slim

RUN apt-get update

WORKDIR /code

COPY requirements.txt /code/requirements.txt

RUN pip install -r requirements.txt

COPY ./app /code

CMD ["python","main.py"]

Listing 2 - Dockerfile instructions for the demo use case's model training container image

In our use case, we are using this platform’s GitLab project container registry for hosting our

training image.

Once we have all the required pre-requisites, we will further proceed with the model

registration process.

Before registering the model in the platform, we first must register the dataset that we want

to use for our model training job.

We will do this by executing the following HTTP request:

bash

curl --request POST \

 --url http://localhost:9005/dataset \

 --header 'content-type: multipart/form-data' \
 --form dataset=@mnist-original.mat \

 --form 'metadata={
 "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",

 "samples_dimension": "(1,32,32)"

}'

Upon the successful registration of the dataset, the service will respond to our request with a

unique identifier (UUID) for the dataset. We will use the received UUID for referring to our
dataset when registering our model in the platform.

json

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

52 of 95

{
 "dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9"

}

We will now check the platform’s MinIO instance to check that the dataset artifact has

been registered in the object storage (Figure 21):

Figure 21 - Dataset artifact stored in the object storage

As we can see, the dataset has been stored in the datasets bucket, named with the UUID

that we received upon registration.

We can additionally check that the dataset’s metadata has been successfully registered in

the platform’s blockchain instance by verifying that a smart contract for this dataset has
been deployed.

This is possible by executing the following request to the Blockchain service, indicating the

address of the deployed contract (which can be found in the project’s internal PostgreSQL
database.

bash

curl --request GET \

 --url

http://127.0.0.1:9007/contract/0x9ab7CA8a88F8e351f9b0eEEA5777929210199295

The service responds with the following JSON-encoded text, which represents the metadata

stored in the smart contract.

json

{

 "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",
 "samples_dimension": "(1,32,32)",

 "size_bytes": 55426379,
 "hash": "adbc812a1f0ab4c881a41fc872cb643e"

}

We will now register our model in the platform, referring to our dataset with the UUID received

in the previous step. We will do so by executing the following HTTP request.

bash

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

53 of 95

curl --request POST \
 --url http://localhost:9005/model/ \

 --header 'content-type: multipart/form-data' \
 --form 'metadata={

 "model_params": {

 "developer_id": "dd8fca81-a999-40f5-81f0-68627e303a27",
 "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",

 },

 "data_params": {

 "dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9"

 }
}' \

 --form train_image=registry.gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/demo_model_image

Upon the successful registration of the model in the platform, the service will respond to our
request with a unique identifier (UUID) for the model. We will use the received UUID for

referring to our model in the platform.

json

{

 "model_id": "62e8efbc-47e5-4e60-abe5-8fb8a7b676ba"

}

We will now wait for the model training job to finish. We can check the status of the training

job by invoking the model retrieval procedure in the Model Sharing service.

json

curl --request GET \

 --url http://localhost:9005/model/62e8efbc-47e5-4e60-abe5-8fb8a7b676ba

If the training job is still not finished, the service will respond in this way:

text

"Model 62e8efbc-47e5-4e60-abe5-8fb8a7b676ba has not been trained yet. Please,

try again later."

Otherwise, we will receive the resulting artifact from the training job.

We will now, as in the case of the dataset registration, check that the trained model has

been stored in the platform’s MinIO instance (Figure 22).

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

54 of 95

Figure 22 - Trained model in MLaaS storage

As in the previous case, we can find our model stored in the models’ bucket, with the UUID

we received when retrieving the model from the Model Sharing service.

We will also check that the model’s metadata stored in the blockchain includes the training

results (i.e., it has been verified):

bash

curl --request GET \
 --url

http://127.0.0.1:9007/contract/0x43D1F9096674B5722D359B6402381816d5B22F28

Inspecting the response received from the service, we can identify that the res_hash

parameter is present, and that it matches the one we can calculate in the trained model

previously retrieved.

json

{

 "model_params": {

 "developer_id": "dd8fca81-a999-40f5-81f0-68627e303a27",
 "organization_id": "5d066d58-06de-47ab-a2f6-c8f413e21947",

 "train_image_hash": "5b4d62ed98ebaaf764a63ae31eaaf8d6",

 "res_hash": "f73b9eb23dcf464a1916d8e991dfaff4"
 },

 "data_params": {

 "dataset_id": "b2a30898-b72c-4b08-802b-7786425d01f9"

 }

For the last step of our demo, we will invoke the model translation service in order to translate

our trained model into the ONNX format. We will do so by executing the following request.

json

curl --request POST \
 --url http://localhost:9008/translate/62e8efbc-47e5-4e60-abe5-8fb8a7b676ba

The service will then respond to our request with the trained model in the ONNX format.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

55 of 95

5 Installation and User Guide

5.1 Online Learning Service

This section focuses on the updates required to create, deploy and use an OL service within
the MLaaS, w.r.t. the procedure described in D3.3. Figure 23 shows the procedure for creating

and deploying an OL service.

Alike D3.3, it is required to have a ML/DL model implemented before creating the OL service.

The model creation stage is out of the scope of OL framework and must be provided by ML
engineers. In addition, the model also must be registered in the Model Sharing.

The first step is the OL service adaptation. This stage involves the provisioning of three different

components:

i. Predictor: Configuration of different parameters that are specific for each OL service

such as the MinIO location, the framework used for implementing the ML/DL model,
the service name, etc.

ii. Transformer: Implementation of the data pre and post processing pipeline. Each OL
service requires its own Transformer since the input data is use-case specific.

iii. Explainer (Optional): Implementation to provide explanations to the inferences made.
This component is optional and the XAI algorithm must be implemented by the ML
engineers and stored in MinIO so the Explainer can load it.

Once the components are implemented and configured, each of them needs to be

encapsulated in a Docker image. This Docker image must be uploaded to a Docker registry

in order for Kubeflow to include it to the pipeline. An example of Dockerfile is provided in
D3.3.

At this point, each OL component is containerized, and Docker images are available in

Docker registry.

Before deploying the OL service by executing a Kubeflow pipeline, Kserve YAML manifest is

defined (Listing 3). This file specifies the Docker image of each component, name of service
and configuration of environment variables.

OL service
adaption

Docker image of
each

component

YAML
configuration

for Kserve
deployment

Kubeflow
Pipeline

implementation

Execute
Kubeflow
Pipeline

Define Camel-k
binding

(optional)

Figure 23 - Workflow to deploy OL service

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

56 of 95

apiVersion: serving.kserve.io/v1beta1

kind: InferenceService

metadata:

 name: # <Inference Service Name>

 namespace: # <Namespace>

spec:

 predictor:

 containers:

 - name: # Conatiner name

 image: # <OL_Predictor_Image>

 imagePullPolicy: Always

 envFrom:

 - configMapRef:

 name: # <Env_Config_Map>

 - secretRef:

 name: # <Env_Secret>

 transformer:

 containers:

 - image: # <OL_Transformer_Image>

 name: # Conatiner name

 imagePullPolicy: Always

 envFrom:

 - configMapRef:

 name: # <Env_Config_Map>

 - secretRef:

 name: # <Env_Secret>

 explainer:

 containers:

 - image: # <OL_Explainer_Image>

 name: # Conatiner name

 imagePullPolicy: Always

 envFrom:

 - configMapRef:

 name: # <Env_Config_Map>

 - secretRef:

 name: # <Env_Secret>

Listing 3 - Kserve YAML manifest

Once Kserve YAML manifest is created, the next steps are the same as described in D3.3. At

Kubeflow, a Jupyter Notebook is created and the Kubeflow pipeline is implemented. Once
the execution is finished, the OL API REST service will be deployed.

Optionally, Camel-K binding can be created to support pub/sub communications. The

binding creation is also available in D3.3.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

57 of 95

Section 2.1.2 described OL monitoring service. This is an additional service, so its

implementation and deployment are outside of the Kubeflow Pipeline. This service needs
Grafana and Prometheus to be deployed in the cluster so its metrics can be visualized.

Both Grafana and Prometheus have been deployed using Helm [56]. Helm allows to

configurate applications by applying a configuration YAML manifest. Therefore, Prometheus

is configured so it can scrap new OL monitoring service. The configuration file can be find in
the GitLab repository [57].

Figure 24 depicts the deployment steps.

The first step is the OL monitoring service adaptation. This step aims to configure some aspects

such as the data type to be monitored, the reference data and kind of metrics to be
registered. The service implementation can be founded in the Monitoring for MLaaS GitLab

repository [57]. Once the service is ready, it must be containerized in a docker image and
upload to a Docker registry. The Dockerfile can be found in the GitLab repository for MLaaS
Prometheus [58]. Finally, the YAML manifest is defined (Manifest for MLaaS Prometheus [59])

and applied so the service is deployed.

After following the steps described above, there are two API REST services i) the OL service

and ii) the OL monitoring service. OL Service presents two endpoints, one corresponds to the
Transformer and the other to the Explainer. The Transformer is waiting to receive data in JSON

format either to update the model or to perform an inference. The Explainer is expecting
data in JSON format, however in this case it is to provide an explanation of the inference.
The way to invoke the OL services is described in D3.3.

Regarding the OL monitoring service, this service does not present any endpoint accessible

from outside of MLaaS. However, the Grafana GUI can be accessed to observe the OL

monitoring service metrics. Grafana allows you to create dashboards or import them in JSON
format. Any of the 2 options is valid and works. Some of the dashboards that have been
shown in section 2.1.3.1 can be located in the GitLab project for MLaaS Grafana [60].

OL Monitoring
adaptation

Docker image
OL Monitoring
YAML manifest

Figure 24 - Workflow to deploy OL monitoring service.

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/deployment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

58 of 95

5.2 Reinforcement Learning Service

Instructions to install the RL-based Optimizer as an MLaaS service and to use it will be given
in D6.3 [1]. At the time of writing, a first version of the RL-based Optimizer has been provided,

which needs preliminary evaluation (planned to be reported in D7.3 [33]), further
development and improvement, and therefore, it is not yet ready to be delivered for wide

usage within the IoT-NGIN pilot.

5.3 Privacy-preserving Federated Learning

Framework

The following instructions refer to the installation of PPFL API.

5.3.1 Prerequisites

The prerequisite technologies to successful installation of the PPFL API include:

• Docker [51]

• Kubernetes [61]

• Argo Workflows [39]

• Keycloak [62]

• Helm [56]

• Linux OS, ideally Ubuntu 20.04 LTS

5.3.2 Installation Guide

5.3.2.1 Local deployment

First, the repository for the PPFL API must be cloned in the desired local directory.

bash

git clone https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-
preserving-federated-learning/privacy-preserving-federated-learning-api.git

Next, the required packages must be installed.

bash

pipenv install

As the PPFL API relies on Keycloak for AAA services, the environmental variables must be

defined in the host OS as follows.

Table 7 - Environmental variables’ configuration for local deployment

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

59 of 95

Variable Description Example

KEYCLOAK_SERVER_URL The URL of the Keycloak server https://keycloak.iot-

ngin.onelab.eu/

KEYCLOAK_REALM The name of the Keycloak realm iot-ngin

KEYCLOAK_CLIENT_ID The ID of the Keycloak client ppfl

KEYCLOAK_CLIENT_SECR

ET_KEY

The client secret key used to

authenticate with Keycloak

<set to the key ' ' in

secret ' '>

The values for KEYCLOAK_SERVER_URL, KEYCLOAK_REALM, KEYCLOAK_CLIENT_ID,

KEYCLOAK_CLIENT_SECRET_KEY must be replaced with the appropriate values for the

Keycloak instance that will be used.

Finally, in order to run the API server, the following command should be hit.

bash

python manage.py runserver

The API server is now running at http://localhost:8000/.

Finally, the user may call the PPFL API at http://localhost:8000/{fl_framework}/, providing a

valid JWT token in the authorization header, where fl_framework could be tff, fp, nv for

TensorFlow Federated, FedPATE or NVIDIA Flare, respectively.

5.3.2.2 Docker deployment

To deploy the API using Docker, the steps provided below must be followed.

First, build the Docker image using the following command.

bash

docker build -t your-image-name

Next, push the Docker image to a registry, replacing docker-registry and image-name with

the appropriate values for your environment.

bash

docker login
docker tag image-name docker-registry/image-name
docker push docker-registry/image-name

Copy the docker-compose.yml located under the fl-api directory to a server supporting

docker and docker-compose. Then, create a .env file under the same directory with the
configuration presented in Table 8.

http://localhost:8000/
http://localhost:8000/%7bfl_framework%7d/

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

60 of 95

Table 8 - Environmental variables’ configuration for Docker deployment

Env variable name Description

POSTGRES_HOST The hostname of the PostgreSQL server

POSTGRES_DB The name of the PostgreSQL database

POSTGRES_USER The username for the PostgreSQL user

POSTGRES_PASSWORD The password for the PostgreSQL user

DJANGO_SETTINGS_MODULE The settings module used by Django

SECRET_KEY The secret key of the PPFL API app

ARGO_HOST The URL of the Argo Workflows server

NAMESPACE The K8S namespace in which the application is

deployed.

KEYCLOAK_SERVER_URL The URL of the Keycloak server

KEYCLOAK_REALM The name of the Keycloak realm

KEYCLOAK_CLIENT_ID The ID of the Keycloak client

KEYCLOAK_CLIENT_SECRET_KEY The client secret key used to authenticate with

Keycloak

Deploy the Docker image to a Docker host, issuing the command.

bash

sudo docker-compose up --build

Finally, the user may call the PPFL API Docker container at

http://localhost:8000/{fl_framework}/, providing their token as authorization header
(acquired as explained in section 5.3.2.1), where fl_framework could be tff, fp, nv for

TensorFlow Federated, FedPATE or NVIDIA Flare, respectively.

5.3.2.3 Kubernetes Deployment

For the installation of the API in Kubernetes, the PPFL API repository must first be cloned with
the following command.

bash
git clone https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-
preserving-federated-learning/privacy-preserving-federated-learning-api.git

Then, the environmental variables for the PPFL-API Kubernetes deployment must be

configured.

http://localhost:8000/%7bfl_framework%7d/

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

61 of 95

bash
cd ppfl-api/fl-api/Kubernetes/ppfl

The PPFL-API relies on a Postgres instance, on ArgoWorkflows and a Keycloak instance, as

e.g., the one integrated with IoT-NGIN Access Control component. Before deploying the

PPFL API, the secrets located in kubernetes/postgres/secrets.yaml and
kubernetes/ppfl/secrets.yaml have to be configured. Ιn addition, the environmental

variables in the PPFL API deployment, located in kubernetes/ppfl/deployment.yaml, must be
filled in with the appropriate values, as presented in Table 9.

Table 9 - Environmental variables’ configuration for K8S deployment

Env variable name Description Value*

POSTGRES_HOST The hostname of the PostgreSQL

server

iot-ngin-ppfl-api-

postgres

POSTGRES_DB The name of the PostgreSQL

database

database

POSTGRES_USER The username for the PostgreSQL

user

user

POSTGRES_PASSWORD The password for the PostgreSQL user <set to the key 'postgres-

password' in secret 'iot-
ngin-ppfl-api-postgres'>

DJANGO_SETTINGS_MO

DULE

The settings module used by Django flapi.settings.prod

SECRET_KEY Te secret key of the PPFL API app <Set the key

‘SECRET_KEY’ in secret
‘iot-ppfl-api’>

ARGO_HOST The URL of the Argo Workflows server http://argocd-argo-

workflows-server

NAMESPACE The K8S namespace in which the

application is deployed.

iot-ngin

KEYCLOAK_SERVER_URL The URL of the Keycloak server https://keycloak.iot-

ngin.onelab.eu/

KEYCLOAK_REALM The name of the Keycloak realm iot-ngin

KEYCLOAK_CLIENT_ID The ID of the Keycloak client ppfl

KEYCLOAK_CLIENT_SECR

ET_KEY

The client secret key used to

authenticate with Keycloak

<set to the key

'KEYCLOAK_CLIENT_SEC

RET_KEY' in secret 'iot-
ppfl-api'>

*Indicative values from a test deployment used for exemplary purposes in this guide

The installation of the auxiliary components is described in the following.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

62 of 95

Argo Workflows

The PPFL-API relies on the Argo Workflows component to deploy the dockerized FL

frameworks. The installation of the component is performed via Helm, particularly using the
bitnami chart. To install, the following step must be performed.

bash
cd ppfl-api/fl-api/Kubernetes/argoworkflows
helm repo add bitnami https://charts.bitnami.com/bitnami
helm install argocd -f values.yaml bitnami/argo-workflows
kubectl apply -f role.yaml

POSTGRES

To install the Postgres instance, the secrets.yaml file found in (ppfl-api/fl-

apj/kubernetes/postgres/secrets.yaml) needs to be configured with the login credentials of

the Database and deployed, with the following command.

bash
kubectl apply -f kubernetes/postgres/secrets.yaml

Also, the name of the global.postgresql.auth.database key must be changed in the

values.yaml file of the Postgres (ppfl-api/fl-apj/kubernetes/postgres/values.yaml) to match

the environmental variables POSTGRES_DB in the Kubernetes deployment manifest of PPFL-
API. Then, it can be deployed with the following command.

bash
helm install iot-ppfl-api-postgres bitnami/postgresql -n iot-ngin --version
12.1.3 -f kubernetes/postgres/values.yaml

PPFL-API deployment

Finally, to deploy the PPFL-API, the following command must be executed.

bash
kubectl apply -f kubernetes/ppfl

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

63 of 95

5.3.3 User Guide

Keycloak

As the PPFL API is AAA-protected, authentication token from the deployed Keycloak

instance must be obtained and provided in the API call request, in order to be able to trigger

the PPFL API services. To obtain an access token from Keycloak, a request needs to be made
to the token endpoint with the use of the Keycloak credentials, for a particular user. Figure
25 shows an example call to this endpoint in the Postman REST Client [63], indicating how to

use the Keycloak username and password to authorize the request and successfully obtain
a Keycloak access token.

Figure 25 - REST call to retrieve a user access token.

In the following, the use of the PPFL API for using each of the three FL frameworks is

demonstrated. In any case, the access token retrieved previously is necessary for authorizing

any interaction with the PPFL API.

FedPATE

The interaction with the PPFL API for the FedPATE framework is realized under the /fp/

endpoint. To run the FedPATE model, the relevant parameters have to be set in the request

body, as shown in Figure 26. Specifically, the required parameters can be described as
follows.

• --net_name: str, name of your model.

• --num_rounds: int, number of rounds for FL.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

64 of 95

• --num_teachers: int, the number of teachers/clients.

• --teacher_epochs: int, number of epochs to train the teachers.

• --student_epochs: int, number of epochs to train the student.

• --batch_size: int, batch size (32 or 16).

• --learning_rate: float, learning rate (default=0.001).

• --noise: str, type of noise for the aggregation mechanism ('laplacian' or 'gaussian',

default='laplacian').

• --epsilon: float, epsilon for laplacian distribution (if --noise='laplacian').

• --sigma: float, standard deviation for gaussian-normal distribution (if --noise='gaussian').

• --num_queries: int, number of queries to the student.

• --noise_data: int, the number of data to add Laplacian noise (must be less than

num_queries).

• --bucket_name: str, the bucket in MinIO where the best student model will be stored.

• --domain_name: str, the domain where the model will be stored.

• --access_key: str, access key for accessing MinIO.

• --secret_key: str, secret key for accessing MinIO.

Figure 26 - Parameters setting in the POST request body for running the FedPATE framework.

After a successful request, a container is deployed and the training of the model starts in

FedPATE in simulation mode.

Figure 27 shows that the pod for FedPATE (Flower PATE) has been created successfully. This

view is available to the administrator of the MLaaS platform.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

65 of 95

Figure 27 - Deployed pods for FedPATE training

Then, the logs in Figure 28 show the execution of the training process in FedPATE, as well as

its completion.

Figure 28 - Training through FedPATE ran and completed

At the end of the training, the trained model is stored in an external storage. In the context

of the IoT-NGIN project, the Minio storage integrated in MLaaS platform is utilized. Figure 29

shows that the final trained student model (i.e., best_student_model_test.pth) is available at
MLaaS' MinIO object storage, after the training procedure is finished.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

66 of 95

Figure 29 - Final model trained through FedPATE has been stored in MLaaS’ Minio storage

NVIDIA FLARE

Here, an indicative execution of FL training process under real nodes is demonstrated

through NVIDIA FLARE. As a first step, the NVIDIA FLARE server (federated server or

aggregator) and the observer services have to be started, in order for the clients later to be
able to connect to the server and start their training.

Server and Observer

Figure 30 shows the request to start the server and the observer of the NVIDIA FLARE

framework. The request parameters include:

• --start: Boolean; When set to true, the request asks for the server to start.

• --shutdown: Boolean; When set to true, the request asks for the server to shut down.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

67 of 95

Figure 30 - Starting the NVIDIA FLARE server through the PPFL API

The previous POST request successfully creates the observer and server pods, as shown in

Figure 31.

Figure 31 - NVIDIA FLARE server and observer pods

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

68 of 95

Clients

The next step for initiating a training session is the instantiation of the clients and their

connection to the Federated server already running. As this is a real deployment, the clients

are instantiated individually, running the relevant client software. Particularly, each client
should download and pull a clients' specific docker image from Synelixis' docker registry

called "synelixis/nvflare-yolo:v7-client". Afterwards, in order for the ML model to be trained on
each client's private data, a docker volume has to be created in the above docker image
as the ML model must have access to these data. This can be done with the following

command: "docker run -it --gpus all -v /path/to/client's-private-data:/nvflare-
yolo/voc_pascal_small synelixis/nvflare-yolo:v7-client /bin/bash", where the flag "--gpus all" is

used for gpu acceleration, which also opens an interactive terminal. Finally, in order to
connect to the Federated Learning system and thus with the FL server, each client should run

the script "./clients/client-<client-index>/startup/start.sh", where client-index identifies the
client. Figure 32 shows the described procedure for the first client out of the 3 of our FL system.
As we can see, the client has made a docker volume in order to give access to its private

data and then it successfully connects to the FL system by running the script "./clients/client-
1/startup/start.sh", as it is the first client to our FL system. The remaining clients follow similar

procedure with indices "2" and "3" set for the client-index in the script for the second and the
third one, respectively.

Figure 32 - Running NVIDIA FLARE client software for client-1

Training

After the server has been created and the clients have connected to it successfully, a

training process may be triggered through a POST request with the parameters shown in

Figure 33.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

69 of 95

Figure 33 - Indicative parameter setting for starting a training process though NVIDIA FLARE

Assuming valid request parameter setting, the FL controller for NVIDIA FLARE starts the model

training.

Indicatively, Figure 34 depicts the training process in one of the three clients.

Figure 34 - Logs of the training process at the client side.

After the training procedure has finished, the final model is stored in the Minio instance of the

MLaaS platform, as shown in Figure 35.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

70 of 95

Figure 35 - Final model of NVIDIA FLARE training stored in Minio model storage component of the

MLaaS platform

TensorFlow Federated

Last, but not least, the instantiation of the FL training process (simulation mode) through

TensorFlow Federated is presented. First, the training parameters are provided in the POST
request for triggering the training, under the /tff endpoint, as shown in Figure 36. Specifically,

the following parameters must be set:

• --epochs: int, number of epochs to train.

• --batch_size: int, batch size (32 or 16).

• --num_clients: int, the number of clients.

• --num_rounds: int, number of rounds for FL.
• --bucket_name: str, the bucket in MinIO where model will be stored.

• --domain_name: str, the domain where the model will be stored.

• --secret_key: str, secret key for accessing MinIO.

• --access_key: str, access key for accessing MinIO.

Assuming valid parameter setting, this request will result in the relevant pod being deployed

in the cluster via the FL Controller.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

71 of 95

Figure 36 - Instantiating TFF training through the PPFL API

The training process gets started and completed, as indicated in the logs of Figure 37.

Figure 37 - The training process through TFF has been completed

As with the other two FL frameworks, the final model gets stored in the Minio component of

the MLaaS platform, as depicted in Figure 38.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

72 of 95

Figure 38 - Final model trained through TFF stored in MLaaS’ Minio storage

5.4 Polyglot Model Sharing Framework

This section describes the way to launch the Model Sharing framework in a computational
environment. A similar procedure has been followed to install the framework in MLaaS, by

using their K8s manifests.

There are two main ways of running the Model Sharing platform in a local environment:

1. Running each service's project in the host OS

2. Running each service as a container

Each services provides a container image, which can be run using Podman [64]i. The source
Dockerfiles including the instructions of the container images for each service are located in

their respective containing directories, as previously described in the implementation
section. The project's container image registry offers a visual interface (Figure 39) for
inspecting the hosted artifacts, which can be accessed from the project's GitLab repository

[65].

https://podman.io/

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

73 of 95

Figure 39 - Project's GitLab container registry interface

The environment variables required by each service are documented in their respective

.env.sample files (Listing 4).

plain

DB_HOST=localhost

DB_USER=test

DB_PASS=test
DB_NAME=test

DB_PORT=5432
MINIO_ENDPOINT=127.0.0.1:9000

MINIO_ACCESS=w88MSWdgwM51PBN1

MINIO_SECRET=RBlcEFACZzzMx59JgGapIJ7iVnkA3B5S

MINIO_DATASETS_BUCKET=datasets

MINIO_MODELS_RES_BUCKET=models_res
MINIO_SECURE=false

BLOCKCHAIN_ENDPOINT=http://localhost:9005

DOWNLOAD_DIR=/tmp/model-sharing/download

Listing 4 - Model Sharing service's .env.sample file

In this section, we will detail how to setup a local environment.

5.4.1 External dependencies

5.4.1.1 PostgreSQL instance

You can run a PostgreSQL instance locally with Podman using the following command:

bash

podman run --name postgres-model-sharing -e POSTGRES_PASSWORD=<password> -e

POSTGRES_USER=<user> -e POSTGRES_PASSWORD=<pass> -e POSTGRES_DB=<db_name> -d -p
8080:8080 postgres

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

74 of 95

5.4.1.2 ConsenSys Quorum Instance

Please, refer to the following official guide [66] for running a Quorum instance locally, using
a local Kubernetes cluster (e.g. minikube [67]).

bash

podman run --name postgres-model-sharing -e POSTGRES_PASSWORD=<password> -e

POSTGRES_USER=<user> -e POSTGRES_PASSWORD=<pass> -e POSTGRES_DB=<db_name> -d -p

8080:8080 postgres

5.4.1.3 MinIO Instance

You can run a MinIO instance locally with Podman using the following command:

bash

podman run -d -p 9000:9000 -p 9001:9001 quay.io/minio/minio server /data --

console-address ":9001"

5.4.1.4 Argo Workflows Instance

Please, refer to the official guide [68] for running an Argo Workflows instance locally, using a
local Kubernetes cluster (e.g., minikube).

5.4.2 Running Services Locally

As the project has been designed following a microservices-based approach, it is possible to

launch the platform's components individually; however, please note that in most scenarios
the platform's features are result of the collaboration with multiple services, and integration

tests will usually require multiple services to be running concurrently.

5.4.2.1 Running Services in Host OS

For each service, it's recommended to setup a Python virtual environment in order to avoid
conflicts in the project's dependencies. The dependencies required by each service are

compiled in their respective requirements.txt, and can be installed using the pip CLI tool.

The recommended way to setup the virtual environment and install the dependencies of the

services is by using Poetry. For this, execute the following command in the service's root
directory:

bash

poetry install

By default, by running this command, Poetry will create a virtual environment, installing on it
all of the required dependencies. Additionally, upon completion of the command, Poetry

will activate the virtual environment.

https://consensys.net/quorum/products/guides/getting-started-with-consensys-quorum/
https://minikube.sigs.k8s.io/docs/

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

75 of 95

When running the services in the host OS (not containerized), they will look, by default, for a
.env file in their root directory. This .env file must conform to the structure defined in the

service's .env, .sample file.

You can launch any of the services using the following command:

bash

python -m uvicorn services.<service>.app.main:app --port <port> --reload --log-
level trace

5.4.2.2 Running Services in Containers

You can run any of the services containers locally with Podman using the following

command:

bash

podman run -d -p <port>:<port> -env-file .env registry.gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/<service>
<service_name_podman>

Note that we are providing the service with the required environment variables by pointing
to a .env file; this .env file must conform to the structure defined in the service's .env.sample

file.

5.4.2.3 Invoking the HTTP REST APIs

Please, refer to section 4.3 (Implementation for IoT-NGIN LLs) for an in-depth, guided demo

use case in which the process for invoking the services' REST APIs is further detailed.

5.4.3 Deployment on Kubernetes Clusters

In order to deploy any of the framework's services in a Kubernetes cluster, it is recommended
to use the provided Kubernetes manifests as a starting point.

Each service's Kubernetes manifest files are stored in their containing implementation

directory in the project's GitLab repository (Figure 40), on the .kube directory.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

76 of 95

Figure 40 - Model Sharing service's Kubernetes manifests

Please, note that it is required to specify the correct values for the environment variables

required by each service for their deployment. This environment variables are located in their
respective deployment.yaml Kubernetes manifest template files (Listing 5).

yaml

spec:

 containers:
 - image: registry.gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/sharing:latest
 name: sharing-service

 ports:

 - containerPort: 80
 resources: {}

 env:
 # MLAAS POSTGRESQL

 - name: DB_HOST:

 value: localhost
 - name: DB_USER:

 value: test
 - name: DB_PASS:

 valueFrom:

 secretKeyRef:
 name: sharing

 key: DB_PASS
 - name: DB_NAME:

 value: test

 - name: DB_PORT:
 value: 5432

Listing 5 - Excerpt from Model Sharing service's deployment.yaml Kubernetes manifest template file

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

77 of 95

Additionally, some of the environmental variables are specified using Kubernetes secrets,

following Kubernetes's security best practices [69]. It is therefore required to create these
secrets in the target Kubernetes cluster. A template for these secrets is provided for all the

required secrets (Listing 6).

yaml

apiVersion: v1

kind: Secret
metadata:

 name: sharing

 namespace: mlaas #Same namespace services/pods are deployed
type: Opaque

stringData:

 # MLAAS POSTGRESQL

 DB_PASS: test

 # MLAAS MINIO
 MINIO_SECRET: RBlcEFACZzzMx59JgGapIJ7iVnkA3B5S

Listing 6 - Model Sharing service's secret.yaml Kubernetes manifest template file

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

78 of 95

6 Conclusions
This document is the last one of a series that have been reporting the development of the

IoT-NGIN MLOps platforms and services, including the MLaaS platform, the PPFL platform,
and a number of frameworks and services that have been built and delivered with MLaaS,

namely the Online Learning service, and the Polyglot Model Sharing service. While the MLaaS
architecture and technical specification of its reference implementation was described in
D3.3, this document has reported the main progress beyond D3.3 on the development of the

final versions of the Online Learning service, the first version of the RL-based optimization, the
PPFL platform and the Polyglot Model Sharing framework.

The Online Learning service has been reimplemented to take advantage of the further

flexibility of KServe pipeline, to foster its reusability across multiple inference scenarios for other

models. Additionally, XAI explainers have been injected, aiming to provide insights to explain
how the trained models learn from features. A new monitoring plaform has been integrated,
featuring the detection of data drift and accounting for model learning error over the time.

Model transfer techniques have been adopted to re-train models to infer similar knowledge,
as evaluted for energy demand forecasting in the Smart Energy LL. Another example of

exposing a model inference service with MLaaS for WP4 object detection has been
described as well.

The PPFL framework has been extended with a common entry-point API that gives a

harmonized operational interface to the different integrated FL frameworks. Moreover, a
CI/CD Cloud based approach for FL task deployment has been followed for the API

implementation.

The model sharing framework has been specified both functionally and technically, and

details of its micro-service implementation have been given. Evaluation of the framework
has been conducted in a dedicated use case that has been conceived for such purpose.

The software implementations of the components presented in this deliverable are offered

as open source on the project’s page on the public Gitlab repository, at
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/. Details about installation

and usage are also provided in this report for convenience of interested audience.

As future work, all the components described in this report will be further adopted and

evaluated in the IoT-NGIN LL use cases, as well as with the open call projects, during the last
evaluation period of the project and will be reported in forthcoming D6.3 and D7.4
deliverables.

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

79 of 95

7 Annex Components and Interfaces for
Polyglot Model Sharing

7.1 Model Sharing service

The main purpose of the Model Sharing service is coordinating the storage and retrieval of
all the assets in the platform (i.e., datasets and machine learning models). To achieve this, it
will exclusively manage access to the platform’s object storage instance, and coordinates

with the Blockchain service for the deployment, verification and retrieval of smart contracts
in the platform’s blockchain instance. Additionally, it coordinates the scheduling of model

training jobs for newly registered machine learning models by coordinating with the Model
Training service.

7.1.1 HTTP REST API Operations

The Model Sharing service exposes the following operations (see Table 10) through its HTTP
REST API:

Table 10 - Model Sharing service HTTP REST API operations

Method Route Description

POST /dataset Register and store a new dataset in the

platform

POST /model Register and schedule the training of a

machine learning model

GET /model/{model_id} Retrieve a registered model upon successful

training job

GET /dataset/{dataset_id} Retrieve a registered dataset

PUT

/model/{model_id} Stores the resulting model from the model

training job, and makes it available for
retrieval

GET

/model/{model_id}/metadata Retrieves the metadata stored in the

blockchain for a registered model

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

80 of 95

7.1.2 Dataset Registration

In Figure 41, we describe the implementation of the dataset registration operation, which

involves the storage of the dataset artifact on the platform’s object storage instance, as well
as deployment of its associated smart contract in the platform’s blockchain instance through

the Blockchain service.

The dataset contents are stored in the object storage instance, on the dataset bucket,

identified by the UUID assigned by the Model Sharing service. Notice that all the original file's

metadata, including filename and content type are not preserved upon its storage on the
object storage instance. This original metadata is stored externally, on the MLaaS Relational

Database instance.

The additional metadata required for ensuring the immutability of the registered dataset is

stored in the blockchain instance. This metadata can be retrieved at any time by the other
services through the Blockchain Service.

Figure 41 - Sequence diagram of the Model Sharing service's dataset registration operation

7.1.3 Model Registration, Training and Retrieval

In Figure 42, we describe the implementation of the model registration operation, which

involves the storage of its metadata in the Blockchain instance, and model training job
scheduling via the Model Training service. Upon the successful execution of the training job,

the resulting artifacts are registered, and the model's smart contract is verified, updating its
stored metadata. From this moment, the model can be retrieved by the end users.

Upon successful training of the registered model, the resulting artifacts are stored in the

object storage instance, on the model bucket, identified by the UUID assigned by the Model
Sharing service. Notice that all the original artifact's metadata, including filename and

content type are not preserved upon its storage on the object storage instance. This original
metadata is stored externally, on the MLaaS Relational Database instance.

The additional metadata required for ensuring the reproducibility of the training results, as

well as the immutability of the resulting artifacts, is stored in the blockchain instance. This

metadata can be retrieved at any time by the other services through the Blockchain Service.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

81 of 95

Figure 42 - Sequence diagram of the Model Sharing service's model registration and retrieval

7.1.4 Model Metadata Retrieval

In Figure 43, we can visualize the metadata retrieval operation implementation, in which we

retrieve the metadata of a registered machine learning model, which is stored in a smart
contract deployed in the project’s blockchain instance – which we access through the
Blockchain service.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

82 of 95

Figure 43 - Sequence diagram of the Model Sharing service's model metadata retrieval operation

7.2 Blockchain service

The Blockchain service provides the interface for interacting with the blockchain instance,
for all the other platform components.

This service is responsible for managing all the information registered in the blockchain

instance, in the form of smart contracts.

These smart contracts are deployed into the blockchain for all registered assets in the

platform (datasets and models).

For each asset type, there exists a smart contract definition that contains the machine code

and rules for interacting with the deployed contracts. This smart contract definition is
implemented in Solidity [70], a high-level language used for smart contract definitions, which

compiles to EVM executable bytecode (ABI – Application Binary Interface).

7.2.1 Smart Contract Interfaces

The metadata stored depends on the contract interface; in our platform, we have two

contract interfaces:

- Dataset contract [16]

- Machine learning model contract

The dataset contract (Table 11) stores the following pieces of metadata:

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

83 of 95

Table 11 - Dataset smart contract metadata specification

Field
Data

Type
Description Example

organization_id

string

Unique identifier of the dataset’s

owner organization

5d066d58-06de-

47ab-a2f6-

c8f413e21947

samples_dimension

string

Dataset sample dimension (128,128,3)

size_bytes

int256

Stores the metadata of a resulting

model training job

1840000

hash

string

MD5 hash of the dataset contents 0cc175b9c0f1b6

a831c399e26977
2661

The dataset contract (Table 12) implements the following operations:

Table 12 - Dataset smart contract operations

Method Returns Description Example

get_dataset_params string

memory

Returns the UUID of the

associated dataset

5d066d58-06de-47ab-

a2f6-c8f413e21947

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

84 of 95

The machine learning model contract (Table 13) stores the following pieces of metadata:

Table 13 - Model smart contract metadata specification

Field Data Type Description Example

organization_id

string

Unique identifier of the

machine learning model

developer’s company

5d066d58-06de-

47ab-a2f6-

c8f413e21947

developer_id

string

Unique identifier of the

machine learning model

developer

5d066d58-06de-

47ab-a2f6-

c8f413e21947

dataset_id

string

Unique identifier of the dataset

specified for the model training
job

5d066d58-06de-

47ab-a2f6-
c8f413e21947

train_image_hash

string

MD5 hash of the model’s

training container image

0cc175b9c0f1b6a831

c399e269772661

res_hash

string

MD5 hash of the resulting

artifacts from the model
training job

0cc175b9c0f1b6a831

c399e269772661

The machine learning model contract (Table 14) implements the following operations:

Table 14 - Model smart contract operations

Method Returns Description

get_model_params (string memory,

string memory,

string memory,

string memory)

Returns all model-related metadata stored in the

contract

get_data_params string memory Returns the UUID of the associated dataset

verify

Void

Stores the MD5 hash of the resulting artifacts from

the model training job

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

85 of 95

7.2.2 HTTP REST API Operations

The Blockchain service exposes the following operations through its HTTP REST API (Table 15):

Table 15 - Blockchain service HTTP REST API operations

Method Route Description

POST /contract Deploy a smart contract into the blockchain

GET /contract/{address} Fetch a deployed contract’s metadata

POST

/contract/{address}/

verify
Stores the metadata of a resulting model training job

Note: the REST API exposed by this service is not intended for the end users of the platform,

but only to be accessed directly by the rest of the services of the system.

We will now introduce a more in-depth explanation for the implementation of this service’s

operations.

7.2.3 Dataset and Model Contract Deployment

In these diagrams (Figure 44, Figure 45), we detail the deployment of the contract of a
dataset or model registered in the platform, in the context of the registration of a new

dataset or model in the platform. Note that both processes differ, especially due to the extra
step involved in the model registration process (further detailed in section 4.2.2.2.2.5), the
model verification, which requires an update of the stored metadata in its smart contract.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

86 of 95

Figure 44 - Sequence diagram of a dataset's contract deployment operation

Figure 45 - Sequence diagram of a model's contract deployment operation

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

87 of 95

7.2.4 Contract metadata request

In Figure 46, we detail the metadata request operation, performed for contracts deployed

in the blockchain.

Figure 46 - Sequence diagram of the Blockchain service's contract metadata request operation

7.2.5 Model verification

In Figure 47, we can observe the verification step of a model training job, in which

metadata of the resulting artifacts from the model training job is stored in the original smart
contract of the machine learning model.

The verification step is handled by the verification operation of the Blockchain Service. This

operation invokes a function in the deployed smart contract of a registered model, which
stores the MD5 digest (I.e., hash) of the resulting artifact from the model training job.

This function is implemented on the smart contract's definition and ensures that the digest

of the resulting model training artifact is only stored once (I.e., the field is immutable).

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

88 of 95

Figure 47 - Sequence diagram of the Blockchain service's model verification operation

7.3 Model Training service

The purpose of the Model Training service is to schedule the execution of training jobs for

new models registered in the system. This training jobs are sequential executions of a workflow
consisting of three container images, a pre-training container that provides the training

container with the appropriate datasets, the training container provided by the users, and a
post-training container that registers the training results in the platform.

7.3.1 HTTP REST API Operations

The Model Training service exposes the following operations through its HTTP REST API (

Table 16).

Table 16 - Model Training service HTTP REST API operations

Method Route Description

POST /train/{model_id} Schedule a model training job in the platform

We will now introduce a more in-depth explanation for the implementation of this service’s

operations.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

89 of 95

7.3.2 Model training request

In Figure 48, we can observe the interactions between the platform’s services, from the
moment that an end user registers a new machine learning model in the platform, up until

the model training process is completed successfully, and the end user can retrieve the
resulting machine learning model.

Figure 48 - Sequence diagram of the Model Training service's training request operation

In Figure 49, we further detail the internal workflow of a model training job, coordinated

with Argo Workflows, and the steps taken in a model training job.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

90 of 95

Figure 49 - Sequence diagram of the Model Training service's training job workflow implementation

7.4 Model Translation service

The main purpose of the model translation service is to provide ONNX representations for the

machine learning models registered in the platform, upon their successful training process.

7.4.1 HTTP REST API Operations

The Model Training service exposes the following operations through its HTTP REST API (Table

17).

Table 17 - Model Translation service HTTP REST API operations

Method Route Description

POST /translate/{mo

del_id}

Request intermediate representation for a registered

machine learning model

We will now introduce a more in-depth explanation for the implementation of this service’s

operations.

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

91 of 95

7.4.2 Model translation request

The model translation request operation allows to translate a registered machine learning

model into the ONNX format (upon completion of its training job). The following sequence
diagram (Figure 50) illustrates the operation's implementation.

Figure 50 - Sequence diagram of the Model Translation service's model translation operation

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

92 of 95

8 References

[1] IoT-NGIN, D6.3 Interoperable IoT-NGIN meta-architecture & laboratory evaluation,

H2020 - 957246 - IoT-NGIN Deliverable Report, 2023.

[2] IoT-NGIN, D7.4 IoT-NGIN Living Labs use cases assessment and replication guidelines,

H2020 - 957246 - IoT-NGIN Deliverable Report, 2023.

[3] ""The 5 V's of big data".," Watson Health Perspectives, 17 September 2016. [Online].

Available: https://www.ibm.com/watson-health/merative-divestiture.

[4] K. Morris, Infrastructure as code: managing servers in the cloud., O'Reilly Media, Inc,

2016.

[5] "Argo-CD," [Online]. Available: https://argo-cd.readthedocs.io/en/stable/.

[6] IoT-NGIN, D3.1 - Enhancing deep learning and reinforcement learning, H2020-957246

IoT-NGIN Deliverable Report, 2021.

[7] IoT-NGIN, "D3.2 - Enhancing Confidentiality preserving federated ML," H2020 - 957246 -

IoT-NGIN Deliverable Report, 2021.

[8] IoT-NGIN, D3.3 Enhanced IoT federated deep learning/ reinforcement ML, H2020-

957246 IoT-NGIN Deliverable Report, 2022.

[9] BDVA, "Big Data Value (BDV) Strategic Research and Innovation Agenda (SRIA),"

[Online]. Available: https://bdva.eu/sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf.

[10] IoT-NGIN, D2.3 Enhanced IoT Underlying Technology, final version, H2020-957246 IoT-

NGIN Deliverable Report, 2023.

[11] "Kserve," [Online]. Available: https://kserve.github.io/website/0.10/.

[12] "Kubeflow," [Online]. Available: https://www.kubeflow.org/.

[13] "MinIO," [Online]. Available: https://min.io/.

[14] "MQTT," [Online]. Available: https://mqtt.org/.

[15] "Apache Camel-K," [Online]. Available: https://camel.apache.org/camel-

k/1.12.x/index.html.

[16] "FastAPI," [Online]. Available: https://fastapi.tiangolo.com.

[17] "Prometheus," [Online]. Available: https://prometheus.io/ .

[18] "Grafana," [Online]. Available: https://grafana.com/ .

[19] "Evidently AI," [Online]. Available: https://www.evidentlyai.com/.

https://www.ibm.com/watson-health/merative-divestiture
https://argo-cd.readthedocs.io/en/stable/
https://bdva.eu/sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf
https://kserve.github.io/website/0.10/
https://www.kubeflow.org/
https://min.io/
https://mqtt.org/
https://camel.apache.org/camel-k/1.12.x/index.html
https://camel.apache.org/camel-k/1.12.x/index.html
https://fastapi.tiangolo.com/
https://prometheus.io/
https://grafana.com/
https://www.evidentlyai.com/

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

93 of 95

[20] "Apache Kafka," [Online]. Available: https://kafka.apache.org/.

[21] "Paho-MQTT," [Online]. Available: https://pypi.org/project/paho-mqtt/ .

[22] "Online Learning GitLab Repository," [Online]. Available: https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads.

[23] "Captum," [Online]. Available: https://captum.ai/ .

[24] "PyTorch," [Online]. Available: https://pytorch.org/.

[25] A. G. P. &. K. A. Shrikumar, "Learning important features through propagating activation

differences," International conference on machine learning, pp. 3145-3153.

[26] D. P. Kingma and J. Lei Ba, "ADAM: A method for stochastic optimization," 2014.

[27] B. W. &. S. C. H. Yap, "Comparisons of various types of normality tests," Journal of

Statistical Computation and Simulation, vol. 81, no. 12, pp. 2141-2155, 2011.

[28] IoT-NGIN, "D4.3 - Enhancing IoT Tactile & Contextual Sensing/Actuating," H2020 - 957246

- IoT-NGIN Deliverable Report, 2022.

[29] "Tensorforce," [Online]. Available: https://github.com/tensorforce/tensorforce.

[30] "Tensorflow," [Online]. Available: https://www.tensorflow.org/ .

[31] "RL-Based Optimization GitLab Repository," [Online]. Available:

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/rl-optimization.

[32] "Pandapower," [Online]. Available: http://www.pandapower.org/ .

[33] IoT-NGIN, D7.3 IoT-NGIN Living Labs use cases intermediate results, H2020 - 957246 - IoT-

NGIN Deliverable Report, 2023.

[34] "NVIDIA FLARE," [Online]. Available: https://developer.nvidia.com/flare.

[35] "TensorFlow Federated: Machine Learning on Decentralized Data," [Online]. Available:

https://www.tensorflow.org/federated.

[36] "Flower," [Online]. Available: https://flower.dev.

[37] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow and K. Talwar, "Semi-supervised

knowledge transfer for deep learning from private training data," in ICLR, 2017.

[38] Docker Inc., "Docker hub," [Online]. Available: https://hub.docker.com/. [Accessed

2023].

[39] Argo, "Argo Workflows," GitHub, [Online]. Available: https://argoproj.github.io/argo-

workflows/. [Accessed 2023].

[40] IETF OAuth Working Group, "OAuth 2.0," [Online]. Available: https://oauth.net/2/.

https://kafka.apache.org/
https://pypi.org/project/paho-mqtt/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main?ref_type=heads
https://captum.ai/
https://pytorch.org/
https://github.com/tensorforce/tensorforce
https://www.tensorflow.org/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/rl-optimization
http://www.pandapower.org/
https://developer.nvidia.com/flare
https://www.tensorflow.org/federated
https://flower.dev/
https://hub.docker.com/
https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

94 of 95

[41] "OpenID Connect," [Online]. Available: https://openid.net/connect/.

[42] "Ethereum Virtual Machine," [Online]. Available:

https://ethereum.org/en/developers/docs/evm/.

[43] "ConsenSys Quorum," [Online]. Available: https://consensys.net/quorum/qbs/.

[44] "Open Neural Network Exchange," [Online]. Available: https://onnx.ai/.

[45] "PostgreSQL," [Online]. Available: https://www.postgresql.org/.

[46] "Model Sharing GitLab project," [Online]. Available: https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing.

[47] "Poetry," [Online]. Available: https://python-poetry.org.

[48] "OpenAPI Schema," [Online]. Available: https://spec.openapis.org/oas/v3.1.0.

[49] "OpenAPITools' OpenAPI Generator," [Online]. Available:

https://github.com/OpenAPITools/openapi-generator.

[50] "GitLab Package Registry," [Online]. Available: https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages.

[51] Docker, "Dockerfile Builder," [Online]. Available:

https://docs.docker.com/engine/reference/builder/.

[52] "Model Sharing Gitlab container registry," [Online]. Available: https://gitlab.com/h2020-

iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry.

[53] M. Aly, "Survey on multiclass classification methods," Neural Netw, vol. 19, no. 1-9, p. 2,

2005.

[54] C. I. N. C. C. G. L. N. Y. C. J. B. Yann LeCun, "THE MNIST DATABASE of handwritten digits,"

Microsoft Research, [Online]. Available: http://yann.lecun.com/exdb/mnist/.

[55] K. &. N. R. O'Shea, "An introduction to convolutional neural networks," arXiv preprint

arXiv:1511.0845, 2015.

[56] HELM, "Helm - The package manager for Kubernetes," [Online]. Available:

https://helm.sh. [Accessed 2022].

[57] "Prometheus manifests for IoT-NGIN MLaaS," [Online]. Available:

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-
/tree/main/monitoring/prometheus.

[58] "Dockerfile for MLaaS Prometheus," [Online]. Available: https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_2/online_learning/-

/blob/main/monitoring/Dockerfile.

https://argoproj.github.io/argo-workflows/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://onnx.ai/
https://www.postgresql.org/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing
https://python-poetry.org/
https://spec.openapis.org/oas/v3.1.0
https://github.com/OpenAPITools/openapi-generator.
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/-/packages
https://docs.docker.com/engine/reference/builder/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry
http://yann.lecun.com/exdb/mnist/
https://helm.sh/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/prometheus
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/Dockerfile
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/monitoring/Dockerfile

H2020 -957246 - IoT-NGIN

D3.4 – ML models sharing and transfer learning implementation

95 of 95

[59] "Kubernetes manifest for MLaaS Prometheus," [Online]. Available:

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-
/tree/main/monitoring/deployment.

[60] "GitLab project for MLaaS Grafana," [Online]. Available: https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_2/online_learning/-

/tree/main/monitoring/grafana/dashboards.

[61] Kubernetes, "Kubernetes," [Online]. Available: https://kubernetes.io/.

[62] Keycloak, "https://www.keycloak.org," [Online]. Available: https://www.keycloak.org.

[63] Postman, Inc., "Postman REST Client," [Online]. Available:

https://www.postman.com/product/rest-client/. [Accessed 2023].

[64] "Podman," [Online]. Available: https://podman.io.

[65] "Model Sharing GitLab Repository," [Online]. Available: https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry/.

[66] "Consensys Quorum official guide," [Online]. Available:

https://consensys.net/quorum/products/guides/getting-started-with-consensys-

quorum/.

[67] "Minikube," [Online]. Available: https://minikube.sigs.k8s.io/docs/.

[68] "ArgoCD Workflow user guide," [Online]. Available: https://argoproj.github.io/argo-

workflows/workflow-concepts/.

[69] "Kubernetes security best practices," [Online]. Available:

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/.

[70] "Solidity," [Online]. Available: https://docs.soliditylang.org/.

[71] IoT-NGIN, "D9.1 - Project Handbook," H2020-957246 IoT-NGIN Deliverable Report, 2020.

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/deployment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/deployment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/monitoring/grafana/dashboards
https://kubernetes.io/
https://www.keycloak.org/
https://www.postman.com/product/rest-client/
https://podman.io/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_4/ml-model-sharing/container_registry/
https://consensys.net/quorum/products/guides/getting-started-with-consensys-quorum/
https://consensys.net/quorum/products/guides/getting-started-with-consensys-quorum/
https://minikube.sigs.k8s.io/docs/
https://argoproj.github.io/argo-workflows/workflow-concepts/
https://argoproj.github.io/argo-workflows/workflow-concepts/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://docs.soliditylang.org/

	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended Audience
	1.2 Relations to other activities
	1.3 Document overview

	2 IoT-NGIN Machine Learning
	2.1 Online Learning
	2.1.1 Description
	2.1.2 Technical design
	2.1.3 Implementation for IoT-NGIN LLs
	2.1.3.1 Smart Energy
	2.1.3.2 Smart Agriculture

	2.2 Reinforcement Learning
	2.2.1 Description
	2.2.2 Technical design
	2.2.3 Implementation for IoT-NGIN LLs

	3 IoT-NGIN Privacy Preserving Federated Learning
	3.1 Description
	3.2 Technical design
	3.2.1 Description of subcomponents
	3.2.2 Interfaces

	4 Polyglot Model Sharing
	4.1 Description
	4.2 Technical Design
	4.2.1 Architecture
	4.2.1.1 Components
	4.2.1.1.1 Model Sharing service
	4.2.1.1.2 Blockchain service
	4.2.1.1.3 Model Training service
	4.2.1.1.4 Model Translation service

	4.2.1.2 External Dependencies
	4.2.1.2.1 MLaaS PostgreSQL instance
	4.2.1.2.2 IoT-NGIN ConsenSys Quorum instance
	4.2.1.2.3 MLaaS Model Storage instance
	4.2.1.2.4 Argo Workflows instance

	4.2.2 Implementation
	4.2.2.1 Project Repository Structure
	4.2.2.2 Components

	4.3 Implementation for IoT-NGIN LLs

	5 Installation and User Guide
	5.1 Online Learning Service
	5.2 Reinforcement Learning Service
	5.3 Privacy-preserving Federated Learning Framework
	5.3.1 Prerequisites
	5.3.2 Installation Guide
	5.3.2.1 Local deployment
	5.3.2.2 Docker deployment
	5.3.2.3 Kubernetes Deployment

	5.3.3 User Guide

	5.4 Polyglot Model Sharing Framework
	5.4.1 External dependencies
	5.4.1.1 PostgreSQL instance
	5.4.1.2 ConsenSys Quorum Instance
	5.4.1.3 MinIO Instance
	5.4.1.4 Argo Workflows Instance

	5.4.2 Running Services Locally
	5.4.2.1 Running Services in Host OS
	5.4.2.2 Running Services in Containers
	5.4.2.3 Invoking the HTTP REST APIs

	5.4.3 Deployment on Kubernetes Clusters

	6 Conclusions
	7 Annex Components and Interfaces for Polyglot Model Sharing
	7.1 Model Sharing service
	7.1.1 HTTP REST API Operations
	7.1.2 Dataset Registration
	7.1.3 Model Registration, Training and Retrieval
	7.1.4 Model Metadata Retrieval

	7.2 Blockchain service
	7.2.1 Smart Contract Interfaces
	7.2.2 HTTP REST API Operations
	7.2.3 Dataset and Model Contract Deployment
	7.2.4 Contract metadata request
	7.2.5 Model verification

	7.3 Model Training service
	7.3.1 HTTP REST API Operations
	7.3.2 Model training request

	7.4 Model Translation service
	7.4.1 HTTP REST API Operations
	7.4.2 Model translation request

	8 References

