

© Copyright by the IoT-NGIN Consortium

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 957246

WORKPACKAGE WP2 PROGRAMME IDENTIFIER
H2020-ICT-

2020-1

DOCUMENT D2.3 GRANT AGREEMENT ID 957246

REVISION V0.3
START DATE OF THE

PROJECT
01/10/2020

DELIVERY DATE 31/03/2023 DURATION 3 YEARS

D2.3

Enhanced IoT Underlying
Technology (Final Version)

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

2 of 52

DISCLAIMER
This document does not represent the opinion of the European Commission, and the European

Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain IoT-NGIN consortium parties,
and may not be reproduced or copied without permission. All IoT-NGIN consortium parties have

agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the proprietor of that information.

Neither the IoT-NGIN consortium as a whole, nor a certain party of the IoT-NGIN consortium warrant

that the information contained in this document is capable of use, nor that use of the information is

free from risk, and does not accept any liability for loss or damage suffered using this information.

ACKNOWLEDGEMENT
This document is a deliverable of IoT-NGIN project. This project has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement Nº

957246.

The opinions expressed in this document reflect only the author’s view and in no way reflect the

European Commission’s opinions. The European Commission is not responsible for any use that may

be made of the information it contains.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

3 of 52

PROJECT ACRONYM IoT-NGIN

PROJECT TITLE Next Generation IoT as part of Next Generation Internet

CALL ID H2020-ICT-2020-1

CALL NAME Information and Communication Technologies

TOPIC ICT-56-2020 - Next Generation Internet of Things

TYPE OF ACTION Research and Innovation Action

COORDINATOR Capgemini Technology Services (CAP)

PRINCIPAL

CONTRACTORS

Atos Spain S.A. (ATOS), ERICSSON GmbH (EDD), ABB Oy (ABB),
NETCOMPANY-INTRASOFT SA (INTRA), Engineering-Ingegneria Informatica

SPA (ENG), Robert Bosch Espana Fabrica Aranjuez SA (BOSCHN), ASM Terni

SpA (ASM), Forum Virium Helsinki (FVH), ENTERSOFT SA (OPT), eBOS
Technologies Ltd (EBOS), Privanova SAS (PRI), Synelixis Solutions S.A. (SYN),

CUMUCORE Oy (CMC), Emotion s.r.l. (EMOT), AALTO-Korkeakoulusaatio

(AALTO), i2CAT Foundation (I2CAT), Rheinisch-Westfälische Technische

Hochschule Aachen (RWTH), Sorbonne Université (SU)

WORKPACKAGE WP2

DELIVERABLE TYPE REPORT

DISSEMINATION

LEVEL

PUBLIC

DELIVERABLE STATE FINAL

CONTRACTUAL DATE

OF DELIVERY
31/03/2023

ACTUAL DATE OF

DELIVERY
03/04/2023

DOCUMENT TITLE Enhanced IoT Underlying Technology (Final Version)

AUTHOR(S)

Jonathan Klimt (RWTH), Stefan Lankes (RWTH), Manuel Pitz (RWTH), Jesús

Gorroñogoitia (ATOS), Tomas Lagos (SU), Serge Fdida (SU), Marcelo Dias

de Amorim (SU), Marios Sophocleous (EBOS), Jose Costa-Requena (CMC)

REVIEWER(S) Serge Fdida (SU), Tomas Lagos (SU), Jose Costa-Requena (CMC)

ABSTRACT SEE EXECUTIVE SUMMARY

HISTORY SEE DOCUMENT HISTORY

KEYWORDS IoT, 5G, API, Unikernel, Enhancement, Device-to-Device, D2D, 5G-LAN, TSN

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

4 of 52

Document History

Version Date Contributor(s) Description

V0.1 09/01/2023 RWTH First draft

V0.2 27/03/2023 SU, CMC, EBOS, RWTH,

ATOS

Internal review version

V0.3 31/03/2023 RWTH, SU, CMC Final version

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

5 of 52

Table of Contents
Document History .. 4

Table of Contents .. 5

List of Figures ... 7

List of Tables .. 8

List of Acronyms and Abbreviations.. 9

Executive Summary ... 11

1 Introduction ... 12

1.1 Intended Audience .. 12

1.2 Relations to other activities .. 12

1.3 Document overview ... 12

2 Enhancing 5G functionality to improve 5G coverage ... 13

2.1 Introduction ... 13

2.2 Experimental setup ... 14

2.3 Experimental methodology ... 15

2.4 Experimental Results ... 16

2.4.1 5G network ... 16

2.4.2 WiFi Direct Network.. 21

2.4.3 End-to-End D2D Communication Testing ... 24

2.4.4 Relay selection ... 25

2.5 Conclusions .. 26

3 Enabling 5G to support protocols for deterministic communications 27

3.1 Introduction ... 28

3.2 Results ... 29

3.3 Conclusions .. 30

4 Enhancing 5G ease of use through improved 5G APIs .. 32

4.1 Introduction ... 32

4.2 Final API .. 32

4.3 Implementation ... 36

4.3.1 IoT-NGIN API Server .. 36

4.3.2 Unikernel Adapter .. 36

4.3.3 Slice Management Adapter .. 37

4.3.4 Slice Management simulator ... 37

4.4 Results ... 38

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

6 of 52

4.4.1 API Server .. 38

4.4.2 Unikernel Demo .. 38

4.4.3 Slice Manager Demo .. 39

4.5 Conclusions .. 40

5 Secure Edge Cloud Framework for micro-services ... 41

5.1 Introduction ... 41

5.2 The IoT-NGIN Secure Edge Cloud Framework .. 44

5.3 Application to ML optimization in IoT-NGIN .. 45

5.3.1 Machine learning support using TVM cross compilation 47

5.3.2 Torch C++ ML Models in Unikernels ... 47

5.4 Conclusions .. 50

6 How the technology is transferred and demonstrated in use cases and living labs 51

7 Conclusions ... 52

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

7 of 52

List of Figures
Figure 2-1: Overall architecture of the experimental setup. ... 14

Figure 2-2: Test between 5GC Core and Relay device. .. 19

Figure 2-3: Testing of Wi-Fi Direct Network. ... 22

Figure 2-4: End-to-End experimental setup. ... 24

Figure 2-5: RTT times versus number of measurements for End-to-End tests. 25

Figure 2-6: Architecture for relay selection. ... 26

Figure 3-1: TSN network deployed at ABB living labs for time synchronization testing. 28

Figure 3-2: Equipment deployed at ABB living labs for time synchronization testing. 30

Figure 4-1 IoT-NGIN 5G resource management API ... 32

Figure 4-2: Open API UI ... 34

Figure 4-3: OpenAPI visualization of the get_service call’s response. .. 35

Figure 4-4: Call and response of start_service in the command line. 35

Figure 4-5: The IoT-NGIN 5G Resource Management API server in action. 38

Figure 4-6: Unikernel application started with Iot NGIN 5G API. ... 38

Figure 4-7: Rancher UI after starting a Unikernel hello world service.. 39

Figure 4-8: Slice Manager command line tool. ... 39

Figure 4-9: curl command to start a service. ... 40

Figure 4-10: OpenAPI visualization of the start_service call. ... 40

Figure 5-1: Classical micro-service stacks. Containerization on the left side, virtual machines

on the right side. .. 41

Figure 5-2: Hardened container setup using containers, microVMs and library operating

systems. ... 42

Figure 5-3: Rusty-Hermit conceptual overview .. 43

Figure 5-4: The integration of runh in the Docker and Kubernetes software stack 43

Figure 5-5: Performance comparison of runh and runc using QEMU and microVMs 44

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

8 of 52

List of Tables
Table 2-1: RTT from gNB to Relay device. ... 16

Table 2-2: RTT from Relay to gNB ... 16

Table 2-3: Measure the Throughput from gNB to Relay (R – Reverse mode) 17

Table 2-4: Measure the Throughput from Relay to gNB ... 17

Table 2-5: Measure the Throughput from Relay to gNB with PLMN 999-99 18

Table 2-6: Measurements of Jitter between from 5GC Core to Relay....................................... 18

Table 2-7: Measurements of Jitter between from Relay to 5GC Core....................................... 19

Table 2-8: RTT from 5GC Core to Relay device ... 20

Table 2-9: RTT from Relay to 5GC Core... 20

Table 2-10: Measure the Throughput from 5GC Core to Relay (R – Reverse mode). 20

Table 2-11: Measure the Throughput from Relay to 5GC. ... 20

Table 2-12: Measure the Jitter between from 5GC Core to Relay ... 21

Table 2-13: Measure the Jitter between from Relay to 5GC Core ... 21

Table 2-14: Measure the RTT from End-Device to Relay ... 22

Table 2-15: Measure the RTT from Relay to End-Device ... 23

Table 2-16: Measure the Throughput from End-Device to Relay .. 23

Table 2-17: Measure the Throughput from Relay to End-Device .. 23

Table 3-1: Measure the time synchronization in TSN device connected to UE 29

Table 3-2: Measure the time synchronization in fixed TSN device .. 29

Table 4-1: API calls ... 33

Table 4-2: Unikernel Adapter API calls .. 36

Table 4-3: I2CAT Backend API calls. .. 37

Table 4-4: Slice Management Simulator calls. ... 37

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

9 of 52

List of Acronyms and Abbreviations

IoT Internet of Things

WP Work Package

3GPP 3rd Generation Partnership Project

5G Fifth Generation (mobile network)

5G NR 5G New Radio

5GC 5G Core Network

5GS 5G System

AF Application Function

API Application Programming Interface

BS Base Station

CB Frame Preemption

CPU Central Processing Unit

D2D Device-to-Device

DNN Data Network Name

DS-TT Device Synchronization Time Transfer

EMI Electro-Magnetic Interference

FPGAs Field-Programmable Gate Arrays

GM Grand Master

gNB 5G New Radio Base Station

gPTP Generalized Precision Time Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICs Integrated Circuits

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IoT Internet of Things

LAN Local Area Network

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

10 of 52

LLDP Link Layer Discovery Protocol

MAC Medium Access Control

ML Machine Learning

mMTC Massive Machine-Type Communications

NF Network Function

NMS Network Management System

NPN Non-Public Networks

NR New Radio

OAM Operations, Administration, and Maintenance

OCI Open Container Initiative

OS Operating System

PDU Protocol Data Unit

POSIX Portable Operating System Interface

PSFP Per-Stream Filtering and Policing

ProSe Proximity Services

QEMU Quick EMUlator

Qbu Frame Replication and Elimination for Reliability

Qbv Enhancements for Scheduled Traffic

QoS Quality of Service

RTT Round-Trip Time

SA Standalone

TSN Time-Sensitive Networking

UC Use Case

UE User Equipment

UI User Interface

V2X Vehicle-to-Everything

VM Virtual Machine

VN Virtual Network

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

11 of 52

Executive Summary
This deliverable is the third and final deliverable concerning the work for Enhancing IoT

Underlying Technology that presents the outcomes and results of the work conducted. The
four main outcomes discribed are:

Improved 5G coverage using D2D connections

This chapter discribes in detail the laboratory setup and a varaiaty of tests conducted to

validate the possibility of extendign the 5G coverage throug 5G devices. The test conducted

cover the topics of coverage, throughput and latency. The analysis is carried out in different
configurations of user eqipment (UE) and basestations.

The tests were performed using relays and mobile phones, and the measurements were

taken between the 5G network core (5GC), a base station (BS), and relay devices. More

specifically, the measurement of the RTT in different sections of the laboratory setup. The
results show that the measured RTT times are within the acceptable range for 5G SA eMBB
according to 3GPP, Release 16 standards. Furthermore, the tests show that D2D

communication in 5G networks is feasible with adequate coverage. The experiments
demonstrate that coverage can be improved by placing D2D relay devices near the BS

station for higher performance. However, external factors such as Electro-Magnetic
Interference (EMI) can affect the network's performance.

Deterministic and time sensitive communication for 5G

In this chapter the test setup for timesyncronization for a private 5G network is discribed. This

includes the deployment at a living lab trial site. The measurments conducted show the time

difference between a grand master clock and the local time of a UE.

The 5G core with TSN functionality was deployed and tested in a control environment at

CMC laboratory as well as in ABB living labs. The results showed the time synchronization was
achieved both using IP over VxLAN and native synchronization protocol over Ethernet PDU
session. However, the Ethernet PDU is not fully supported in devices and base stations to

complete synchronization requires additional equipment updates

Simplified 5G resources management API

The final proposed API is described and the server architecture as well as various adapters

for existing infrastructure components are are explained. The functionality is evaluated either
by demonstrating the API use with real backends like a kubernetes instance, or by running it

against simulated backends. The API is also tested against parts of the secure edge cloud
framework described in the last chapter.

Secure edge cloud framework

The final version of the secure edge cloud framework is described. The framework combines

unikernels, the orchestration tool kubernetes and multiple ways of executing ML inference in

said technologies. This does not only increase the isolation of applications, it can also reduce
the memory footprint and faster startup times can also increase the performance. By running

ML models from the project with the framework’s technologies, the usability as well as the
performance is demonstrated.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

12 of 52

1 Introduction
Since the publication of our first description of the 5G enhancements in D2.1 in November,

2021and this document, a lot of work was put in the technologies developed for the
enhancement for future internet and network technologies. Our work has progressed

according to plan, so we can present the final results in this deliverable.

This first chapter is intended to provide information necessary to enable the reader to

understand the structure of this deliverable and how the individual chapters relate to each

other. This chapter relates the contents of this deliverable to other existing project
deliverables and to the future deliverables of the IoT-NGIN project.

1.1 Intended Audience

This deliverable will be useful to a wide audience of readers. As it provides an in-depth
description of the outcomes and achivements on 5G enhancements, it is usefull for project

reviewers and the European Commission as well as project partners that want to understand
the details of the technology better.

The enhancements are mostly related to industrial 5G applications and backend

technologies. Thus, this document is also relevant for readers in the IoT, mobile

communications, smart agriculture, smart industry, smart cities and smart energy sectors as
we see the most potential for new products, services and use cases in these domains in the
coming years.

1.2 Relations to other activities

For more information the previous deliverables on this topic can be consulted. These are

deliverable D2.1 Enhancing IoT M2M/MCM Communications and D2.2 Enhancing IoT
Underlying Technology.

1.3 Document overview

In this document, we give room for each of the enhancements developed. This leaves us
with the following structure:

• A presentation of the connectivity enhancements by utilizing device-to-device

communications is given in chapter 2.

• Deterministic communications using time sensitive communications and 5GLAN are

discussed in chapter 3.

• Chapter 4 presents the 5G Resources Management API, which simplifies the use of

various 5G functionalities.

• The last enhancement - the Secure Execution Environment for Edge Cloud Services -

is presented in chapter 5.

• A demonstration of the technology transfer in the living labs is given in chapter 6.

• The document is concluded with a short summary in chapter 7.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

13 of 52

2 Enhancing 5G functionality to improve 5G
coverage

This first chapter presents the results and outcomes of the work that has been done to

improve mobile connectivity.

2.1 Introduction

Cellular networks are being developed with the ambition to cover most of user needs,
extending their suitability by standardizing new generations over time, e.g., 4G, 5G and now

6G. However, during this journey, other technologies and/or architectures are considered to
cover specific needs. The current networking architecture is converging with the best

practices that constitute the substrate for the cloud, adopting a very centralised approach
(cloud-native) distributed using the edge concept. However, there are always situations
when cellular does not apply. It could be either because of limited or transient coverage or

when there is no coverage due to failure, damage or too costly deployment.

Device-to-device (D2D) is a specific solution considered in the past with limited success.

However, as technology and knowledge evolve, it is now considered again in various
environments. In 3GPP (3rd Generation Partnership Project), research has been conducted

on various aspects of D2D communication, including its potential to improve network
capacity and coverage and support new use cases, such as public safety and massive
machine-type communications (mMTC). D2D communication in 3GPP has been

standardised in Release 12 under the terminology “Proximity Services” (ProSe). It focuses on
integrating D2D communication into existing cellular networks to support services such as

Discovery, Emergency, Content Sharing, Location Privacy, and others. In addition, it is being
developed in releases 17 and 18, covering a range of services based on proximity, such as

V2X.

As ProSe is developing slowly, intermediate solutions exploiting and combining various

technologies similar to 5G and Wi-Fi/Bluetooth are needed. We propose, study and develop

a simple but effective methodology for coverage extension by establishing a D2D
communication between the node outside the cell coverage area and a relay inside the

coverage area. A metrics exchange is established between the participants to select the
most suitable relay for the target performance. This selection process exploits various metrics
of interest that can be enriched if necessary. This fits perfectly into the IoT-NGIN context,

where one challenge related to deploying 5G in wide area networks is the short network
coverage of approximately 500 m depending on the frequencies used and the attenuation

of signals in a given location. In applications such as smart cities (UC1 of IoT-NGIN), a high
density of base stations is required for complete coverage due to the short coverage range.

Therefore, IoT-NGIN proposes to use D2D communications to enhance coverage in areas not
well served by public networks.

A solution addressing this particular need has been designed and tested. The relay selection

process has been architected using extensive analysis of the D2D link properties in various
conditions. Our AtomD tool has been released for that purpose and is available as an open-

source component. A second solution has been considered, which is based on a 5G LAN
technology. The 5G LAN consists of a LAN network where all connected devices to the same

network use the same 5G Core and slice. As a result, the devices are visible to each other.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

14 of 52

The concept here is that each device and relay connected to the 5G network will also be
registered in a 5G LAN created by the 5G Core.

This setup has been instrumented and analysed to capture the system's performance and

diverse configurations and parameters. The main outcome is presented in the next section.

2.2 Experimental setup

This section presents the experimental setup, where we establish an end-to-end environment
involving 4 UEs. To do so, we use 2 OnePlus 8T for the end-devices situated outside a cellular
coverage range and 2 Nokia XR20 inside a cellular coverage range. It is important to

highlight that these phones have Qualcomm SM4350 Snapdragon 480 5G.

Given each device's location, we establish that the Nokia phones are used as Relay devices.

In addition, we established a laboratory-based Base Station (BS) that used the Amarisoft
Callbox Mini system with a gNodeB (gNB) compliant with 3GPP Release 16, which uses 20
MHz bandwidth. This BS is a desktop PC with integrated SDR card with limited specifications.

The maximum speed is estimated at around 200 Mbps. Moreover, according to the provider,
the system's wireless range is around 10 metres. In addition, we integrate a 5G Core (5GC)

developed by CUMUCORE, which runs on a Linux-based PC and a custom-made
mobile/server application running on a Raspberry Pi 400, where we implemented an

application that manages the connections between the relay devices and end-devices.

We use custom SIM cards to connect to the BS and establish communication with the 5GC.

Here, the 5GC provides the required settings for the SIM cards. Some essential parameters

for SIM cards are the Public Land Mobile Network (PLMN), international mobile subscriber
identity (IMSI) number and secret key for provider and user. PLMN-00101 is for designed to be

used for a testing network and 99999 is designed for private networks. The connection
between the BS, 5GC and the Raspberry Pi was achieved through Ethernet connections to

a 1 Gbps router (MikroTik RouterOS). This system is developed on the local private network to
reduce external noise. The gNB and Relay devices were connected with 5G New Radio (NR),
in the Stand-Alone (SA) mode. The End-Devices and Relay devices were connected with Wi-

Fi direct through the developed mobile/server application.

The overall experimental setup and configuration are shown in Figure 2-1. This configuration

was also used to test the relay selection capability of the mobile/server application.

Figure 2-1: Overall architecture of the experimental setup.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

15 of 52

2.3 Experimental methodology

Three main tests were performed in this work. First, the testing of the 5G network and its
specifications, then the Wi-Fi Direct and its specifications and finally, the complete end-to-

end communication. The parameters that were used to test the connections between the
devices where:

• Round Trip Time (RTT): It is the duration in milliseconds (ms) that an ICMP Echo Request

packet takes to travel from the Source to the Destination and return as an ICMP Echo

Reply back to the Source. RTT is an important metric in determining the health of a
connection on a network, to diagnose the speed and reliability of the network

connections. The Echo Request packet is provided by the "ping" command, which
will return the RTT of the sent Echo Request when its corresponding Echo Reply is

received1. The ping was set to repeat the measurement 1000 times. Also, the packet
size is the default size, which is 64 bytes2.

• Throughput: It is the traffic rate that a network channel can handle per unit time.

Throughput depends on factors such as bandwidth, latency, payload size, packet

size, network load, number of hops, and others. Throughput was measured using a
standard tool called iperf33.

• Jitter: It is the standard deviation between the transmitted signal delays. Its variation

is usually due to network congestion, poor hardware performance and non-
application of packet prioritization. The meaning has to do with the variation of a
metric (e.g., delay) with respect to some reference metric (e.g., average delay or

minimum delay). Jitter was also measured using iperf3.

Iperf3 was installed on the server and the other device (client) in order to exchange

messages between them. The requested bandwidth was set to 200 Mbps, which is higher
than what devices can support, so that it will allow the devices to reach their maximum
speeds. In addition, the reporting intervals are set at 1 s, so every second, the system presents

bandwidth, jitter and loss reports. Another parameter is the length of the test, which is set at
1000 packets. Moreover, for the throughput and jitter tests, it was decided to use User

Datagram Protocol (UDP) to establish a low-latency and loss-tolerating connection. On the
other hand, TCP protocol as a connection-oriented protocol, guarantees the reception of

all packets. Therefore, TCP is safer and more reliable than UDP but it is slower and requires
more resources. In conclusion, the UDP is better suited for applications that need fast and
efficient transmission. The gNB and 5GC operate in a Linux operation where the libraries for

these parameters were installed. On the phones, with Android as their operating system, the
Android terminal emulator and Linux environment application were installed. Iperf3 is a

terminal emulation and Linux environment application that works directly with no rooting or
setup required.

The measurement applications used for these tests have been installed in the terminal of the

devices. These applications are already installed for BS and 5GC, which run on Linux. In

1 https://thinksystem.lenovofiles.com/storage/help/index.jsp?topic=%2Fthinksystem_system_manager

11.50.1%2F649BE1AD-24F5-4B3D-892D-8AF14C37619C.html
2 N. V. Mnisi, O. J. Oyedapo and A. Kurien, "Active Throughput Estimation Using RTT of Differing ICMP

Packet Sizes," 2008 Third International Conference on Broadband Communications, Information

Technology & Biomedical Applications, Pretoria, South Africa, 2008, pp. 480-485, doi:
10.1109/BROADCOM.2008.76.
3 https://en.wikipedia.org/wiki/Iperf

https://thinksystem.lenovofiles.com/storage/help/index.jsp?topic=%2Fthinksystem_system_manager_11.50.1%2F649BE1AD-24F5-4B3D-892D-8AF14C37619C_.html
https://thinksystem.lenovofiles.com/storage/help/index.jsp?topic=%2Fthinksystem_system_manager_11.50.1%2F649BE1AD-24F5-4B3D-892D-8AF14C37619C_.html
https://en.wikipedia.org/wiki/Iperf

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

16 of 52

addition, these commands have been installed via a terminal emulator application using the
Termux interface on the android phones.

2.4 Experimental Results

2.4.1 5G network

The first set of tests focused on the 5G Network side between the 5GC/BS and the relay

devices. The relay devices and the 5GC are connected through the gNB using 5G NR in SA
mode. Two Nokia XR20 mobile phones were used as relays and placed near the BS station

during the tests for higher performance. It is essential to mention that, at this point, these tests
were not performed in an anechoic chamber. Therefore, the measurements performed

could be affected by Electro-Magnetic Interference (EMI).

2.4.1.1 Test between gNB and Relay

Although these tests and measurements were recorded between the gNB and the relays, in

order for the packets to be authenticated, they should reach the 5GC, hence essentially the
presented time here includes the time to go to the 5GC and back. Table 2-1 and Table 2-2

show RTT from gNB to Relay and reverse. RTT times, both download and upload, are
adequately stable between the two relays. The average value of RTT is around 23.4 ms from
gNB to relay, compared with RTT from relay to gNB, which is slightly higher, approximately

25.3 ms. Also, essential parameters represented in tables are standard deviation with
maximum and minimum values. In detail, the standard deviation is around 6 ms, and the

maximum value sometimes is over 80 ms, which shows that the measurements fluctuate,
highlighting a significant network instability in terms of performance. Overall, measured RTT
times are within the acceptable range for 5G SA eMBB slice according to 3GPP, Release 16

standards.

Table 2-1: RTT from gNB to Relay device.

gNB to Relay Phone 1(ms) Phone 2 (ms)

Average 23.45 23.41

Max 80.90 41.60

Min 12.00 10.00

Standard Dev 6.14 5.97

Table 2-2: RTT from Relay to gNB

gNB to Relay Phone 1(ms) Phone 2 (ms)

Average 25.16 25.31

Max 72.00 92.40

Min 10.20 9.33

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

17 of 52

Standard Dev 6.19 6.41

Table 2-3 and Table 2-4 present the results on throughput from gNB to the Relay device and

reverse. Also, these tables present the reverse mode, which represents the upload speeds.

The average value for download is around 110 Mbps. Also, the standard deviation for these
measurements is 8.87 for Phone 1 and 4.76 for Phone 2. Moreover, the result for the Phone 1R

and Phone 2R are 3.68 Mbps and 2.53 Mbps, respectively. Therefore, the test values portray
that the upload speed is slower than download speed, as expect for this testbed. These
results highlight again the erratic behaviour of User Equipment (UEs) in terms of stability and

significant variation between devices.

Table 2-5 shows the connection from the Relay device to gNB. The difference between the

previous tables is that reverse mode represents the download, and normal mode the
download speed. The average value for Phone 1 and Phone 2 is 4.31 Mbps and 0.73 Mbps,

respectively. The average values for download are 113 Mbps and 59.7 Mbps. However, the
measurements in Table 2-4 between Phone 1 and Phone 2 are different, showing that the
second phone has either a hardware issue or that its hardware is significantly different even

though they are using the same network ICs. In addition, the same issue is represented in the
reverse mode testing on the same phone, especially since the standard deviation value is

around 21 Mbps.

Furthermore, the measurements between Table 2-3 and Table 2-4 are aligned. More

specifically, the phones from Table 2-3 are almost the same as Phones in reverse mode since

their measurements show the throughput from gNB to Relay device. Moreover, the

measurements from Phone 1 & 2 R in Table 2-3 and Phone 1 & 2 in Table 2-4 are almost

identical. In conclusion, these results and correlations are presented as expected.

Table 2-3: Measure the Throughput from gNB to Relay (R – Reverse mode)

gNB to Relay Phone 1 R

(Mbps)

Phone 2 R

(Mbps)

Phone 1

(Mbps)

Phone 2

(Mbps)

Average 3.68 2.53 115.26 101.35

Max 6.47 3.92 142.00 119.20

Min 3.08 1.52 69.10 88.00

Standard Dev 0.36 0.34 8.87 4.76

Table 2-4: Measure the Throughput from Relay to gNB

Relay to gNB Phone 1 R

(Mbps)

Phone 2 R

(Mbps)

Phone 1

(Mbps)

Phone 2

(Mbps)

Average 113.93 59.70 4.31 0.73

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

18 of 52

Max 136.80 111.20 7.49 5.68

Min 88.00 0.01 2.21 0.32

Standard Dev 7.98 21.96 0.66 0.23

At this test, we compared the network performance under different PLMNs and whether this

affects the throughput between the BS and relay device. The Table XXX portrays the results
from throughput between the Relay devices and gNB, in PLMN 999-99. This test is same with

the previous test at Table 2-3 and Table 2-4, but the difference is only in PLMN, the previous
test uses the PLMN 001-01, which is for the testing network. In conclusion, the measurements
from Table 2-3, Table 2-4, and Table 2-5 are similar. Therefore, the selection for PLMN does not

affect the network performance.

Table 2-5: Measure the Throughput from Relay to gNB with PLMN 999-99

PLMN: 999-99 gNB to Relay

Phone 1

(Mbps)

gNB to Relay

Phone 2

(Mbps)

Relay to gNB

Phone 1

(Mbps)

Relay to gNB

Phone 2

(Mbps)

Average 94.03 61.50 6.02 1.37

Max 108.80 92.00 13.68 2.96

Min 3.44 0.00 0.00 0.56

Standard Dev 7.98 21.96 0.66 0.36

Table 2-6 and Table 2-7 displays the results of the jitter. The results follow the same pattern

with the throughput measurements in Table 2-3 and Table 2-4. An essential parameter on this
test is the maximum value of the jitter, which sometimes reaches around 270 ms. This high

value of jitter causes for some measurements to be delayed to be received, which shows
that the network is highly affected by external parameters, such as EMI since all these

experiments were not conducted in an anechoic chamber.

Generally, jitter values are within or close to 3GPP Release 16 standards in terms of averages

however, the fluctuation of those values is much higher than the standards. Again, this can

be attributed to the fact that the tests were not performed in an anechoic chamber.

Table 2-6: Measurements of Jitter between from 5GC Core to Relay

5GC Core to

Relay

Phone 1 R

(ms)

Phone 2 R

(ms)

Phone 1 (ms) Phone 2 (ms)

Average 5.53 8.05 0.15 0.19

Max 16.11 263.61 0.93 1.40

Min 2.02 3.86 0.05 0.07

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

19 of 52

Standard Dev 2.08 8.60 0.09 0.14

Table 2-7: Measurements of Jitter between from Relay to 5GC Core

Relay to 5GC

Core

Phone 1 R

(ms)

Phone 2 R

(ms)

Phone 1 (ms) Phone 2 (ms)

Average 0.30 0.86 4.78 25.92

Max 0.91 270.91 15.65 51.45

Min 0.02 0.07 2.07 10.77

Standard Dev 0.12 8.74 1.99 7.23

2.4.1.2 Test between 5GC Core and Relay device

This test focuses on the connection between the 5GC and Relay devices. It is almost the

same test as the previous one because the connection between the Relay device and 5GC
passes through the gNB. Therefore, this test aims to investigate the connection between 5GC

and gNB. The system diagram in Figure 2-2 shows the measurement connections in yellow,
while the connection between the devices is presented with green dashed lines. In summary,
the results from the measurement expect to have the same results as the previous test.

Figure 2-2: Test between 5GC Core and Relay device.

The first part of this test focuses on RTT. Table 2-8 presents the results from the 5GC Core to
Relay devices, and Table 2-9 shows the results from Relay devices to 5GC. The results from
gNB and relays are almost the same as those below. More specifically, the average value of

RTT is around 23 ms in Table 2-8, and in Table 2-9, the average value is around 25 ms. In
conclusion, the ethernet connection between the gNB and 5GC is shown not to affect the

measurements.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

20 of 52

Table 2-8: RTT from 5GC Core to Relay device

5GC Core to Relay Phone 1(ms) Phone 2 (ms)

Average 23.23 23.21

Max 42.30 42.80

Min 12.70 12.40

Standard Dev 5.86 5.92

Table 2-9: RTT from Relay to 5GC Core

Relay to 5GC Core Phone 1 (ms) Phone 2 (ms)

Average 25.03 25.58

Max 44.4 44.40

Min 14.9 12.50

Standard Dev 5.91 5.95

Table 2-10 and Table 2-11provide information for the throughput between Relay devices and

5GC. The measurements in Table 2-10 & Table 2-11follow a similar pattern to Table 2-3 & Table
2-4, such as the download speed from Relay devices and also the upload speed fits the

pattern.

Table 2-10: Measure the Throughput from 5GC Core to Relay (R – Reverse mode).

5GC to Relay

b

Phone 1 R

(Mbps)

Phone 2 R

(Mbps)

Phone 1

(Mbps)

Phone 2

(Mbps)

Average 3.51 1.35 129.36 96.84

Max 8.04 1.52 144.00 108.00

Min 2.44 0.80 101.00 83.20

Standard Dev 0.51 0.14 11.30 4.30

Table 2-11: Measure the Throughput from Relay to 5GC.

Relay to 5GC

a

Phone 1 R

(Mbps)

Phone 2 R

(Mbps)

Phone 1

(Mbps)

Phone 2

(Mbps)

Average 140.15 134.28 0.66 0.58

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

21 of 52

Max 143.00 135.20 1.49 5.04

Min 136.00 0.04 0.01 0.01

Standard Dev 18.97 1.01 0.30 0.20

Table 2-12 & Table 2-13 show the jitter between 5GC and Relay devices. The jitter values

remain low, especially in download, but they are slightly higher than the results from the
previous connection with gNB. Also, jitter value for the upload is higher than in Table 2-6 &

Table 2-7, but they stay at the same level. The average value of the jitter from the Relay
device to 5GC is around 6 ms for the Phone 1 and 14 ms for the Phone 2 in Reverse mode.
These values can be compared with Table 2-12 and Test 1 and Test 2, in which the average

values are around 26 ms and 32 ms. Also, in the opposite direction, the result is below 0.3 ms
from 5GC to Relay device, in Table 2-13. On the other hand, the results in Table 2-13 are

higher than the previous in Test 1, almost 4.5 ms, and in Test 2 is around 1.3 ms. This can be
attributed to the capabilities of the 5GC to perform more tasks in parallel in addition to any

external noise that could affect the measurements.

Table 2-12: Measure the Jitter between from 5GC Core to Relay

Relay to 5GC

Core b

Phone 1 R

(ms)

Phone 2 R

(ms)

Phone 1 (ms) Phone 2 (ms)

Average 5.79 14.47 0.16 0.30

Max 16.94 31.97 0.60 1.36

Min 2.28 7.36 0.04 0.06

Standard Dev 2.36 4.14 0.08 0.17

Table 2-13: Measure the Jitter between from Relay to 5GC Core

Relay to 5GC

Core b

Phone 1 R

(ms)

Phone 2 R

(ms)

Phone 1 (ms) Phone 2 (ms)

Average 4.29 1.32 26.80 32.29

Max 542.77 116.44 64.91 79.63

Min 0.04 0.04 10.25 14.02

Standard Dev 22.54 9.04 7.50 8.53

2.4.2 WiFi Direct Network

The second set of tests is related to the Wi-Fi Direct side of the network. In this test, two
OnePlus8T mobile phones were used as end-devices, and two Nokia XR20 phones were used

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

22 of 52

as relays. The connection between the end-devices and the relays was achieved through
the custom mobile/server application described in the previous section.

Figure 2-3: Testing of Wi-Fi Direct Network.

The first part of this test is a connection from the Relay device to the end-device as shown in
Figure 2-3 and the results from the measurement are shown in Table 2-14. Firstly, all

measurements are quite close to each other, which shows the system is repeatable and
consistent. The average of these values is around 21 ms, also essential parameters on this

table are the standard deviation, which is around 27 ms.

The second part of the RTT test is connection from End device to Relay device, which presents

on the Figure 2-3. Table 2-15 presents the results of RTT in the opposite direction from the

previous table. The average value of RTT from Table 2-15 is around 87ms, which is higher than
the previous RTT, so the transmission from OnePlus is higher that from Nokia XR20. As a result,

the RTT from the end-device is lower than from the relay device. In addition, the
measurements in Table 2-15 follow the same pattern as those in Table 2-14 but with higher
values. Also, the standard deviation is around 56 ms, which is high compared to the average

value, also the difference between maximum and minimum value has increased. Therefore,
these affect the phones or/and WiFi connection between the devices.

Table 2-14: Measure the RTT from End-Device to Relay

 5b (ms) 6b (ms) 7b (ms) 8b (ms) Overall

Average 20.83 23.14 21.49 20.03 21.38

Max 276 388 346 268 388

Min 2.31 2.25 2.44 6.93 2.25

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

23 of 52

Standard

Dev

27.59 30.38 31.59 18.37 26.99

Table 2-15: Measure the RTT from Relay to End-Device

 5b (ms) 6b (ms) 7b (ms) 8b (ms) Overall

Average 101.08 93.83 75.87 79.60 87.59

Max 523 422 406 413 523

Min 2.05 2.31 2.75 6.51 2.05

Standard

Dev

65.82 57.29 51.43 51.44 56.50

In addition, Table 2-16 and Table 2-17 show the throughput between the devices which are

connected with Wi-Fi Direct. The measurements show that the direction of testing is almost
the same between the two directions. In continuation, the average value of the throughput
for all measurements is around 47 MB/s, except for the Test 5a that the connection between

the end-device and the relay faced a significant issue. In conclusion, these values correlate
with the standard of Wi-Fi Direct. The results from Table 2-17 present some fluctuations,

especially the connections with a specific end-device. In detail, the first end-device reaches
high values of throughput, which is around 65 MB/s. On the other hand, the second end-

device presents lower performance having an average value is around 33 MB/s.

Table 2-16: Measure the Throughput from End-Device to Relay

 5a (MB/s) 6a(MB/s) 7a(MB/s) 8a(MB/s) Overall

Average 25.23 48.41 45.55 46.95 41.54

Max 51.90 56.90 57.00 56.80 57.00

Min 5.07 8.07 7.00 9.91 5.07

Standard

Dev

13.59 11.24 11.60 15.86 13.07

Table 2-17: Measure the Throughput from Relay to End-Device

 5b (MB/s) 6b (MB/s) 7b (MB/s) 8b (MB/s) Overall

Average 68.55 33.29 60.97 32.89 48.93

Max 81.2 40 80.4 41.5 81.20

Min 15.2 6.36 19.9 6.63 6.36

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

24 of 52

Standard

Dev

16.09 7.11 16.14 7.94 11.82

It is clear from the measurements that this side of the network experiences much higher RTT

times, approximately 87.6±13.49 ms in the download mode. On the other hand, in the upload

mode, the RTT times are approximately 21.37±1.77 ms. Hence, upload RTT times are similar to
those of the 5G network, but the download side experiences approximately triple RTT times.
It is also interesting that for the download RTT, the relay plays the most significant role since

both measurements using relay number 1 show higher RTT times. In the upload mode, RTT
times are significantly stable. In terms of throughput, it is obvious that in the download mode,

the WiFi Direct side of the network shows speeds of approximately 48.93±19.63 Mbps, which
is significantly slower than 5G. It is important to state that in the download mode, the
throughput is mostly defined by the end-device and not the relay since both experiments

with end-device number 2 show much slower throughput. In this case, end-devices have 2
different Android versions (End-device 1 Build: KB2003 11 C.33, Baseband ver:Q V1 P14,

Kernel:4.19.157-perf+; End-Device 2 Build: KB2003 11 C.20 Baseband ver:Q V1 P14,
Kernel:4.19.157-perf+), which can significantly affect the network performance. In terms of

the upload mode, speeds of 41.54±16.31 Mbps have been recorded showing much higher
throughput that 5G.

2.4.3 End-to-End D2D Communication Testing

In this last set of tests, the end-to-end setup of this D2D communication was demonstrated.

The end-device and the relay connect through Wi-Fi Direct using the custom mobile/server
application. The relay is also connected to the 5G BS using 5G NR. Initially, device and relay
discovery are achieved through the mobile/server application and secondly message

exchange from the server (Raspberry Pi) to the end-device is demonstrated using the
configuration shown in Figure 2-4. Also, the server presents all connections between the

phones and links through the connection, the alert message sends to phones. In conclusion,
the target of this test is to establish this connection and calculate the transmission time.

Figure 2-4: End-to-End experimental setup.

We analysed the reception times from a pcap file to calculate the transmission time. More

specifically, on the raspberry pi where the server is hosted, we installed tcpdump, which sniffs

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

25 of 52

the network traffic of the channel where the 5GL is located. In the case of the phones, a

pcap capture application was installed, which creates a virtual vpn on the phone and then

collects the network traffic from the phone. As a result, the pcap file on the server stores the

time the message was sent, while the pcap file on the android phones stores the time instant

of reception. Therefore, the transmission time is the difference between the time transmitted

from the Raspberry Pi and the time received from the end device. Figure 2-5 presents the

results of 15 different measures for transmission time from Raspberry pi to end device. The

overall transmission time needed to send the message from the server to the end-device has

been measured to be approximately 91 ms with a 28 ms standard deviation. Adding the RTT

times for the individual segments of travel, the total time is calculated to be approximately

112 ms. Acknowledging that RTT times involve the bi-directional travel of the packet, it is

expected that this method would give higher times than Figure 3-5. End-to-End Testing setup

the real ones. However, the calculation and measurements are significantly close to each

other, confirming the correct order of magnitude in transmission time.

Figure 2-5: RTT times versus number of measurements for End-to-End tests.

2.4.4 Relay selection

Sorbonne University's android application is also responsible for selecting the best relay

device during the coverage extension procedure. Figure 2-6 shows the diagram of this test

where the identification number of each device is located under it through the ID tag.

As soon as the relay selection procedure begins, the relays maintain communication with all

possible End-Devices in their coverage range. During this instant, the End-Devices provide

their metrics to the relay devices for 1 min. The goal is to provide the relays with the necessary

information to evaluate the condition of each End-Device. Then, the relays directly connect

to the relay they selected, notifying their selection to the server located in the raspberry pi.

The next test was to repeat the previous test, but this time the relay device that had lower
percentage of battery is charged. As mentioned previously, the percentage of battery is at

this stage the main factor for the relay selection. In conclusion, the test presents the end
devices select the best relay device that has the highest percentage of battery.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

26 of 52

Figure 2-6: Architecture for relay selection.

2.5 Conclusions

D2D communication is a practical solution that will be more extensively used in the near
future by exploiting technologies such as Wi-Fi or cellular extensions. In IoT-NGIN, we explored

and researched solutions based on D2D, mostly to address the important topic of coverage
extension that fits the case of IoT particularly. We first developed the methodology, the tool

and the framework to design a practical solution. Then, we did an extensive D2D link
characterization to assess the link's characteristics and the criteria for the relay selection.
Moreover, we integrated this solution into a private 5G LAN that is also part of the IoT-NGIN

design. Finally, we demonstrated and evaluated this setup as a function of various key
parameters. Our work has been published (one conference publication and one submission

being evaluated). The tools are available as open-source software).

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

27 of 52

3 Enabling 5G to support protocols for
deterministic communications

The usage of 5G for private industrial networks needs to support deterministic

communications which have been designed originally to optimize time sensitive (I.e., TSN)
communications between machines. The first requirement is to synchronize all the devices
(I.e., wired and wireless) that have to communicate following pre-defined time slots to ensure

resilience. Thus, TSN requires synchronising mobile network UEs and devices connected to
fixed LAN.

The industrial LAN may also consist of TSN-enabled Ethernet bridges. The latest release of 5G

specification supports the fully centralised TSN configuration model, where a central

controller should be able to configure both Ethernet and 5GS bridges as a unified network.
The 5GS supports the whole industrial network, both Medium Access Control (MAC) learning
and flooding based forwarding as well as the static forwarding configured by the central

controller need to be supported. 3GPP has defined that a 5GS can be modelled as one or
more virtual TSN bridges.

The CNC is the entity in the TSN network that has complete knowledge of the network

topology and is responsible for configuring the bridges to enable transmission of TSN streams

from source to destination. The 5G control plane is interacting with CNC via the TSN
Application Function (AF) which maps between the TSN parameters and the 5GS
parameters. The TSN AF reports the 5GS bridge capabilities such as minimum and maximum

delays between every port pair and per traffic class, including the residence time within the
UE and DS-TT via TSN-AF to CNC.

Topology discovery information based on the widely adopted standard IEEE 802.1AB Link

Layer Discovery Protocol (LLDP) is also exposed. The TSN AF also exposes its TSN capabilities

like the support for scheduled traffic and per-stream filtering and policing (PSFP) as specified
in IEEE 802.1Q-2018, in case that they are supported by all of the ports. The CNC obtains the
5GS bridge VLAN configuration from TSN AF according to IEEE Std 802.1Q.

The TSN AF shall be pre-configured (e.g. via OAM) with a mapping table. The mapping table

contains TSN traffic classes, pre-configured bridge delays (i.e. the preconfigured delay

between UE and UPF/NW-TT) and priority levels. The CNC reads the capabilities of all bridges
and calculates the traffic paths and schedules in the network. The CNC then provides the
bridge configuration to the 5GS through the TSN AF, which contains, e.g., scheduled traffic,

PSFP, and traffic forwarding information. In order to support QoS for Ethernet and TSN traffic,
the traffic flows are mapped to 5G QoS flows. The CNC configures the traffic handling in the

5GS bridge for the different traffic classes according to the capabilities that have previously
been reported by the 5GS bridge. The 5GS maps the Ethernet/TSC traffic classes or TSN traffic

streams to the corresponding 5G QoS flows.

3GPP has defined 5G VN groups consisting of a set of UEs using private communication for

5G-LAN type services. A 5G VN group can be utilized for IP or Ethernet based services. A

specific data network, identified by a data network name (DNN), is one of the possibilities to
realise a 5G VN group, where the VN group can be either provided by Operation and

Management (O&M) or by an TSN-AF. 5G VN group where the SMF has full control of the
Ethernet network topology among the 5G VN group members (by control of forwarding

decisions on all Ethernet PDU sessions from different UEs).

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

28 of 52

For a centrally managed Ethernet network, it is required that the NMS/CNC can configure

the VLAN handling for all bridges and all ports, including the 5GS bridge, as specified in IEEE
802.1Q.

3.1 Introduction

CMC has been focusing in the design of 5G core specifically for Non Public Networks (NPN)

primarily industrial networks that require deterministic communications following TSN features.

Therefore, CMC 5G core includes the latest 3GPP standard specifications including all the

necessary network functions (NF) for connecting UE devices to fixed LAN and become native

TSN devices.

UE is defined to have attached functions of time stamping in data frames, using the device

side of the TSN translator (DS-TT). On this Network Function, a step of time synchronisation is
implemented using the TSi from the Suffix field of the gPTP messages (Sync or Follow Up
messages), as it has been defined on 24.535 from 3GPP.

In order to achieve this function a 5G-Modem is integrated in a NPN following an inherent

structure based on a 5G component, a TSN packet handler and wired network components.

These last two components may be integrated in the same hardware such as a
microprocessor but following the TSN standards defined on IEEE 802.1 Qbv, 802.1 CB, 802.1

As and 802.1 Qbu.

In order to demonstrate the TSN functionality CMC has deployed the 5G core in ABB living

labs following the topology below. In this setup we demonstrate successful time

synchronization of TSN devices connected to UE device with fixed TSN devices connected to
LAN.

Figure 3-1: TSN network deployed at ABB living labs for time synchronization testing.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

29 of 52

3.2 Results

After running the time synchronization process to get the UE in sync with the fixed devices we
obtained following results

Table 3-1: Measure the time synchronization in TSN device connected to UE

Location Results

UE Local Time 1677594032.510012643

Grand Master Time 1677594032.495004032

Offset -15008611

Table 3-2: Measure the time synchronization in fixed TSN device

Location Results

UE Local Time 1677594273.198258969

Grand Master Time 1677594273.198259137

Offset 168

The system was installed in ABB living labs as shown in the following figure for additional

measurements

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

30 of 52

Figure 3-2: Equipment deployed at ABB living labs for time synchronization testing.

3.3 Conclusions

The testing of TSN network was conducted both in CMC laboratory and in ABB living lab
premises. The setup uses unique system that provides Ethernet PDU connection over 5G

network. The commercial 5G networks only support IP PDU sessions for data exchange
between mobile devices and data networks such as public Internet. Instead, Non-Public

Networks (NPN) for industry requires Ethernet PDU together with 5GLAN functionality. This
setup includes the support for Ethernet PDU which is uniquely available currently in CMC 5G
Core. The Ethernet PDU allows to transfer gPTP messages from Grand Master (GM) located in

fixed LAN to the 5G modem which will send the gPTP messages to DS-TT for synchronizing the
moving devices.

The preliminary results are shown in Table 3-1and Table 3-2, where the mobile TSN device is

synchronized but with different offset compared to the synchronization achieved by the fixed

TSN device connected directly to the GM in the fixed LAN. The deployment in ABB labs had
few limitations that were blocking the gPTP messages to reach the mobile TSN device. The
end result is that gPTP was running over the 5G network using the Ethernet PDU but the base

station disconnected the mobile and synchronization was lost.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

31 of 52

This behaviour of the base station caused that gPTP messages did not reach the mobile TSN

and went out of synch. Therefore, for providing reliable time synchronization the Ethernet PDU
session should be supported not only in the 5G Core but also in the base station and 5G

routers. Moreover, the jitter of the delay in the 5G radio link needs to be minimized to ensure
the offset of the clocks in both mobile and fixed TSN are aligned.

Thus, initial results show the gPTP can be transferred over the 5G radio to certain degree of

accuracy to synchronize mobile devices but still requires improvements to support natively
Ethernet PDU and low delay jitter for reaching high levels of synchronization accuracy.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

32 of 52

4 Enhancing 5G ease of use through
improved 5G APIs

In this chapter, we present the final version of the 5G-resource-management API, which is

the major outcome of the work from task 2.3. The chapter is split into an introductory section
followed by the latest status of the API and results of tests conducted with the API.

4.1 Introduction

In D2.2 Enhancing IoT Underlying Technology, the first revision of the IoT-NGIN 5G API was
presented. The main goal of this API is to increase the ease of use for application developers

and decrease the required knowledge of the underlying infrastructure. This is done by utilizing
a three-layer approach. As shown in Figure 4-1 the top layer is either the field devices or the
cloud or edge cloud application. On the middle layer the API Server available to the end

user and an infrastructure specific adapter is placed. Finally, on the bottom layer, the
interfaces to the specific infrastructure are connected. For more information about this

approach and information about the planned API functionality deliverables D2.1 and D2.2
can be consulted.

Figure 4-1 IoT-NGIN 5G resource management API

4.2 Final API

The latest version of the API that is tested in a simulated environment and is described as an
Open API Specification found on the IoT-NGIN’s project Gitlab4. This chapter will list the

functionalities and describe the use cases of the different features. An updated list is

4 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

33 of 52

presented, compared to D2.2. As already described in D2.2 the API features are grouped
into three different categories. The first category (5G Connectivity and Device
Management) controls the devices and allows combined actions on groups of devices. The

second category (Microservice Lifecycle Management) provides features for the control of
services running on the cloud or edge cloud infrastructure. Finally, the third category

(Network Slice Management) is controlling the connectivity between the devices and the
services running on top of isolated network slices.

Table 4-1: API calls

Operation Short description

5G Connectivity and Device

Management

/device Register device with API.

/device/{device-id} Query device information or unregister device.

/device/{device-id}/qos Query device quality-of-service parameters or

change QoS Parameters for Device.

/device/{device-

id}/qos/subscribe

Subscribe to changes in the quality of service of a

device to trigger an event accordingly

/device/{device-id}/location Query device location.

/device/{device-

id}/location/subscribe
Subscribe to changes in the location of a device to

trigger events

/group Create a new device group

/group/{group-id} Add or remove device to or from group and query

for the group members

Microservice Lifecycle Management

/service/start/ Start a new service.

/service/{service-id} Get Service information or terminate a service.

/service/{service-id}/status Get the status of a service

/service/{service-

id}/resources

Get or update the resources that a service is using

on that are available for the service

/service/{service-id}/migrate Migrate a service to a different target node

Network Slice Management

/slice Create a new network slice

/slice/{network-id} Get the information of a slice or remove the

network slice

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

34 of 52

/slice/{network-id}/devices Add or remove a device from the network slice or

list the devices that a currently part of the network
slice

/slice/{network-

id}/qos/subscribe

Subscribe to changes in the quality of service for

the network slice

/slice/{network-id}/services List all services that running on a specific network

slice

Explaining all calls would go beyond the scope of this document. For illustration purposes,

we explain the POST /service/start call more in detail.

Figure 4-2: Open API UI

This call starts a new service on the (Edge-)Cloud backend. Therefore, it is necessary to pass
the respective parameters for that service in the call's body. These parameters can be seen

in Figure XY, which shows the rendered API.

Every service needs to have a human-readable name for distinction and maintenance. As

we build upon container technologies, a docker image in standard notation is also required.

In theory, this would suffice, but such a minimal service would barely be of any use. Additional

parameters can be passed to the API to configure the running images. For once, there are

the arguments and environment variables, which are passed into the container to configure
the running software. In the API example we have several service specific command-line

parameters like "--no-ignore" and environment variables like "LOG_LEVEL" to set the log
verbosity. It should be noted that the environment variables are key-value pairs.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

35 of 52

The next parameter is resource_limits. As the name already implies, these can be used

to set quotas on the new service. This feature can be useful, for instance, to reduce costs for

the service or ensure sufficient remaining resources for other services to be run on that
network slice.

The last but probably most important parameter are the port_mappings. These expose the

services' container ports, which is crucial for any cloud service. In the example, the
container's port 80 and 1234 are mapped to the host's ports 8080 and 8081 respectively.

Figure 4-3: OpenAPI visualization of the get_service call’s response.

A response to such a call is depicted in Figure 4-4. It contains the service's name and image,

which in this case are the same as what was passed to the call in the first place. However, as
the same schema is used in multiple places in the API, this information is still relevant. The
second return element is the "id" value of the response. This is a 64-Bit identifier, which can

later be used to select that specific service in other calls, such as DELETE

/service/{service_id}.

Figure 4-4: Call and response of start_service in the command line.

Figure 4-4 shows a call to that API using the Linux command line tool "curl", which executes
http requests. In the example a "hello world" server is started, which can then be accessed
at port 80 of the edge cloud infrastructure.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

36 of 52

4.3 Implementation

The core component is the API server. Additionally, we implemented three different adapters
and tested either against a lab infrastructure or a simulated infrastructure. More setup

specific adapters can be added easily. This showcases the versatility of the API and adapter
approach for different types of infrastructure.

4.3.1 IoT-NGIN API Server

The API Server provides the interface to the user application. This server is implemented using

the Rust programming language, which is chosen for its reliability and security, resulting from
strong typing and extensive runtime checks. The code of the server can be found in the

projects Gitlab repository5.

The API Server is developed as a stateless server that interfaces to the different API Adapters.

It is built using the OpenAPI tools6 which ensure that all calls are actually handled, that

datatypes are correct, and the responses are in line with the specified API. In the backend,
the highly performant hyper7 library is used, which is among the most performant and thus

also efficient frameworks for http communication.

The API Server exposes all the above-mentioned API calls and can easily be extended in the

future by updating the open API configuration and the implementation of the modified or
added API function calls.

4.3.2 Unikernel Adapter

The Unikernel Adapter can be found on Gitlab.com8. This adapter enables the API to start

and stop services that are running a Unikernel application. The Adapter provides a
rudimentary API interface for Kubernetes and specifically the Unikernel application. This
adapter also stores the current state of the service and can in the future be extended to

store more state information about the service that is instantiated. The goal is to abstract the
adapter specific state information away from the customer. This allows for a much simpler

API and higher flexibility in the implementation of different adapters.

Table 4-2: Unikernel Adapter API calls

Operation Short description

/service Create and start a service

/service/{id} Get status or delete a specific service

5 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-server
6 https://github.com/OpenAPITools/openapi-generator
7 https://hyper.rs/
8 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-

adapters/endpoint-unikernel

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-server
https://github.com/OpenAPITools/openapi-generator
https://hyper.rs/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-unikernel
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-unikernel

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

37 of 52

4.3.3 Slice Management Adapter

The Slice Management Adapter provides an interface to the vendor specific infrastructure

of the I2CAT slice manager. This adapter implements a rudimentary interface to instantiate
a service and enable connectivity to the edge cloud infrastructure, where i2CAT’s Slice

Management API is deployed. In the latest version, the following API calls are implemented.
The currently for testing purposes implemented service_start call actually executed four

API requests ad depicted in Table 4-3. The adapter can be found in the project Gitlab
repository9.

Table 4-3: I2CAT Backend API calls.

Operation Short description

/service_start This adapter capability implements the start service

calls

4.3.4 Slice Management simulator

For testing purposes, a simulated backend for the adapter was developed. This simulator is
based on the OpenAPI definition for the I2CAT slice manager. It implements a minimal subset

to allow for testing the calls ran by the nsm-adapter. The simulated backend supports the
following calls including their specific parameters. The simulator stores the state of the system,

thus allowing to read the current state as well as create new instances as described in Table
4-4. The simulator can also be found in the project’s Gitlab repository10.

Table 4-4: Slice Management Simulator calls.

Operation Short description

/compute_chunk This call creates a new compute chunk and returns

the parameters of the chunk

/slic3 This call creates a new slice

/network_service This call creates a network service

/network_service_instance This call starts an instance of the above created

network service

9 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/endpoint-nsm
10 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-

adapters/endpoint-simulator

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-simulator
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-simulator

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

38 of 52

4.4 Results

In this section two different demonstrations of the API server are described.

For all the test the API Server as well as the corresponding adapters were running and the

calls to the API Server were produced via the Open API Web UI or a curl command.

4.4.1 API Server

The API server was tested in a qualitative manner. As the code generation ensures that stubs
for all specified functions are generated and the forwarding to the respective adapter is

generalized, the functionality of all calls could be verified easily.

Figure 4-5: The IoT-NGIN 5G Resource Management API server in action.

4.4.2 Unikernel Demo

In this section, a demo of the Unikernel API adapter is described. The initial call is sent to the

IoT NGIN API Server and then forwarded to the Unikernel adapter. That in result calls the
Kubernetes API and starts the selected service. Currently two examples are available. The
first example starts a NGINX that shows the users IP address and the second one is a hello

world Unikernel application that is serving a static html website. It is to be noted that the
NGINX example uses the standard container infrastructure and the Unikernel example starts

a Unikernel using runh. A screenshot of the Unikernel application can be seen in Figure 4-6.
The Rancher user interface of Kubernetes, showing the running Unikernel application is shown

in Figure 4-7.

Figure 4-6: Unikernel application started with Iot NGIN 5G API.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

39 of 52

Figure 4-7: Rancher UI after starting a Unikernel hello world service.

4.4.3 Slice Manager Demo

In this test the resource management API is called, to start a service. This then results in four
subsequent calls to the slice manager simulator. The API simulator is depicted in Figure

4-8Figure 4-8 there it can be seen that the four calls for chunk, slice, network service creation
and network service instantiation is received. These calls are executed by the API adapter

who got a start_service call.

Figure 4-8: Slice Manager command line tool.

The curl version fo the call to the API Adapter is depicted in Figure 4-9 and the result of the
above shown calls is shown in Figure 4-10.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

40 of 52

Figure 4-9: curl command to start a service.

Figure 4-10: OpenAPI visualization of the start_service call.

4.5 Conclusions

In this chapter a simplified API is proposed that allows more software developers to create
apps that can utilize the new functionalities provided by the 5G network. This in turn allows

for a better adoption and the creation of new use cases in the future. The basic functionalities
are shown with two different examples.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

41 of 52

5 Secure Edge Cloud Framework for micro-
services

In this chapter the work related to the development of a framework to allow more secure

execution of micro services is described. This chapter presents the resulting framework.

5.1 Introduction

As described in deliverable 2.2, typical cloud and edge cloud infrastructure is based on

containers, which allows the existence of multiple isolated user spaces. Containers are based
on OS-level virtualization, where the applications are bundled in logical namespaces and

the kernel ensures isolation between these namespaces. The left side of Figure 5-1: Figure 5-1
depicts this traditional way of handling containers. The disadvantage of this techniques is a
rather low level of isolation as a security issue in the container runtime allows to directly attack

the host kernel.

An alternative way of isolating software is virtualization, where software is run on a virtual CPU,

provided by a hypervisor. These hypervisors usually rely on specific hardware features to
provide comparable performance but still enforce the virtualization boundary. Being a

slimmer and more low-level interface, it can be argued that Hypervisor isolation is more
secure than traditional container isolation. The right side of Figure 5-1depicts this setup.

Some platforms and container engines provide additional options to harden the

containerized environments. A powerful example is the combination of both presented
technologies, where hypervisors are used to enhance the container isolation which is used

by some security focused container engines11. This is shown in the right side of Figure 5-1.

Figure 5-1: Classical micro-service stacks. Containerization on the left side, virtual machines on the

right side.

11 https://nabla-containers.github.io/

https://nabla-containers.github.io/

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

42 of 52

Figure 5-2: Hardened container setup using containers, microVMs and library operating systems.

Despite the acceleration by hardware features, virtual machines increase the overhead. This

is mostly due to the fact, that they aim to emulate a real machine as close as possible. In

cloud and IoT environments, this is usually not necessary, as an application would only need
a small subset of the functionality an operating system and the peripherals can provide and

most of them are virtual anyway. Thus, one way of improving the performance is the usage
of microVMs, which drop compatibility to classical operating systems, so that the virtual

machines can be optimized and shrunk down for increased efficiency. IoT-NGIN focuses on
micro-services. Consequently, each container deploys usually one application, which
handles e.g., https-requests. In this case, a multi-processor, multi-tasking, and multi-user

operating system like Linux as guest operating system in a virtual machine is too generalized.
Library Operating Systems (also known as unikernels) are an attractive solution to decrease

the overhead. In this case, the kernel is linked as library to the application and realized as
bootable application. Utilizing compile-time optimizations, such an image is optimized for a

certain type of applications and has a largely reduced attack surface and thus an increased
security. In addition, the complete software stack from the kernel through the IP stack to the
application itself can be analysed with established compiler techniques. Unneeded code

can be removed which reduces the complexity of the system. In IoT-NGIN, RustyHermit is
used to show the applicability and robustness of unikernels.

The IoT world isn't only based on Rust. Especially machine learning models, whose support is

one of the key objectives of IoT-NGIN are often based on other programming languages.
C/C++ is still an important programming language and must be supported by unikernels.

RustyHermit can support C/C++ and Fortran by providing a cross-compiler to build unikernels
on top of a Linux system. Figure 5-3 shows the runtime system of RustyHermit. The kernel itself

is completely written in Rust and named in that figure with libhermit-rs. The C library newlib is
used for other programming languages which build upon the POSIX system interface like C,

C++ and others.

The right side of Figure 5-3 shows the concepts of the available execution environments

which are the general purpose QEMU and the tailored microVMs Firecracker and Uhyve

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

43 of 52

mentioned before. Uhyve is developed by the project partners from the RWTH Aachen
University and could be improved in this project.

Figure 5-3: Rusty-Hermit conceptual overview

Figure 5-4: The integration of runh in the Docker and Kubernetes software stack

Deliverable 2.2 already explained that the creation of containers standardized, so that other

tools like Kubernetes can build upon different varieties of container implementations. The
Open Container Initiative (OCI) defines a runtime interface to a tool, which at the end

spawns a container. Typically, runc is used by Kubernetes and Docker to spawn containers
based on OS-level virtualization. In deliverable 2.2, we defined our own container spawner
runh that can spawn common containers but also containers based on a microVM and the

unikernel RustyHermit. Figure 5-4 shows how runh integrates into a Kubernetes or Docker
setup.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

44 of 52

5.2 The IoT-NGIN Secure Edge Cloud Framework

The resulting framework developed in this task consists of three major building blocks:

• The improved unikernel RustyHermit

• The container and unikernel runtime runh

• Multiple solutions to execute Machine learning models in the RustyHermit Unikernel

Since the start of the IoT-NGIN Project, 1655 commits were added to the unikernel library

libhermit-rs, changing 183 files resulting in 25016 added lines of code and 60875 deleted ones.

The rusty-hermit repository hat 770 commits in that time, changing 66 files with 3109 added
and 2226 removed lines. The microVM Uhyve had 74 files changes with 5585 added and 7505

removed lines of code. Notable changes include the rework of the network stack and
debugging support.

New projects in the area of hypervisors like Firecracker use Rust to improve the security

behaviour. Firecracker is an alternative to QEMU and is designed to run serverless functions
and containers safely. The minimalistic design of Firecracker offers only 5 devices. RustyHermit

is now able to run on top of Firecracker. Consequently, the complete software stack is
hardened by the usage of Rust on all levels of the software stack. The second component,

runh12, is a runtime for Kubernetes, which can both run docker containers and unikernels.
The ability to choose the enhanced isolation of the unikernels in combination with the

compatibility of the vast docker ecosystem is an enabler for unikernels in the micro-service
domain.

Figure 5-5: Performance comparison of runh and runc using QEMU and microVMs

runh uses microVMs, which promise a lower overhead in comparison to common VMs. The
first release uses QEMU as hypervisor to run RustyHermit. QEMU is an established hypervisor

especially in Linux environments and offers also a machine model as microVM. By using
QEMU, we are able to compare the microVM with a common VM as QEMU is able to support

both VM types. The performance gain is depicted in Figure 5-5, which shows the boot time
of concurrent containers. The blue line shows the excellent performance of common

containers. In comparison to the orange lines shows the performance of common QEMU

12 https://github.com/hermitcore/runh

https://github.com/hermitcore/runh

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

45 of 52

VMs, the red line shows that the usage of QEMU-based microVMs13 provides nearly the same
performance as common containers, whilst providing a stronger isolation at the same time.

The third component - the machine learning support - is explained in more detail in the

following section.

5.3 Application to ML optimization in IoT-NGIN

There is an increasing usage of intelligence in IoT based applications, that use the application

context, captured by IoT sensors or devices, to make smart decisions. This intelligence is

generated by the inference capabilities of ML models that have been trained with that

context data. However, the inference is required, in many situations, to make near-real-time

decisions, leveraging the high performance of those ML models. Although ML models can

be trained offline in Cloud infrastructures, their inference process is mostly executed in Edge

clusters, near the context data used as input, in order to reduce the data access latency, to

speed up the overall inference process. In general, different strategies, including software

and algorithm optimizations, hardware acceleration (GPUs, TPUs, FPGAs,), etc, have been

proposed for ML inference optimization, also for the Edge [Ref14].

In the context of unikernels for secure execution, concrete choices of hardware (e.g., CPU)

and software (e.g., C/C++/Rust) may constrain the execution. However, some performance

gain is expected when inference is executed in unikernels, with binaries compiled with those

compatible languages (i.e., C/C++), when compared with the execution with other popular

languages among data scientist, such as Python, which offer significant lower performance

on CPUs.

This results in the following requirements such a solution must have for the application in the

Edge-Cloud Framework:

- It must produce binary, self-consistent and not dynamically linked, CPU-compatible

programs, so that they can be executed in the unikernel

- They must be compatible with the ML frameworks used in IoT-NGIN, such as PyTorch
and TensorFlow.

The first requirement enforces the usage of ML frameworks that offers either C/C++ bindings

or libraries, as those programming environments may produce self-consistent binaries that do

not require of a specific programming execution environment (as Python does). However,
for most of today’s frameworks, various solutions to achieve this goal exist. In combination

with the second requirement the following approaches IoT-NGIN ML inference execution
within unikernels are:

- Apache TVM compilation15

- Torch C++3
- TensorFlow C++4

- TensorFlow C API5 with CppFlow6
- ONNX Runtime7

13 https://qemu.readthedocs.io/en/latest/system/i386/microvm.html
14 Shuvo, M. M. H., Islam, S. K., Cheng, J., & Morshed, B. I. (2022). Efficient Acceleration of Deep Learning
Inference on Resource-Constrained Edge Devices: A Review. Proceedings of the IEEE.
15 https://tvm.apache.org/

https://qemu.readthedocs.io/en/latest/system/i386/microvm.html

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

46 of 52

We'll briefly describe these different approaches:

Apache TVM (for Tensor Virtual Machine) describes itself as an "open-source machine

learning compiler framework for CPUs, GPUs, and machine learning accelerators".

Depending on the definition, it could also be called a transpiler, as it can transform ML
models for various execution backends like GPUs or DSPs, but also into executable C-code,

which makes it interesting for Unikernels. TVM can transform multiple input formats, including
TensorFlow and PyTorch.

Torch C++ API is easy to install from its portal.8 It offers binary downloads for installation, so its

compilation from sources is not required. Its documentation is quite good and it is well
supported by the community forums.

TensorFlow C++ is not available in binary format for direct download and installation, so it

must be compiled from sources before being installed. However, the compilation process is

hard, although well documented, imposing constraints on the compatible versions of the
gcc compiler, the Python development environment and the Bazel building tool. As the
compatible versions of the gcc compiler are not among the newest ones present in most

recent versions of Linux OS, its compilation could be challenging on most machines. In the
community, few users have faced successfully these compilation challenges and offered

some Docker containers to build TensorFlow from sources9. TensorFlow C++ is not well
documented, and scarce support is found in Internet communities.

TensorFlow C API is a C binding for TensorFlow. There are binary downloads for popular OS

that are easy to install. However, it is not well documented and its usage in C++ programs
could be challenging.

To overcome these limitations, CppFlow offers C++ headers to bind the TensorFlow C API and

produce C++ binaries for TensorFlow inference, without requiring to compile TensorFlow C++

from sources with Bazel.

ONNX Runtime is an optimized ML inference (and training) execution platform, that offers API

binding for several programming languages (e.g., C/C++, Python, Java, etc), on multiple
hardware (X64/X86, ARM, etc) and acceleration (CUDA, TensorRT, etc). ONNX Runtime
executes ML inference on ONNX models, which are intermediate model created from

models build with other ML backends (e.g., PyTorch, TensorFlow, etc).

We have been evaluating the mentioned technologies16. Initially, we experimented with

some concrete examples we found in the communities, then we applied those experiences
to some ML inference examples for image classification, based on Alexnet and Restnet18.
Next, we applied them to some of the IoT-NGIN Living Labs use cases, namely: the power

generation forecasting on the Smart Energy LL, and the sensor detection on the Smart
Agriculture LL (see D6.2 for further details on these use cases).

In the following, we present the TVM approach, as well as the Torch C++ approach, as these

illustrate two rather different approaches to the problem, the other approaches follow the

same principles.

16 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/ml-inference-examples-for-unikernels/-/tree/experiments

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

47 of 52

5.3.1 Machine learning support using TVM cross
compilation

Apache TVM is a framework to optimize and execute different formats of machine learning

models on various hardware architectures and accelerators. It works as a compiler that can
read multiple model formats, interprets, and processes them as intermediate representation
and generates code for the selected backend. The execution of TVM processed models in

RustyHermit is one of the components of the developed framework.

The source code is published at the project's Gitlab Repository17 illustrates the usage and acts

as a starting point for other projects. The most relevant part of the project is the CMakeLists.txt
file, which invokes TVM and let it generate the C code for the unikernel. The invocation of
TVM looks as follows:

python -m tvm.driver.tvmc compile --target=c --runtime=crt --executor=aot
--executor-aot-interface-api=c --executor-aot-unpacked-api=1
--pass-config=tir.disable_vectorize=1 --output-format=mlf
--output=<BINARY_DIR>/module.tar <DOWNLOADED_FILE>

This generates the source files codegen/host/src/default_lib0.c, codegen/host/src/
default_lib1.c and runtime/src/runtime/crt/common/crt_backend_api.c containing the

executable model. In this example, the MobileNet v2 1.0 224 INT8 image classification model

is automatically downloaded and used. Additionally, the python script convert_labels.py

generates the class labels for the output vector and the convert_images.py script converts

the input image into a raw c-code file. These steps are necessary in this minimal example, a
real -world application would adapt this depending on their needs.

TVM is a great way of running static ML models in the edge-cloud framework. However, for

adaptive or more advanced models, Torch C++ is better suited.

5.3.2 Torch C++ ML Models in Unikernels

In the following section, we describe the application of the Torch C++ approach for the

execution of ML models withing the Framework. First, we briefly explain the models, the
application in the Unikernel, two experiments have been conducted with Torch C++:

- An Alexnet image classification,

- A Smart Energy LL power generation forecasting

5.3.2.1 Alexnet classification

The source code for this experiment is available at the project's Gitlab Repository18..This is an

image classification inference problem that uses a pre-trained Alexnet model (obtained from
TorchVision) to classify an input image (a Labrador dog) among 1000 classes.

17 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/hermit-tvm

18 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/alexnet

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/hermit-tvm
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/hermit-tvm
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/alexnet
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/alexnet

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

48 of 52

The C++ code (./src/alexnet-app.cpp) uses cmake for building and the libraries Torchlib C++

and OpenCV for ML inference and image pre-processing, respectively. The source code
includes a readme.md file that describes the procedure to install the dependencies, build

and execute the experiment. The inference results on a list of best predictions with scores:

Prediction: whippet with probability: 50.417

Prediction: Saluki, gazelle hound with probability: 30.0007

Prediction: Ibizan hound, Ibizan Podenco with probability: 5.98667

Prediction: Labrador retriever with probability: 5.31794

…

Performance gain w.r.t. the original Python execution is about 54% in our experiments with

CPU.

5.3.2.2 Smart Energy LL power generation forecasting

The source code of this experiment is available in the same repository 19. This is a time series

forecasting problem that uses a GRU-base regressor (a variant of LSTM) to forecast the future
power generation of an electric grid (EG). This model is online trained with MLaaS Online

Learning service (see D3.3 for further details). In this experiment we use a snapshot of the
trained model, retrieved from the MLaaS Model Storage, where it is stored upon gains on

performance.

This model takes, as input, a tensor with the last 36 hourly measurements of the EG power

generation, and provides, as output, a prediction for the next hour power generation.

The C++ code (./src/power_generation_forecast.cpp) uses cmake for building and the

Torchlib C++ library for the ML inference. The source code includes a readme.md file that

describes the procedure to install the dependencies, build and execute the experiment.

The inference outputs the prediction of the next hour power generation:

Power generation prediction: 0.890847

Performance gain w.r.t. the original Python execution is about 65% in our experiments with

CPU.

Both experiments showcase the performance gains and the ability to produce unikernels-

compatible binaries for Torch based inference in a range of different applications

(classification, regression).

5.3.2.3 Unikernel execution

The RustyHermit cross-compiler20 adheres typical standards to build larger C++ applications.

It is based on gcc 7.5.0, offers an ANSI C library, the POSIX interface for thread handling, and
adheres the C++14 standard. However, PyTorch must be modified to support RustyHermit.

RustyHermit’s C library was originally designed for embedded systems. To reduce the

19 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/ml-inference-examples-for-unikernels/-

/tree/experiments/torch/power_generation_forecast
20 https://github.com/hermitcore/hermit-toolchain

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/power_generation_forecast
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/power_generation_forecast
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/power_generation_forecast
https://github.com/hermitcore/hermit-toolchain

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

49 of 52

overhead, the C library doesn’t offer all features of the GNU C library. Therefore, we must
configure the PyTorch C++ runtime in the same manner as it is done for mobile platforms as
e.g., iOS or Android, as these operating systems provides less features and thus don’t require

features only present in the GNU C library.

The second challenge is the adaption of all components, which handle threads. RustyHermit

itself supports POSIX threads, but PyTorch’s source code and its helper library Kineto is only
designed to run directly on top of Linux, Windows, macOS and their branches (e.g, Android)
and uses processes instead of threads. Consequently, the source code must be modified to

use the Pthread interface.

Overall, the build system and C++ source code of PyTorch and Kineto are modtified to use

already existing code, which was originally designed for Android or Pthread-based operating
systems. In total 31 files are modified with 305 insertions and 11 deletions. In comparison to

the complexity of the whole PyTorch project with all helper library (10 million lines of code
within 39737 files) are these changes minimal.

Only the helper library cpuinfo provides new code for RustyHermit. cpuinfo is used to

determine the number of processors and their cache sizes. The library depends on operating

system interfaces, which must be adapted to support RustyHermit. However, the complexity
of the code is small (4 files, 275 insertions). We will submit all changes to the open-source

projects so that future projects can also benefit from them.

The source code of the modified libraries is available at:

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/pytorch
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/kineto/-/tree/hermit
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/cpuinfo/-/tree/hermit

The power generation forcast experiment (see section 5.3.2.2) is used to compare a unikernel

with a common Linux application. To run the unikernel within a virtual machine, the microVM
Uhyve is used. The RustyHermit toolchain builds a single image, which is bootable within any

common VM. The image has a size of 89 (62 stripped) MByte. The Linux application has only
a size of 153 KByte. But in comparison to the Unikernel, the Linux application has to load at

runtime shared libraries with a total size of 480 (405 stripped) MByte which is more than five
(six for stripped binaries) times higher. This is, because a dynamic linker can’t remove

unneeded code, as also other applications could use the same shared library. This shows the
benefits of a static code analysis, where the linker is able to optimize the applications and to
remove unneeded code. In cloud environments, where often only one application (micro

service) is running in a container, the advantages of code sharing do not come into play.
Common containers share the host kernel, but every container provides their own set of

shared libraries.

In addition, the unikernel is 25% faster in comparison to the Linux applications. because the

overhead of loading the shared libraries at runtime does the Linux application never

compensate. This huge speed up is of course not representative for all applications and
further analysis is needed to better understand runtime behaviour.

The Alexnet classification (see section 5.3.2.1) is based on Pytorch and also OpenCV, which

is used for ML inference and image pre-processing. To use OpenCV for Alexnet, OpenCV

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/pytorch
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/pytorch
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/kineto/-/tree/hermit
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/kineto/-/tree/hermit
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/cpuinfo/-/tree/hermit
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/cpuinfo/-/tree/hermit

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

50 of 52

must be cross compiled for RustHermit. The number of changes is clearly smaller in
comparison PyTorch, but the kind of changes are similar. Mainly the configuration files need
to be modified. In total. 11 files are changed with 11 insertions and 9 deletions. In comparison

to OpenCV’s 2 million lines of code, these changes are also rather insignificant.

The size of the unikernel increase in comparison to the power generation forecast to 104

MByte (75 MByte stripped). OpenCV seems to be highly optimized for Linux. A deeper
analysis is required to understand the behaviour completely. But the memory consumption is
clearly high in comparison to RustyHermit, as at least PyTorch (>400 MByte) and a few

components of OpenCV have to be loaded into memory.

These first results show that the microVM Uhyve has an excellent start-up time and the

unikernel toolchain doesn’t introduce new additional overhead. With the benefit of a low
memory footprint and a stronger isolation from the host system, unikernels could be a

scalable and robust architecture for cloud environments.

5.4 Conclusions

In this chapter we explained the different aspects of the secure execution framework that

uses unikernels for micro-services. This framework builds upon Kubernetes, which allows the
application in cloud and edge-cloud environments. The use of unikernels and micro-VMs

provides a high isolation whilst maintaining high performance and thus scalability. The
application of this framework was shown by running different approaches of ML inference
using this technology. The various experiments have been described and the source is

available on the project’s repository. The results show that ML models have a much smaller
footprint and can execute even faster on the unikernel, which in combination with the higher

isolation makes this technology an interesting choice for cloud/edge-cloud environments.
Future work on this topic is the adoption of all the approaches for ML-support in the

framework as well as running more models on the framework to explore all possible edge-
cases.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

51 of 52

6 How the technology is transferred and
demonstrated in use cases and living labs

The deployment of CMC 5G Core including the TSN and 5GLAN functionality has been

installed and tested in ABB living lab. In the testing CMC acquired latest 5G device that
includes support for Ethernet PDU. The installation includes the latest release of CMC 5GC
with support for Ethernet PDU. However, the ABB living labs include a different 5G base station

compared to the one used in CMC laboratory. Thus, the base station in ABB living labs did
not recognize the Ethernet PDU session from the 5G device and the connection was

terminated. This led to failure of time synchronization process so the protocol taking care of
time synchronization that works over Ethernet was not completed successfully. However, the

same installation in CMC lab where there was the possibility of accessing the settings of the
base station did allow to have an Ethernet PDU session which resulted in successful
synchronization.

H2020 -957246 - IoT-NGIN

D2.3 Enhanced IoT Underlying Technology (Final Version)

52 of 52

7 Conclusions
This chapter will provide the conclusions on the four different enhancements for IoT

underlying technology discussed in this deliverable.

Starting with the enhancement of 5G coverage. The deliverable discussed the different

possibilities for extending the device coverage. The focus was put on the utilization of UEs for
relaying the communication and thus enabling devices that otherwise would not have cell
coverage to still connect to cell services. Two types of communication were evaluated. The

first examined the possibility to extend the network based on 5G relaying and the second
WIFI direct communication. Both are compared based on throughput and RTT

measurements. The 5G approach has an average RTT of about 23 ms and an average
throughput of up to 115 Mbps. Comapraed to this the Wifi Direct connection achives a

average RTT of also about 23 ms and an average throughput of up to 140 Mbps. Depending
on the available UE and hardware configuration this shows a flexible solution for the
coverage extension.

The second major topic of this deliverable evaluates the possibility of deterministic

communication. This is achieved by utilizing a custom 5G core. The measurements provided

in that chapter show the time synchronization of the UE compared to a network without time
sensitive networking feature.

In the third chapter the developments concerning the 5G Resource Management API are

described. The final version of the proposed simplified API is shown and explained.
Furthermore the adapters for container control with Kubernetes, runh and for the slice

creation and service control are described. The implementation is reduced to minimal
examples as this is meant to be a proof of concept. The simplification can be seen with the

calls needed for the slice manager. Here on call for starting a service results in four different
calls to the slice manage backend. Since it was not possible to test the behaviour against

the real hardware a additional simulator was implemented this software behaves like the real
API and is based on the official open API specification for the slice manager. This shows the
possibility for rapid prototyping without the final software stack up and running. For the

unikernel and Kubernetes adapter it is shown that a single command for staring a webserver
can be deployed on the specific infrastructure depending on the used software stack.

Lastly, the Secure Edge Cloud Framework was presented, which introduces the novel

unikernel technology to the cloud and edge-cloud domain. This approach provides a higher
isolation for microservices through the use of virtual machines. By using microVMs, the

overhead is kept low and is comparable to the widely used container technology. One of
the primary targets for microservices in IoT-NGIN are machine learning applications, thus the

framework includes serveral methodologies to execute inference on unikernels in cloud
applications. The chapter demonstrates some of the most relevant ones.

The demonstration of TSN and 5G-LAN in the ABB living lab could not be completed so far,

but the process is still ongoing and successful results are expected during the remainder of
the project.

The presented technologies all have their own scope, but are all expected to have an

impact in their own domain and do their part in shaping the future of the IoT landscape.

	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended Audience
	1.2 Relations to other activities
	1.3 Document overview

	2 Enhancing 5G functionality to improve 5G coverage
	2.1 Introduction
	2.2 Experimental setup
	2.3 Experimental methodology
	2.4 Experimental Results
	2.4.1 5G network
	2.4.1.1 Test between gNB and Relay
	2.4.1.2 Test between 5GC Core and Relay device

	2.4.2 WiFi Direct Network
	2.4.3 End-to-End D2D Communication Testing
	2.4.4 Relay selection

	2.5 Conclusions

	3 Enabling 5G to support protocols for deterministic communications
	3.1 Introduction
	3.2 Results
	3.3 Conclusions

	4 Enhancing 5G ease of use through improved 5G APIs
	4.1 Introduction
	4.2 Final API
	4.3 Implementation
	4.3.1 IoT-NGIN API Server
	4.3.2 Unikernel Adapter
	4.3.3 Slice Management Adapter
	4.3.4 Slice Management simulator

	4.4 Results
	4.4.1 API Server
	4.4.2 Unikernel Demo
	4.4.3 Slice Manager Demo

	4.5 Conclusions

	5 Secure Edge Cloud Framework for micro-services
	5.1 Introduction
	5.2 The IoT-NGIN Secure Edge Cloud Framework
	5.3 Application to ML optimization in IoT-NGIN
	5.3.1 Machine learning support using TVM cross compilation
	5.3.2 Torch C++ ML Models in Unikernels
	5.3.2.1 Alexnet classification
	5.3.2.2 Smart Energy LL power generation forecasting
	5.3.2.3 Unikernel execution

	5.4 Conclusions

	6 How the technology is transferred and demonstrated in use cases and living labs
	7 Conclusions

