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Executive Summary 
This deliverable is the third and final deliverable concerning the work for Enhancing IoT 

Underlying Technology that presents the outcomes and results of the work conducted. The 
four main outcomes discribed are: 

Improved 5G coverage using D2D connections 

This chapter discribes in detail the laboratory setup and a varaiaty of tests conducted to 

validate the possibility of extendign the 5G coverage throug 5G devices. The test conducted 

cover the topics of coverage, throughput and latency. The analysis is carried out in different 
configurations of user eqipment (UE) and basestations. 

The tests were performed using relays and mobile phones, and the measurements were 

taken between the 5G network core (5GC), a base station (BS), and relay devices. More 

specifically, the measurement of the RTT in different sections of the laboratory setup. The 
results show that the measured RTT times are within the acceptable range for 5G SA eMBB 
according to 3GPP, Release 16 standards. Furthermore, the tests show that D2D 

communication in 5G networks is feasible with adequate coverage. The experiments 
demonstrate that coverage can be improved by placing D2D relay devices near the BS 

station for higher performance. However, external factors such as Electro-Magnetic 
Interference (EMI) can affect the network's performance. 

Deterministic and time sensitive communication for 5G 

In this chapter the test setup for timesyncronization for a private 5G network is discribed. This 

includes the deployment at a living lab trial site. The measurments conducted show the time 

difference between a grand master clock and the local time of a UE. 

The 5G core with TSN functionality was deployed and tested in a control environment at 

CMC laboratory as well as in ABB living labs. The results showed the time synchronization was 
achieved both using IP over VxLAN and native synchronization protocol over Ethernet PDU 
session. However, the Ethernet PDU is not fully supported in devices and base stations to 

complete synchronization requires additional equipment updates 

Simplified 5G resources management API 

The final proposed API is described and the server architecture as well as various adapters 

for existing infrastructure components are are explained. The functionality is evaluated either 
by demonstrating the API use with real backends like a kubernetes instance, or by running it 

against simulated backends. The API is also tested against parts of the secure edge cloud 
framework described in the last chapter. 

Secure edge cloud framework 

The final version of the secure edge cloud framework is described. The framework combines 

unikernels, the orchestration tool kubernetes and multiple ways of executing ML inference in 

said technologies. This does not only increase the isolation of applications, it can also  reduce 
the memory footprint and faster startup times can also increase the performance. By running 

ML models from the project with the framework’s technologies, the usability as well as the 
performance is demonstrated. 
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1 Introduction 
Since the publication of our first description of the 5G enhancements in D2.1 in November, 

2021and this document, a lot of work was put in the technologies developed for the 
enhancement for future internet and network technologies. Our work has progressed 

according to plan, so we can present the final results in this deliverable. 

This first chapter is intended to provide information necessary to enable the reader to 

understand the structure of this deliverable and how the individual chapters relate to each 

other. This chapter relates the contents of this deliverable to other existing project 
deliverables and to the future deliverables of the IoT-NGIN project. 

1.1 Intended Audience 

This deliverable will be useful to a wide audience of readers. As it provides an in-depth 
description of the outcomes and achivements on 5G enhancements, it is usefull for project 

reviewers and the European Commission as well as project partners that want to understand 
the details of the technology better.  

The enhancements are mostly related to industrial 5G applications and backend 

technologies. Thus, this document is also relevant for readers in the IoT, mobile 

communications, smart agriculture, smart industry, smart cities and smart energy sectors  as 
we see the most potential for new products, services and use cases in these domains in the 
coming years. 

1.2 Relations to other activities 

For more information the previous deliverables on this topic can be consulted. These are 

deliverable D2.1 Enhancing IoT M2M/MCM Communications and D2.2 Enhancing IoT 
Underlying Technology. 

1.3 Document overview 

In this document, we give room for each of the enhancements developed. This leaves us 
with the following structure: 

• A presentation of the connectivity enhancements by utilizing device-to-device 

communications is given in chapter 2. 

• Deterministic communications using time sensitive communications and 5GLAN are 

discussed in chapter 3. 

• Chapter 4 presents the 5G Resources Management API, which simplifies the use of 

various 5G functionalities. 

• The last enhancement - the Secure Execution Environment for Edge Cloud Services - 

is presented in chapter 5. 

• A demonstration of the technology transfer in the living labs is given in chapter 6. 

• The document is concluded with a short summary in chapter 7. 
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2 Enhancing 5G functionality to improve 5G 
coverage 

This first chapter presents the results and outcomes of the work that has been done to 

improve mobile connectivity. 

2.1 Introduction 

Cellular networks are being developed with the ambition to cover most of user needs, 
extending their suitability by standardizing new generations over time, e.g., 4G, 5G and now 

6G. However, during this journey, other technologies and/or architectures are considered to 
cover specific needs. The current networking architecture is converging with the best 

practices that constitute the substrate for the cloud, adopting a very centralised approach 
(cloud-native) distributed using the edge concept. However, there are always situations 
when cellular does not apply. It could be either because of limited or transient coverage or 

when there is no coverage due to failure, damage or too costly deployment.  

Device-to-device (D2D) is a specific solution considered in the past with limited success. 

However, as technology and knowledge evolve, it is now considered again in various 
environments. In 3GPP (3rd Generation Partnership Project), research has been conducted 

on various aspects of D2D communication, including its potential to improve network 
capacity and coverage and support new use cases, such as public safety and massive 
machine-type communications (mMTC). D2D communication in 3GPP has been 

standardised in Release 12 under the terminology “Proximity Services” (ProSe). It focuses on 
integrating D2D communication into existing cellular networks to support services such as 

Discovery, Emergency, Content Sharing, Location Privacy, and others. In addition, it is being 
developed in releases 17 and 18, covering a range of services based on proximity, such as 

V2X. 

As ProSe is developing slowly, intermediate solutions exploiting and combining various 

technologies similar to 5G and Wi-Fi/Bluetooth are needed. We propose, study and develop 

a simple but effective methodology for coverage extension by establishing a D2D 
communication between the node outside the cell coverage area and a relay inside the 

coverage area. A metrics exchange is established between the participants to select the 
most suitable relay for the target performance. This selection process exploits various metrics 
of interest that can be enriched if necessary. This fits perfectly into the IoT-NGIN context, 

where one challenge related to deploying 5G in wide area networks is the short network 
coverage of approximately 500 m depending on the frequencies used and the attenuation 

of signals in a given location. In applications such as smart cities (UC1 of IoT-NGIN), a high 
density of base stations is required for complete coverage due to the short coverage range. 

Therefore, IoT-NGIN proposes to use D2D communications to enhance coverage in areas not 
well served by public networks. 

A solution addressing this particular need has been designed and tested. The relay selection 

process has been architected using extensive analysis of the D2D link properties in various 
conditions. Our AtomD tool has been released for that purpose and is available as an open-

source component. A second solution has been considered, which is based on a 5G LAN 
technology. The 5G LAN consists of a LAN network where all connected devices to the same 

network use the same 5G Core and slice. As a result, the devices are visible to each other. 
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The concept here is that each device and relay connected to the 5G network will also be 
registered in a 5G LAN created by the 5G Core.  

This setup has been instrumented and analysed to capture the system's performance and 

diverse configurations and parameters. The main outcome is presented in the next section. 

2.2 Experimental setup  

This section presents the experimental setup, where we establish an end-to-end environment 
involving 4 UEs. To do so, we use 2 OnePlus 8T for the end-devices situated outside a cellular 
coverage range and 2 Nokia XR20 inside a cellular coverage range. It is important to 

highlight that these phones have Qualcomm SM4350 Snapdragon 480 5G.  

Given each device's location, we establish that the Nokia phones are used as Relay devices. 

In addition, we established a laboratory-based Base Station (BS) that used the Amarisoft 
Callbox Mini system with a gNodeB (gNB) compliant with 3GPP Release 16, which uses 20 
MHz bandwidth. This BS is a desktop PC with integrated SDR card with limited specifications. 

The maximum speed is estimated at around 200 Mbps. Moreover, according to the provider, 
the system's wireless range is around 10 metres.  In addition, we integrate a 5G Core (5GC) 

developed by CUMUCORE, which runs on a Linux-based PC and a custom-made 
mobile/server application running on a Raspberry Pi 400, where we implemented an 

application that manages the connections between the relay devices and end-devices.  

We use custom SIM cards to connect to the BS and establish communication with the 5GC. 

Here, the 5GC provides the required settings for the SIM cards.  Some essential parameters 

for SIM cards are the Public Land Mobile Network (PLMN), international mobile subscriber 
identity (IMSI) number and secret key for provider and user. PLMN-00101 is for designed to be 

used for a testing network and 99999 is designed for private networks. The connection 
between the BS, 5GC and the Raspberry Pi was achieved through Ethernet connections to 

a 1 Gbps router (MikroTik RouterOS). This system is developed on the local private network to 
reduce external noise. The gNB and Relay devices were connected with 5G New Radio (NR), 
in the Stand-Alone (SA) mode. The End-Devices and Relay devices were connected with Wi-

Fi direct through the developed mobile/server application. 

The overall experimental setup and configuration are shown in Figure 2-1. This configuration 

was also used to test the relay selection capability of the mobile/server application.  

 

Figure 2-1: Overall architecture of the experimental setup. 
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2.3 Experimental methodology 

Three main tests were performed in this work. First, the testing of the 5G network and its 
specifications, then the Wi-Fi Direct and its specifications and finally, the complete end-to-

end communication. The parameters that were used to test the connections between the 
devices where:  

• Round Trip Time (RTT):  It is the duration in milliseconds (ms) that an ICMP Echo Request 

packet takes to travel from the Source to the Destination and return as an ICMP Echo 

Reply back to the Source. RTT is an important metric in determining the health of a 
connection on a network, to diagnose the speed and reliability of the network 

connections.  The Echo Request packet is provided by the "ping" command, which 
will return the RTT of the sent Echo Request when its corresponding Echo Reply is 

received1. The ping was set to repeat the measurement 1000 times. Also, the packet 
size is the default size, which is 64 bytes2. 

• Throughput:  It is the traffic rate that a network channel can handle per unit time. 

Throughput depends on factors such as bandwidth, latency, payload size, packet 

size, network load, number of hops, and others. Throughput was measured using a 
standard tool called iperf33. 

• Jitter:  It is the standard deviation between the transmitted signal delays. Its variation 

is usually due to network congestion, poor hardware performance and non-
application of packet prioritization. The meaning has to do with the variation of a 
metric (e.g., delay) with respect to some reference metric (e.g., average delay or 

minimum delay). Jitter was also measured using iperf3. 

Iperf3 was installed on the server and the other device (client) in order to exchange 

messages between them. The requested bandwidth was set to 200 Mbps, which is higher 
than what devices can support, so that it will allow the devices to reach their maximum 
speeds. In addition, the reporting intervals are set at 1 s, so every second, the system presents 

bandwidth, jitter and loss reports. Another parameter is the length of the test, which is set at 
1000 packets. Moreover, for the throughput and jitter tests, it was decided to use User 

Datagram Protocol (UDP) to establish a low-latency and loss-tolerating connection. On the 
other hand, TCP protocol as a connection-oriented protocol, guarantees the reception of 

all packets. Therefore, TCP is safer and more reliable than UDP but it is slower and requires 
more resources. In conclusion, the UDP is better suited for applications that need fast and 
efficient transmission. The gNB and 5GC operate in a Linux operation where the libraries for 

these parameters were installed. On the phones, with Android as their operating system, the 
Android terminal emulator and Linux environment application were installed. Iperf3 is a 

terminal emulation and Linux environment application that works directly with no rooting or 
setup required. 

The measurement applications used for these tests have been installed in the terminal of the 

devices. These applications are already installed for BS and 5GC, which run on Linux. In 

 
1 https://thinksystem.lenovofiles.com/storage/help/index.jsp?topic=%2Fthinksystem_system_manager

_11.50.1%2F649BE1AD-24F5-4B3D-892D-8AF14C37619C_.html  
2 N. V. Mnisi, O. J. Oyedapo and A. Kurien, "Active Throughput Estimation Using RTT of Differing ICMP 

Packet Sizes," 2008 Third International Conference on Broadband Communications, Information 

Technology & Biomedical Applications, Pretoria, South Africa, 2008, pp. 480-485, doi: 
10.1109/BROADCOM.2008.76. 
3 https://en.wikipedia.org/wiki/Iperf  

https://thinksystem.lenovofiles.com/storage/help/index.jsp?topic=%2Fthinksystem_system_manager_11.50.1%2F649BE1AD-24F5-4B3D-892D-8AF14C37619C_.html
https://thinksystem.lenovofiles.com/storage/help/index.jsp?topic=%2Fthinksystem_system_manager_11.50.1%2F649BE1AD-24F5-4B3D-892D-8AF14C37619C_.html
https://en.wikipedia.org/wiki/Iperf
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addition, these commands have been installed via a terminal emulator application using the 
Termux interface on the android phones. 

2.4 Experimental Results  

2.4.1 5G network 

The first set of tests focused on the 5G Network side between the 5GC/BS and the relay 

devices. The relay devices and the 5GC are connected through the gNB using 5G NR in SA 
mode. Two Nokia XR20 mobile phones were used as relays and placed near the BS station 

during the tests for higher performance. It is essential to mention that, at this point, these tests 
were not performed in an anechoic chamber. Therefore, the measurements performed 

could be affected by Electro-Magnetic Interference (EMI).   

2.4.1.1 Test between gNB and Relay 

Although these tests and measurements were recorded between the gNB and the relays, in 

order for the packets to be authenticated, they should reach the 5GC, hence essentially the 
presented time here includes the time to go to the 5GC and back. Table 2-1 and Table 2-2 

show RTT from gNB to Relay and reverse. RTT times, both download and upload, are 
adequately stable between the two relays. The average value of RTT is around 23.4 ms from 
gNB to relay, compared with RTT from relay to gNB, which is slightly higher, approximately 

25.3 ms. Also, essential parameters represented in tables are standard deviation with 
maximum and minimum values. In detail, the standard deviation is around 6 ms, and the 

maximum value sometimes is over 80 ms, which shows that the measurements fluctuate, 
highlighting a significant network instability in terms of performance. Overall, measured RTT 
times are within the acceptable range for 5G SA eMBB slice according to 3GPP, Release 16 

standards.             

Table 2-1: RTT from gNB to Relay device. 

gNB to Relay Phone 1(ms) Phone 2 (ms) 

Average 23.45 23.41 

Max 80.90 41.60 

Min 12.00 10.00 

Standard Dev 6.14 5.97 

Table 2-2: RTT from Relay to gNB 

gNB to Relay Phone 1(ms) Phone 2 (ms) 

Average 25.16 25.31 

Max 72.00 92.40 

Min 10.20 9.33 
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Standard Dev 6.19 6.41 

 

Table 2-3 and Table 2-4 present the results on throughput from gNB to the Relay device and 

reverse. Also, these tables present the reverse mode, which represents the upload speeds. 

The average value for download is around 110 Mbps. Also, the standard deviation for these 
measurements is 8.87 for Phone 1 and 4.76 for Phone 2. Moreover, the result for the Phone 1R 

and Phone 2R are 3.68 Mbps and 2.53 Mbps, respectively. Therefore, the test values portray 
that the upload speed is slower than download speed, as expect for this testbed. These 
results highlight again the erratic behaviour of User Equipment (UEs) in terms of stability and 

significant variation between devices. 

Table 2-5 shows the connection from the Relay device to gNB. The difference between the 

previous tables is that reverse mode represents the download, and normal mode the 
download speed. The average value for Phone 1 and Phone 2 is 4.31 Mbps and 0.73 Mbps, 

respectively. The average values for download are 113 Mbps and 59.7 Mbps. However, the 
measurements in Table 2-4 between Phone 1 and Phone 2 are different, showing that the 
second phone has either a hardware issue or that its hardware is significantly different even 

though they are using the same network ICs. In addition, the same issue is represented in the 
reverse mode testing on the same phone, especially since the standard deviation value is 

around 21 Mbps.   

Furthermore, the measurements between Table 2-3 and Table 2-4 are aligned. More 

specifically, the phones from Table 2-3 are almost the same as Phones in reverse mode since 

their measurements show the throughput from gNB to Relay device. Moreover, the 

measurements from Phone 1 & 2 R in Table 2-3 and Phone 1 & 2 in Table 2-4 are almost 

identical. In conclusion, these results and correlations are presented as expected.  

Table 2-3: Measure the Throughput from gNB to Relay (R – Reverse mode) 

gNB to Relay  Phone 1 R 

(Mbps) 

Phone 2 R 

(Mbps) 

Phone 1 

(Mbps) 

Phone 2 

(Mbps) 

Average 3.68 2.53 115.26 101.35 

Max 6.47 3.92 142.00 119.20 

Min 3.08 1.52 69.10 88.00 

Standard Dev 0.36 0.34 8.87 4.76 

Table 2-4: Measure the Throughput from Relay to gNB 

Relay to gNB  Phone 1 R 

(Mbps) 

Phone 2 R 

(Mbps) 

Phone 1 

(Mbps) 

Phone 2 

(Mbps) 

Average 113.93 59.70 4.31 0.73 
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Max 136.80 111.20 7.49 5.68 

Min 88.00 0.01 2.21 0.32 

Standard Dev 7.98 21.96 0.66 0.23 

At this test, we compared the network performance under different PLMNs and whether this 

affects the throughput between the BS and relay device. The Table XXX portrays the results 
from throughput between the Relay devices and gNB, in PLMN 999-99. This test is same with 

the previous test at Table 2-3 and Table 2-4, but the difference is only in PLMN, the previous 
test uses the PLMN 001-01, which is for the testing network. In conclusion, the measurements 
from Table 2-3, Table 2-4, and Table 2-5 are similar. Therefore, the selection for PLMN does not 

affect the network performance. 

Table 2-5: Measure the Throughput from Relay to gNB with PLMN 999-99 

PLMN: 999-99 gNB to Relay 

Phone 1 

(Mbps) 

gNB to Relay 

Phone 2 

(Mbps) 

Relay to gNB 

Phone 1 

(Mbps) 

Relay to gNB 

Phone 2 

(Mbps) 

Average 94.03 61.50 6.02 1.37 

Max 108.80 92.00 13.68 2.96 

Min 3.44 0.00 0.00 0.56 

Standard Dev 7.98 21.96 0.66 0.36 

Table 2-6 and Table 2-7 displays the results of the jitter. The results follow the same pattern 

with the throughput measurements in Table 2-3 and Table 2-4. An essential parameter on this 
test is the maximum value of the jitter, which sometimes reaches around 270 ms. This high 

value of jitter causes for some measurements to be delayed to be received, which shows 
that the network is highly affected by external parameters, such as EMI since all these 

experiments were not conducted in an anechoic chamber.  

Generally, jitter values are within or close to 3GPP Release 16 standards in terms of averages 

however, the fluctuation of those values is much higher than the standards. Again, this can 

be attributed to the fact that the tests were not performed in an anechoic chamber. 

Table 2-6: Measurements of Jitter between from 5GC Core to Relay 

5GC Core to 

Relay  

Phone 1 R 

(ms) 

Phone 2 R 

(ms) 

Phone 1 (ms) Phone 2 (ms) 

Average 5.53 8.05 0.15 0.19 

Max 16.11 263.61 0.93 1.40 

Min 2.02 3.86 0.05 0.07 
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Standard Dev 2.08 8.60 0.09 0.14 

Table 2-7: Measurements of Jitter between from Relay to 5GC Core 

Relay to 5GC 

Core  

Phone 1 R 

(ms) 

Phone 2 R 

(ms) 

Phone 1 (ms) Phone 2 (ms) 

Average 0.30 0.86 4.78 25.92 

Max 0.91 270.91 15.65 51.45 

Min 0.02 0.07 2.07 10.77 

Standard Dev 0.12 8.74 1.99 7.23 

2.4.1.2 Test between 5GC Core and Relay device 

This test focuses on the connection between the 5GC and Relay devices. It is almost the 

same test as the previous one because the connection between the Relay device and 5GC 
passes through the gNB.  Therefore, this test aims to investigate the connection between 5GC 

and gNB.  The system diagram in Figure 2-2 shows the measurement connections in yellow, 
while the connection between the devices is presented with green dashed lines. In summary, 
the results from the measurement expect to have the same results as the previous test.  

 

Figure 2-2: Test between 5GC Core and Relay device. 

The first part of this test focuses on RTT. Table 2-8 presents the results from the 5GC Core to 
Relay devices, and Table 2-9 shows the results from Relay devices to 5GC. The results from 
gNB and relays are almost the same as those below. More specifically, the average value of 

RTT is around 23 ms in Table 2-8, and in Table 2-9, the average value is around 25 ms.  In 
conclusion, the ethernet connection between the gNB and 5GC is shown not to affect the 

measurements.  
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Table 2-8: RTT from 5GC Core to Relay device 

5GC Core to Relay Phone 1(ms) Phone 2 (ms) 

Average 23.23 23.21 

Max 42.30 42.80 

Min 12.70 12.40 

Standard Dev 5.86 5.92 

Table 2-9: RTT from Relay to 5GC Core 

Relay to 5GC Core Phone 1 (ms) Phone 2 (ms) 

Average 25.03 25.58 

Max 44.4 44.40 

Min 14.9 12.50 

Standard Dev 5.91 5.95 

Table 2-10 and Table 2-11provide information for the throughput between Relay devices and 

5GC. The measurements in Table 2-10 & Table 2-11follow a similar pattern to Table 2-3 & Table 
2-4, such as the download speed from Relay devices and also the upload speed fits the 

pattern.  

Table 2-10: Measure the Throughput from 5GC Core to Relay (R – Reverse mode). 

5GC to Relay 

b 

Phone 1 R 

(Mbps) 

Phone 2 R 

(Mbps) 

Phone 1 

(Mbps) 

Phone 2 

(Mbps) 

Average 3.51 1.35 129.36 96.84 

Max 8.04 1.52 144.00 108.00 

Min 2.44 0.80 101.00 83.20 

Standard Dev 0.51 0.14 11.30 4.30 

Table 2-11: Measure the Throughput from Relay to 5GC. 

Relay to 5GC 

a 

Phone 1 R 

(Mbps) 

Phone 2 R 

(Mbps) 

Phone 1 

(Mbps) 

Phone 2 

(Mbps) 

Average 140.15 134.28 0.66 0.58 
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Max 143.00 135.20 1.49 5.04 

Min 136.00 0.04 0.01 0.01 

Standard Dev 18.97 1.01 0.30 0.20 

Table 2-12 & Table 2-13 show the jitter between 5GC and Relay devices.  The jitter values 

remain low, especially in download, but they are slightly higher than the results from the 
previous connection with gNB. Also, jitter value for the upload is higher than in Table 2-6 & 

Table 2-7, but they stay at the same level. The average value of the jitter from the Relay 
device to 5GC is around 6 ms for the Phone 1 and 14 ms for the Phone 2 in Reverse mode. 
These values can be compared with Table 2-12 and Test 1 and Test 2, in which the average 

values are around 26 ms and 32 ms. Also, in the opposite direction, the result is below 0.3 ms 
from 5GC to Relay device, in Table 2-13. On the other hand, the results in Table 2-13 are 

higher than the previous in Test 1, almost 4.5 ms, and in Test 2 is around 1.3 ms. This can be 
attributed to the capabilities of the 5GC to perform more tasks in parallel in addition to any 

external noise that could affect the measurements.   

Table 2-12: Measure the Jitter between from 5GC Core to Relay 

Relay to 5GC 

Core b 

Phone 1 R 

(ms) 

Phone 2 R 

(ms) 

Phone 1 (ms) Phone 2 (ms) 

Average 5.79 14.47 0.16 0.30 

Max 16.94 31.97 0.60 1.36 

Min 2.28 7.36 0.04 0.06 

Standard Dev 2.36 4.14 0.08 0.17 

Table 2-13: Measure the Jitter between from Relay to 5GC Core 

Relay to 5GC 

Core b 

Phone 1 R 

(ms) 

Phone 2 R 

(ms) 

Phone 1 (ms) Phone 2 (ms) 

Average 4.29 1.32 26.80 32.29 

Max 542.77 116.44 64.91 79.63 

Min 0.04 0.04 10.25 14.02 

Standard Dev 22.54 9.04 7.50 8.53 

2.4.2 WiFi Direct Network 

The second set of tests is related to the Wi-Fi Direct side of the network. In this test, two 
OnePlus8T mobile phones were used as end-devices, and two Nokia XR20 phones were used 
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as relays. The connection between the end-devices and the relays was achieved through 
the custom mobile/server application described in the previous section.  

 

Figure 2-3: Testing of Wi-Fi Direct Network. 

The first part of this test is a connection from the Relay device to the end-device as shown in 
Figure 2-3 and the results from the measurement are shown in Table 2-14. Firstly, all 

measurements are quite close to each other, which shows the system is repeatable and 
consistent. The average of these values is around 21 ms, also essential parameters on this 

table are the standard deviation, which is around 27 ms.     

The second part of the RTT test is connection from End device to Relay device, which presents 

on the Figure 2-3. Table 2-15 presents the results of RTT in the opposite direction from the 

previous table.  The average value of RTT from Table 2-15 is around 87ms, which is higher than 
the previous RTT, so the transmission from OnePlus is higher that from Nokia XR20. As a result, 

the RTT from the end-device is lower than from the relay device. In addition, the 
measurements in Table 2-15 follow the same pattern as those in Table 2-14 but with higher 
values. Also, the standard deviation is around 56 ms, which is high compared to the average 

value, also the difference between maximum and minimum value has increased. Therefore, 
these affect the phones or/and WiFi connection between the devices.  

Table 2-14: Measure the RTT from End-Device to Relay 

 5b (ms) 6b (ms) 7b (ms) 8b (ms) Overall 

Average 20.83 23.14 21.49 20.03 21.38 

Max 276 388 346 268 388 

Min 2.31 2.25 2.44 6.93 2.25 
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Standard 

Dev 

27.59 30.38 31.59 18.37 26.99 

Table 2-15: Measure the RTT from Relay to End-Device 

 5b (ms) 6b (ms) 7b (ms) 8b (ms) Overall 

Average 101.08 93.83 75.87 79.60 87.59 

Max 523 422 406 413 523 

Min 2.05 2.31 2.75 6.51 2.05 

Standard 

Dev 

65.82 57.29 51.43 51.44 56.50 

In addition, Table 2-16 and Table 2-17 show the throughput between the devices which are 

connected with Wi-Fi Direct. The measurements show that the direction of testing is almost 
the same between the two directions. In continuation, the average value of the throughput 
for all measurements is around 47 MB/s, except for the Test 5a that the connection between 

the end-device and the relay faced a significant issue. In conclusion, these values correlate 
with the standard of Wi-Fi Direct. The results from Table 2-17 present some fluctuations, 

especially the connections with a specific end-device. In detail, the first end-device reaches 
high values of throughput, which is around 65 MB/s. On the other hand, the second end-

device presents lower performance having an average value is around 33 MB/s.    

Table 2-16: Measure the Throughput from End-Device to Relay 

 5a (MB/s) 6a(MB/s) 7a(MB/s) 8a(MB/s) Overall 

Average 25.23 48.41 45.55 46.95 41.54 

Max 51.90 56.90 57.00 56.80 57.00 

Min 5.07 8.07 7.00 9.91 5.07 

Standard 

Dev 

13.59 11.24 11.60 15.86 13.07 

Table 2-17: Measure the Throughput from Relay to End-Device 

 5b (MB/s) 6b (MB/s) 7b (MB/s) 8b (MB/s) Overall 

Average 68.55 33.29 60.97 32.89 48.93 

Max 81.2 40 80.4 41.5 81.20 

Min 15.2 6.36 19.9 6.63 6.36 
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Standard 

Dev 

16.09 7.11 16.14 7.94 11.82 

It is clear from the measurements that this side of the network experiences much higher RTT 

times, approximately 87.6±13.49 ms in the download mode. On the other hand, in the upload 

mode, the RTT times are approximately 21.37±1.77 ms. Hence, upload RTT times are similar to 
those of the 5G network, but the download side experiences approximately triple RTT times. 
It is also interesting that for the download RTT, the relay plays the most significant role since 

both measurements using relay number 1 show higher RTT times. In the upload mode, RTT 
times are significantly stable. In terms of throughput, it is obvious that in the download mode, 

the WiFi Direct side of the network shows speeds of approximately 48.93±19.63 Mbps, which 
is significantly slower than 5G. It is important to state that in the download mode, the 
throughput is mostly defined by the end-device and not the relay since both experiments 

with end-device number 2 show much slower throughput. In this case, end-devices have 2 
different Android versions (End-device 1 Build: KB2003 11 C.33, Baseband ver:Q V1 P14, 

Kernel:4.19.157-perf+; End-Device 2 Build: KB2003 11 C.20 Baseband ver:Q V1 P14, 
Kernel:4.19.157-perf+), which can significantly affect the network performance. In terms of 

the upload mode, speeds of 41.54±16.31 Mbps have been recorded showing much higher 
throughput that 5G. 

2.4.3 End-to-End D2D Communication Testing 

In this last set of tests, the end-to-end setup of this D2D communication was demonstrated. 

The end-device and the relay connect through Wi-Fi Direct using the custom mobile/server 
application. The relay is also connected to the 5G BS using 5G NR. Initially, device and relay 
discovery are achieved through the mobile/server application and secondly message 

exchange from the server (Raspberry Pi) to the end-device is demonstrated using the 
configuration shown in Figure 2-4.  Also, the server presents all connections between the 

phones and links through the connection, the alert message sends to phones. In conclusion, 
the target of this test is to establish this connection and calculate the transmission time. 

 

Figure 2-4: End-to-End experimental setup. 

We analysed the reception times from a pcap file to calculate the transmission time. More 

specifically, on the raspberry pi where the server is hosted, we installed tcpdump, which sniffs 
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the network traffic of the channel where the 5GL is located. In the case of the phones, a 

pcap capture application was installed, which creates a virtual vpn on the phone and then 

collects the network traffic from the phone. As a result, the pcap file on the server stores the 

time the message was sent, while the pcap file on the android phones stores the time instant 

of reception. Therefore, the transmission time is the difference between the time transmitted 

from the Raspberry Pi and the time received from the end device.  Figure 2-5 presents the 

results of 15 different measures for transmission time from Raspberry pi to end device. The 

overall transmission time needed to send the message from the server to the end-device has 

been measured to be approximately 91 ms with a 28 ms standard deviation. Adding the RTT 

times for the individual segments of travel, the total time is calculated to be approximately 

112 ms. Acknowledging that RTT times involve the bi-directional travel of the packet, it is 

expected that this method would give higher times than Figure 3-5. End-to-End Testing setup 

the real ones. However, the calculation and measurements are significantly close to each 

other, confirming the correct order of magnitude in transmission time. 

 

  

Figure 2-5: RTT times versus number of measurements for End-to-End tests. 

2.4.4 Relay selection  

Sorbonne University's android application is also responsible for selecting the best relay 

device during the coverage extension procedure. Figure 2-6 shows the diagram of this test 

where the identification number of each device is located under it through the ID tag.  

As soon as the relay selection procedure begins, the relays maintain communication with all 

possible End-Devices in their coverage range. During this instant, the End-Devices provide 

their metrics to the relay devices for 1 min. The goal is to provide the relays with the necessary 

information to evaluate the condition of each End-Device. Then, the relays directly connect 

to the relay they selected, notifying their selection to the server located in the raspberry pi.    

The next test was to repeat the previous test, but this time the relay device that had lower 
percentage of battery is charged. As mentioned previously, the percentage of battery is at 

this stage the main factor for the relay selection. In conclusion, the test presents the end 
devices select the best relay device that has the highest percentage of battery. 
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Figure 2-6: Architecture for relay selection. 

2.5 Conclusions 

D2D communication is a practical solution that will be more extensively used in the near 
future by exploiting technologies such as Wi-Fi or cellular extensions. In IoT-NGIN, we explored 

and researched solutions based on D2D, mostly to address the important topic of coverage 
extension that fits the case of IoT particularly. We first developed the methodology, the tool 

and the framework to design a practical solution. Then, we did an extensive D2D link 
characterization to assess the link's characteristics and the criteria for the relay selection. 
Moreover, we integrated this solution into a private 5G LAN that is also part of the IoT-NGIN 

design. Finally, we demonstrated and evaluated this setup as a function of various key 
parameters. Our work has been published (one conference publication and one submission 

being evaluated). The tools are available as open-source software). 
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3 Enabling 5G to support protocols for 
deterministic communications 

The usage of 5G for private industrial networks needs to support deterministic 

communications which have been designed originally to optimize time sensitive (I.e., TSN) 
communications between machines. The first requirement is to synchronize all the devices 
(I.e., wired and wireless) that have to communicate following pre-defined time slots to ensure 

resilience. Thus, TSN requires synchronising mobile network UEs and devices connected to 
fixed LAN. 

The industrial LAN may also consist of TSN-enabled Ethernet bridges. The latest release of 5G 

specification supports the fully centralised TSN configuration model, where a central 

controller should be able to configure both Ethernet and 5GS bridges as a unified network. 
The 5GS supports the whole industrial network, both Medium Access Control (MAC) learning 
and flooding based forwarding as well as the static forwarding configured by the central 

controller need to be supported. 3GPP has defined that a 5GS can be modelled as one or 
more virtual TSN bridges. 

The CNC is the entity in the TSN network that has complete knowledge of the network 

topology and is responsible for configuring the bridges to enable transmission of TSN streams 

from source to destination. The 5G control plane is interacting with CNC via the TSN 
Application Function (AF) which maps between the TSN parameters and the 5GS 
parameters. The TSN AF reports the 5GS bridge capabilities such as minimum and maximum 

delays between every port pair and per traffic class, including the residence time within the 
UE and DS-TT via TSN-AF to CNC. 

Topology discovery information based on the widely adopted standard IEEE 802.1AB Link 

Layer Discovery Protocol (LLDP) is also exposed. The TSN AF also exposes its TSN capabilities 

like the support for scheduled traffic and per-stream filtering and policing (PSFP) as specified 
in IEEE 802.1Q-2018, in case that they are supported by all of the ports. The CNC obtains the 
5GS bridge VLAN configuration from TSN AF according to IEEE Std 802.1Q. 

The TSN AF shall be pre-configured (e.g. via OAM) with a mapping table. The mapping table 

contains TSN traffic classes, pre-configured bridge delays (i.e. the preconfigured delay 

between UE and UPF/NW-TT) and priority levels. The CNC reads the capabilities of all bridges 
and calculates the traffic paths and schedules in the network. The CNC then provides the 
bridge configuration to the 5GS through the TSN AF, which contains, e.g., scheduled traffic, 

PSFP, and traffic forwarding information. In order to support QoS for Ethernet and TSN traffic, 
the traffic flows are mapped to 5G QoS flows. The CNC configures the traffic handling in the 

5GS bridge for the different traffic classes according to the capabilities that have previously 
been reported by the 5GS bridge. The 5GS maps the Ethernet/TSC traffic classes or TSN traffic 

streams to the corresponding 5G QoS flows. 

3GPP has defined 5G VN groups consisting of a set of UEs using private communication for 

5G-LAN type services. A 5G VN group can be utilized for IP or Ethernet based services. A 

specific data network, identified by a data network name (DNN), is one of the possibilities to 
realise a 5G VN group, where the VN group can be either provided by Operation and 

Management (O&M) or by an TSN-AF. 5G VN group where the SMF has full control of the 
Ethernet network topology among the 5G VN group members (by control of forwarding 

decisions on all Ethernet PDU sessions from different UEs). 
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For a centrally managed Ethernet network, it is required that the NMS/CNC can configure 

the VLAN handling for all bridges and all ports, including the 5GS bridge, as specified in IEEE 
802.1Q. 

3.1 Introduction 

CMC has been focusing in the design of 5G core specifically for Non Public Networks (NPN) 

primarily industrial networks that require deterministic communications following TSN features. 

Therefore, CMC 5G core includes the latest 3GPP standard specifications including all the 

necessary network functions (NF) for connecting UE devices to fixed LAN and become native 

TSN devices. 

UE is defined to have attached functions of time stamping in data frames, using the device 

side of the TSN translator (DS-TT). On this Network Function, a step of time synchronisation is 
implemented using the TSi from the Suffix field of the gPTP messages (Sync or Follow Up 
messages), as it has been defined on 24.535 from 3GPP. 

In order to achieve this function a 5G-Modem is integrated in a NPN following an inherent 

structure based on a 5G component, a TSN packet handler and wired network components. 

These last two components may be integrated in the same hardware such as a 
microprocessor but following the TSN standards defined on IEEE 802.1 Qbv, 802.1 CB, 802.1 

As and 802.1 Qbu. 

In order to demonstrate the TSN functionality CMC has deployed the 5G core in ABB living 

labs following the topology below. In this setup we demonstrate successful time 

synchronization of TSN devices connected to UE device with fixed TSN devices connected to 
LAN. 

 

 

Figure 3-1: TSN network deployed at ABB living labs for time synchronization testing. 
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3.2 Results 

After running the time synchronization process to get the UE in sync with the fixed devices we 
obtained following results 

 

Table 3-1: Measure the time synchronization in TSN device connected to UE 

Location Results 

UE Local Time 1677594032.510012643    

Grand Master Time 1677594032.495004032    

Offset -15008611   

 

 

Table 3-2: Measure the time synchronization in fixed TSN device 

Location Results 

UE Local Time 1677594273.198258969 

Grand Master Time 1677594273.198259137 

Offset 168 

 

 

The system was installed in ABB living labs as shown in the following figure for additional 

measurements 
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Figure 3-2: Equipment deployed at ABB living labs for time synchronization testing. 

 

3.3 Conclusions 

The testing of TSN network was conducted both in CMC laboratory and in ABB living lab 
premises. The setup uses unique system that provides Ethernet PDU connection over 5G 

network. The commercial 5G networks only support IP PDU sessions for data exchange 
between mobile devices and data networks such as public Internet. Instead, Non-Public 

Networks (NPN) for industry requires Ethernet PDU together with 5GLAN functionality. This 
setup includes the support for Ethernet PDU which is uniquely available currently in CMC 5G 
Core. The Ethernet PDU allows to transfer gPTP messages from Grand Master (GM) located in 

fixed LAN to the 5G modem which will send the gPTP messages to DS-TT for synchronizing the 
moving devices. 

The preliminary results are shown in Table 3-1and Table 3-2, where the mobile TSN device is 

synchronized but with different offset compared to the synchronization achieved by the fixed 

TSN device connected directly to the GM in the fixed LAN. The deployment in ABB labs had 
few limitations that were blocking the gPTP messages to reach the mobile TSN device. The 
end result is that gPTP was running over the 5G network using the Ethernet PDU but the base 

station disconnected the mobile and synchronization was lost. 
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This behaviour of the base station caused that gPTP messages did not reach the mobile TSN 

and went out of synch. Therefore, for providing reliable time synchronization the Ethernet PDU 
session should be supported not only in the 5G Core but also in the base station and 5G 

routers. Moreover, the jitter of the delay in the 5G radio link needs to be minimized to ensure 
the offset of the clocks in both mobile and fixed TSN are aligned. 

Thus, initial results show the gPTP can be transferred over the 5G radio to certain degree of 

accuracy to synchronize mobile devices but still requires improvements to support natively 
Ethernet PDU and low delay jitter for reaching high levels of synchronization accuracy. 
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4 Enhancing 5G ease of use through 
improved 5G APIs 

In this chapter, we present the final version of the 5G-resource-management API, which is 

the major outcome of the work from task 2.3. The chapter is split into an introductory section 
followed by the latest status of the API and results of tests conducted with the API. 

4.1 Introduction 

In D2.2 Enhancing IoT Underlying Technology, the first revision of the IoT-NGIN 5G API was 
presented. The main goal of this API is to increase the ease of use for application developers 

and decrease the required knowledge of the underlying infrastructure. This is done by utilizing 
a three-layer approach. As shown in Figure 4-1 the top layer is either the field devices or the 
cloud or edge cloud application. On the middle layer the API Server available to the end 

user and an infrastructure specific adapter is placed. Finally, on the bottom layer, the 
interfaces to the specific infrastructure are connected. For more information about this 

approach and information about the planned API functionality deliverables D2.1 and D2.2 
can be consulted. 

 

 

Figure 4-1 IoT-NGIN 5G resource management API 

4.2 Final API  

The latest version of the API that is tested in a simulated environment and is described as an 
Open API Specification found on the IoT-NGIN’s project Gitlab4. This chapter will list the 

functionalities and describe the use cases of the different features. An updated list is 

 
4 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api
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presented, compared to D2.2. As already described in D2.2 the API features are grouped 
into three different categories. The first category (5G Connectivity and Device 
Management) controls the devices and allows combined actions on groups of devices. The 

second category (Microservice Lifecycle Management) provides features for the control of 
services running on the cloud or edge cloud infrastructure. Finally, the third category 

(Network Slice Management) is controlling the connectivity between the devices and the 
services running on top of isolated network slices.  

 

Table 4-1: API calls 

Operation Short description 

5G Connectivity and Device 

Management 

 

/device Register device with API. 

/device/{device-id} Query device information or unregister device. 

/device/{device-id}/qos Query device quality-of-service parameters or 

change QoS Parameters for Device. 

/device/{device-

id}/qos/subscribe 

Subscribe to changes in the quality of service of a 

device to trigger an event accordingly 

/device/{device-id}/location Query device location. 

/device/{device-

id}/location/subscribe 
Subscribe to changes in the location of a device to 

trigger events 

/group Create a new device group 

/group/{group-id} Add or remove device to or from group and query 

for the group members 

Microservice Lifecycle Management  

/service/start/ Start a new service. 

/service/{service-id} Get Service information or terminate a service. 

/service/{service-id}/status Get the status of a service 

/service/{service-

id}/resources 

Get or update the resources that a service is using 

on that are available for the service 

/service/{service-id}/migrate Migrate a service to a different target node 

Network Slice Management  

/slice Create a new network slice 

/slice/{network-id} Get the information of a slice or remove the 

network slice 
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/slice/{network-id}/devices Add or remove a device from the network slice or 

list the devices that a currently part of the network 
slice 

/slice/{network-

id}/qos/subscribe 

Subscribe to changes in the quality of service for 

the network slice 

/slice/{network-id}/services List all services that running on a specific network 

slice 

 

Explaining all calls would go beyond the scope of this document.  For illustration purposes, 

we explain the POST /service/start call more in detail. 

  

Figure 4-2: Open API UI 

This call starts a new service on the (Edge-)Cloud backend. Therefore, it is necessary to pass 
the respective parameters for that service in the call's body. These parameters can be seen 

in Figure XY, which shows the rendered API. 

Every service needs to have a human-readable name for distinction and maintenance. As 

we build upon container technologies, a docker image in standard notation is also required. 

In theory, this would suffice, but such a minimal service would barely be of any use. Additional 

parameters can be passed to the API to configure the running images. For once, there are 

the arguments and environment variables, which are passed into the container to configure 
the running software. In the API example we have several service specific command-line 

parameters like "--no-ignore" and environment variables like "LOG_LEVEL" to set the log 
verbosity. It should be noted that the environment variables are key-value pairs. 
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The next parameter is resource_limits. As the name already implies, these can be used 

to set quotas on the new service. This feature can be useful, for instance, to reduce costs for 

the service or ensure sufficient remaining resources for other services to be run on that 
network slice. 

The last but probably most important parameter are the port_mappings. These expose the 

services' container ports, which is crucial for any cloud service. In the example, the 
container's port 80 and 1234 are mapped to the host's ports 8080 and 8081 respectively. 

  

Figure 4-3: OpenAPI visualization of the get_service call’s response. 

A response to such a call is depicted in Figure 4-4. It contains the service's name and image, 

which in this case are the same as what was passed to the call in the first place. However, as 
the same schema is used in multiple places in the API, this information is still relevant. The 
second return element is the "id" value of the response. This is a 64-Bit identifier, which can 

later be used to select that specific service in other calls, such as DELETE 

/service/{service_id}. 

 

Figure 4-4: Call and response of start_service in the command line. 

Figure 4-4 shows a call to that API using the Linux command line tool "curl", which  executes 
http requests. In the example a "hello world" server is started, which can then be accessed 
at port 80 of the edge cloud infrastructure. 
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4.3 Implementation 

The core component is the API server. Additionally, we implemented three different adapters 
and tested either against a lab infrastructure or a simulated infrastructure. More setup 

specific adapters can be added easily. This showcases the versatility of the API and adapter 
approach for different types of infrastructure. 

4.3.1 IoT-NGIN API Server 

The API Server provides the interface to the user application. This server is implemented using 

the Rust programming language, which is chosen for its reliability and security, resulting from 
strong typing and extensive runtime checks. The code of the server can be found in the 

projects Gitlab repository5. 

The API Server is developed as a stateless server that interfaces to the different API Adapters. 

It is built using the OpenAPI tools6 which ensure that all calls are actually handled, that 

datatypes are correct, and the responses are in line with the specified API. In the backend, 
the highly performant hyper7 library is used, which is among the most performant and thus 

also efficient frameworks for http communication. 

The API Server exposes all the above-mentioned API calls and can easily be extended in the 

future by updating the open API configuration and the implementation of the modified or 
added API function calls. 

4.3.2 Unikernel Adapter 

The Unikernel Adapter can be found on Gitlab.com8. This adapter enables the API to start 

and stop services that are running a Unikernel application. The Adapter provides a 
rudimentary API interface for Kubernetes and specifically the Unikernel application. This 
adapter also stores the current state of the service and can in the future be extended to 

store more state information about the service that is instantiated. The goal is to abstract the 
adapter specific state information away from the customer. This allows for a much simpler 

API and higher flexibility in the implementation of different adapters. 

Table 4-2: Unikernel Adapter API calls 

Operation Short description 

/service Create and start a service 

/service/{id} Get status or delete a specific service 

 

 
5 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-server  
6 https://github.com/OpenAPITools/openapi-generator 
7 https://hyper.rs/  
8 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-

adapters/endpoint-unikernel  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-server
https://github.com/OpenAPITools/openapi-generator
https://hyper.rs/
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-unikernel
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-unikernel
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4.3.3 Slice Management Adapter 

The Slice Management Adapter provides an interface to the vendor specific infrastructure 

of the I2CAT slice manager. This adapter implements a rudimentary interface to instantiate 
a service and enable connectivity to the edge cloud infrastructure, where i2CAT’s Slice 

Management API is deployed. In the latest version, the following API calls are implemented. 
The currently for testing purposes implemented service_start call actually executed four 

API requests ad depicted in Table 4-3. The adapter can be found in the project Gitlab 
repository9. 

 

Table 4-3: I2CAT Backend API calls. 

Operation Short description 

/service_start This adapter capability implements the start service 

calls 

4.3.4 Slice Management simulator 

For testing purposes, a simulated backend for the adapter was developed. This simulator is 
based on the OpenAPI definition for the I2CAT slice manager. It implements a minimal subset 

to allow for testing the calls ran by the nsm-adapter. The simulated backend supports the 
following calls including their specific parameters. The simulator stores the state of the system, 

thus allowing to read the current state as well as create new instances as described in Table 
4-4. The simulator can also be found in the project’s Gitlab repository10. 

 

Table 4-4: Slice Management Simulator calls. 

Operation Short description 

/compute_chunk This call creates a new compute chunk and returns 

the parameters of the chunk 

/slic3 This call creates a new slice 

/network_service This call creates a network service 

/network_service_instance This call starts an instance of the above created 

network service 

 

 
9 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/endpoint-nsm  
10 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-

adapters/endpoint-simulator  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-simulator
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/5g-api-adapters/endpoint-simulator
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4.4 Results  

In this section two different demonstrations of the API server are described. 

For all the test the API Server as well as the corresponding adapters were running and the 

calls to the API Server were produced via the Open API Web UI or a curl command. 

4.4.1 API Server 

The API server was tested in a qualitative manner. As the code generation ensures that stubs 
for all specified functions are generated and the forwarding to the respective adapter is 

generalized, the functionality of all calls could be verified easily. 

 

Figure 4-5: The IoT-NGIN 5G Resource Management API server in action. 

4.4.2 Unikernel Demo 

In this section, a demo of the Unikernel API adapter is described. The initial call is sent to the 

IoT NGIN API Server and then forwarded to the Unikernel adapter. That in result calls the 
Kubernetes API and starts the selected service. Currently two examples are available. The 
first example starts a NGINX that shows the users IP address and the second one is a hello 

world Unikernel application that is serving a static html website. It is to be noted that the 
NGINX example uses the standard container infrastructure and the Unikernel example starts 

a Unikernel using runh. A screenshot of the Unikernel application can be seen in Figure 4-6. 
The Rancher user interface of Kubernetes, showing the running Unikernel application is shown 

in Figure 4-7. 

   

 

Figure 4-6: Unikernel application started with Iot NGIN 5G API. 
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Figure 4-7: Rancher UI after starting a Unikernel hello world service. 

4.4.3 Slice Manager Demo 

In this test the resource management API is called, to start a service. This then results in four 
subsequent calls to the slice manager simulator. The API simulator is depicted in Figure 

4-8Figure 4-8 there it can be seen that the four calls for chunk, slice, network service creation 
and network service instantiation is received. These calls are executed by the API adapter 

who got a start_service call.  

 

Figure 4-8: Slice Manager command line tool. 

The curl version fo the call to the API Adapter is depicted in Figure 4-9 and the result of the 
above shown calls is shown in Figure 4-10. 
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Figure 4-9: curl command to start a service. 

 

 

Figure 4-10: OpenAPI visualization of the start_service call. 

4.5 Conclusions 

In this chapter a simplified API is proposed that allows more software developers to create 
apps that can utilize the new functionalities provided by the 5G network. This in turn allows 

for a better adoption and the creation of new use cases in the future. The basic functionalities 
are shown with two different examples. 
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5 Secure Edge Cloud Framework for micro-
services 

In this chapter the work related to the development of a framework to allow more secure 

execution of micro services is described. This chapter presents the resulting framework. 

5.1 Introduction 

As described in deliverable 2.2, typical cloud and edge cloud infrastructure is based on 

containers, which allows the existence of multiple isolated user spaces. Containers are based 
on OS-level virtualization, where the applications are bundled in logical namespaces and 

the kernel ensures isolation between these namespaces. The left side of Figure 5-1: Figure 5-1 
depicts this traditional way of handling containers. The disadvantage of this techniques is a 
rather low level of isolation as a security issue in the container runtime allows to directly attack 

the host kernel. 

An alternative way of isolating software is virtualization, where software is run on a virtual CPU, 

provided by a hypervisor. These hypervisors usually rely on specific hardware features to 
provide comparable performance but still enforce the virtualization boundary. Being a 

slimmer and more low-level interface, it can be argued that Hypervisor isolation is more 
secure than traditional container isolation. The right side of Figure 5-1depicts this setup. 

Some platforms and container engines provide additional options to harden the 

containerized environments. A powerful example is the combination of both presented 
technologies, where hypervisors are used to enhance the container isolation which is used 

by some security focused container engines11. This is shown in the right side of Figure 5-1. 

 

Figure 5-1: Classical micro-service stacks. Containerization on the left side, virtual machines on the 

right side. 

 
11 https://nabla-containers.github.io/  

https://nabla-containers.github.io/
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Figure 5-2: Hardened container setup using containers, microVMs and library operating systems. 

 

Despite the acceleration by hardware features, virtual machines increase the overhead. This 

is mostly due to the fact, that they aim to emulate a real machine as close as possible. In 

cloud and IoT environments, this is usually not necessary, as an application would only need 
a small subset of the functionality an operating system and the peripherals can provide and 

most of them are virtual anyway. Thus, one way of improving the performance is the usage 
of microVMs, which drop compatibility to classical operating systems, so that the virtual 

machines can be optimized and shrunk down for increased efficiency. IoT-NGIN focuses on 
micro-services. Consequently, each container deploys usually one application, which 
handles e.g., https-requests. In this case, a multi-processor, multi-tasking, and multi-user 

operating system like Linux as guest operating system in a virtual machine is too generalized. 
Library Operating Systems (also known as unikernels) are an attractive solution to decrease 

the overhead. In this case, the kernel is linked as library to the application and realized as 
bootable application. Utilizing compile-time optimizations, such an image is optimized for a 

certain type of applications and has a largely reduced attack surface and thus an increased 
security.  In addition, the complete software stack from the kernel through the IP stack to the 
application itself can be analysed with established compiler techniques. Unneeded code 

can be removed which reduces the complexity of the system. In IoT-NGIN, RustyHermit is 
used to show the applicability and robustness of unikernels.  

The IoT world isn't only based on Rust. Especially machine learning models, whose support is 

one of the key objectives of IoT-NGIN are often based on other programming languages. 
C/C++ is still an important programming language and must be supported by unikernels. 

RustyHermit can support C/C++ and Fortran by providing a cross-compiler to build unikernels 
on top of a Linux system. Figure 5-3 shows the runtime system of RustyHermit. The kernel itself 

is completely written in Rust and named in that figure with libhermit-rs. The C library newlib is 
used for other programming languages which build upon the POSIX system interface like C, 

C++ and others.  

The right side of Figure 5-3 shows the concepts of the available execution environments 

which are the general purpose QEMU and the tailored microVMs Firecracker and Uhyve 
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mentioned before. Uhyve is developed by the project partners from the RWTH Aachen 
University and could be improved in this project.  

  

Figure 5-3: Rusty-Hermit conceptual overview 

 

 

 

Figure 5-4:  The integration of runh in the Docker and Kubernetes software stack 

Deliverable 2.2 already explained that the creation of containers standardized, so that other 

tools like Kubernetes can build upon different varieties of container implementations. The 
Open Container Initiative (OCI) defines a runtime interface to a tool, which at the end 

spawns a container. Typically, runc is used by Kubernetes and Docker to spawn containers 
based on OS-level virtualization. In deliverable 2.2, we defined our own container spawner 
runh that can spawn common containers but also containers based on a microVM and the 

unikernel RustyHermit. Figure 5-4 shows how runh integrates into a Kubernetes or Docker 
setup. 
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5.2 The IoT-NGIN Secure Edge Cloud Framework 

The resulting framework developed in this task consists of three major building blocks: 

• The improved unikernel RustyHermit 

• The container and unikernel runtime runh 

• Multiple solutions to execute Machine learning models in the RustyHermit Unikernel 

Since the start of the IoT-NGIN Project, 1655 commits were added to the unikernel library 

libhermit-rs, changing 183 files resulting in 25016 added lines of code and 60875 deleted ones. 

The rusty-hermit repository hat 770 commits in that time, changing 66 files with 3109 added 
and 2226 removed lines. The microVM Uhyve had 74 files changes with 5585 added and 7505 

removed lines of code. Notable changes include the rework of the network stack and 
debugging support. 

New projects in the area of hypervisors like Firecracker use Rust to improve the security 

behaviour. Firecracker is an alternative to QEMU and is designed to run serverless functions 
and containers safely. The minimalistic design of Firecracker offers only 5 devices. RustyHermit 

is now able to run on top of Firecracker. Consequently, the complete software stack is 
hardened by the usage of Rust on all levels of the software stack. The second component, 

runh12,  is a runtime for Kubernetes, which can both run docker containers and unikernels. 
The ability to choose the enhanced isolation of the unikernels in combination with the 

compatibility of the vast docker ecosystem is an enabler for unikernels in the micro-service 
domain. 

 

Figure 5-5: Performance comparison of runh and runc using QEMU and microVMs 

runh uses microVMs, which promise a lower overhead in comparison to common VMs. The 
first release uses QEMU as hypervisor to run RustyHermit. QEMU is an established hypervisor 

especially in Linux environments and offers also a machine model as microVM. By using 
QEMU, we are able to compare the microVM with a common VM as QEMU is able to support 

both VM types. The performance gain is depicted in Figure 5-5, which shows the boot time 
of concurrent containers. The blue line shows the excellent performance of common 

containers. In comparison to the orange lines shows the performance of common QEMU 

 
12 https://github.com/hermitcore/runh  

https://github.com/hermitcore/runh
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VMs, the red line shows that the usage of QEMU-based microVMs13 provides nearly the same 
performance as common containers, whilst providing a stronger isolation at the same time. 

The third component - the machine learning support - is explained in more detail in the 

following section. 

5.3 Application to ML optimization in IoT-NGIN  

There is an increasing usage of intelligence in IoT based applications, that use the application 

context, captured by IoT sensors or devices, to make smart decisions. This intelligence is 

generated by the inference capabilities of ML models that have been trained with that 

context data. However, the inference is required, in many situations, to make near-real-time 

decisions, leveraging the high performance of those ML models. Although ML models can 

be trained offline in Cloud infrastructures, their inference process is mostly executed in Edge 

clusters, near the context data used as input, in order to reduce the data access latency, to 

speed up the overall inference process. In general, different strategies, including software 

and algorithm optimizations, hardware acceleration (GPUs, TPUs, FPGAs,), etc, have been 

proposed for ML inference optimization, also for the Edge [Ref14].  

In the context of unikernels for secure execution, concrete choices of hardware (e.g., CPU) 

and software (e.g., C/C++/Rust) may constrain the execution.  However, some performance 

gain is expected when inference is executed in unikernels, with binaries compiled with those 

compatible languages (i.e., C/C++), when compared with the execution with other popular 

languages among data scientist, such as Python, which offer significant lower performance 

on CPUs. 

This results in the following requirements such a solution must have for the application in the 

Edge-Cloud Framework: 

- It must produce binary, self-consistent and not dynamically linked, CPU-compatible 

programs, so that they can be executed in the unikernel 

- They must be compatible with the ML frameworks used in IoT-NGIN, such as PyTorch 
and TensorFlow.  

The first requirement enforces the usage of ML frameworks that offers either C/C++ bindings 

or libraries, as those programming environments may produce self-consistent binaries that do 

not require of a specific programming execution environment (as Python does). However, 
for most of today’s frameworks, various solutions to achieve this goal exist. In combination 

with the second requirement the following approaches IoT-NGIN ML inference execution 
within unikernels are: 

- Apache TVM compilation15 

- Torch C++3 
- TensorFlow C++4 

- TensorFlow C API5 with CppFlow6 
- ONNX Runtime7 

 
13 https://qemu.readthedocs.io/en/latest/system/i386/microvm.html 
14 Shuvo, M. M. H., Islam, S. K., Cheng, J., & Morshed, B. I. (2022). Efficient Acceleration of Deep Learning 
Inference on Resource-Constrained Edge Devices: A Review. Proceedings of the IEEE. 
15 https://tvm.apache.org/  

https://qemu.readthedocs.io/en/latest/system/i386/microvm.html
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We'll briefly describe these different approaches: 

Apache TVM (for Tensor Virtual Machine) describes itself as an "open-source machine 

learning compiler framework for CPUs, GPUs, and machine learning accelerators". 

Depending on the definition, it could also be called a transpiler, as it can transform ML 
models for various execution backends like GPUs or DSPs, but also into executable C-code, 

which makes it interesting for Unikernels. TVM can transform multiple input formats, including 
TensorFlow and PyTorch. 

Torch C++ API is easy to install from its portal.8 It offers binary downloads for installation, so its 

compilation from sources is not required. Its documentation is quite good and it is well 
supported by the community forums. 

TensorFlow C++ is not available in binary format for direct download and installation, so it 

must be compiled from sources before being installed. However, the compilation process is 

hard, although well documented, imposing constraints on the compatible versions of the 
gcc compiler, the Python development environment and the Bazel building tool. As the 
compatible versions of the gcc compiler are not among the newest ones present in most 

recent versions of Linux OS, its compilation could be challenging on most machines. In the 
community, few users have faced successfully these compilation challenges and offered 

some Docker containers to build TensorFlow from sources9. TensorFlow C++ is not well 
documented, and scarce support is found in Internet communities. 

TensorFlow C API is a C binding for TensorFlow. There are binary downloads for popular OS 

that are easy to install. However, it is not well documented and its usage in C++ programs 
could be challenging.  

To overcome these limitations, CppFlow offers C++ headers to bind the TensorFlow C API and 

produce C++ binaries for TensorFlow inference, without requiring to compile TensorFlow C++ 

from sources with Bazel. 

ONNX Runtime is an optimized ML inference (and training) execution platform, that offers API 

binding for several programming languages (e.g., C/C++, Python, Java, etc), on multiple 
hardware (X64/X86, ARM, etc) and acceleration (CUDA, TensorRT, etc). ONNX Runtime 
executes ML inference on ONNX models, which are intermediate model created from 

models build with other ML backends (e.g., PyTorch, TensorFlow, etc). 

We have been evaluating the mentioned technologies16. Initially, we experimented with 

some concrete examples we found in the communities, then we applied those experiences 
to some ML inference examples for image classification, based on Alexnet and Restnet18. 
Next, we applied them to some of the IoT-NGIN Living Labs use cases, namely: the power 

generation forecasting on the Smart Energy LL, and the sensor detection on the Smart 
Agriculture LL (see D6.2 for further details on these use cases). 

In the following, we present the TVM approach, as well as the Torch C++ approach, as these 

illustrate two rather different approaches to the problem, the other approaches follow the 

same principles.   

 
16 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/ml-inference-examples-for-unikernels/-/tree/experiments  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments
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5.3.1 Machine learning support using TVM cross 
compilation 

Apache TVM is a framework to optimize and execute different formats of machine learning 

models on various hardware architectures and accelerators. It works as a compiler that can 
read multiple model formats, interprets, and processes them as intermediate representation 
and generates code for the selected backend. The execution of TVM processed models in 

RustyHermit is one of the components of the developed framework. 

The source code is published at the project's Gitlab Repository17 illustrates the usage and acts 

as a starting point for other projects. The most relevant part of the project is the CMakeLists.txt 
file, which invokes TVM and let it generate the C code for the unikernel. The invocation of 
TVM looks as follows:  

python -m tvm.driver.tvmc compile --target=c --runtime=crt --executor=aot  
--executor-aot-interface-api=c --executor-aot-unpacked-api=1  
--pass-config=tir.disable_vectorize=1 --output-format=mlf  
--output=<BINARY_DIR>/module.tar <DOWNLOADED_FILE> 

This generates the source files codegen/host/src/default_lib0.c, codegen/host/src/ 
default_lib1.c and runtime/src/runtime/crt/common/crt_backend_api.c containing the 

executable model. In this example, the MobileNet v2 1.0 224 INT8 image classification model 

is automatically downloaded and used. Additionally, the python script convert_labels.py 

generates the class labels for the output vector and the convert_images.py script converts 

the input image into a raw c-code file. These steps are necessary in this minimal example, a 
real -world application would adapt this depending on their needs.  

TVM is a great way of running static ML models in the edge-cloud framework. However, for 

adaptive or more advanced models, Torch C++ is better suited.  

5.3.2 Torch C++ ML Models in Unikernels 

In the following section, we describe the application of the Torch C++ approach for the 

execution of ML models withing the Framework. First, we briefly explain the models, the 
application in the Unikernel, two experiments have been conducted with Torch C++: 

- An Alexnet image classification, 

- A Smart Energy LL power generation forecasting 

5.3.2.1 Alexnet classification 

The source code for this experiment is available at the project's Gitlab Repository18..This is an 

image classification inference problem that uses a pre-trained Alexnet model (obtained from 
TorchVision) to classify an input image (a Labrador dog) among 1000 classes. 

 
17 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/hermit-tvm 

18 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/alexnet 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/hermit-tvm
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/hermit-tvm
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/alexnet
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/alexnet
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The C++ code (./src/alexnet-app.cpp) uses cmake for building and the libraries Torchlib C++ 

and OpenCV for ML inference and image pre-processing, respectively. The source code 
includes a readme.md file that describes the procedure to install the dependencies, build 

and execute the experiment. The inference results on a list of best predictions with scores: 

Prediction: whippet with probability: 50.417  

Prediction: Saluki, gazelle hound with probability: 30.0007  

Prediction: Ibizan hound, Ibizan Podenco with probability: 5.98667  

Prediction: Labrador retriever with probability: 5.31794 

… 

Performance gain w.r.t. the original Python execution is about 54% in our experiments with 

CPU.  

5.3.2.2 Smart Energy LL power generation forecasting 

The source code of this experiment is available in the same repository 19. This is a time series 

forecasting problem that uses a GRU-base regressor (a variant of LSTM) to forecast the future 
power generation of an electric grid (EG). This model is online trained with MLaaS Online 

Learning service (see D3.3 for further details). In this experiment we use a snapshot of the 
trained model, retrieved from the MLaaS Model Storage, where it is stored upon gains on 

performance. 

This model takes, as input, a tensor with the last 36 hourly measurements of the EG power 

generation, and provides, as output, a prediction for the next hour power generation. 

The C++ code (./src/power_generation_forecast.cpp) uses cmake for building and the 

Torchlib C++ library for the ML inference. The source code includes a readme.md file that 

describes the procedure to install the dependencies, build and execute the experiment. 

The inference outputs the prediction of the next hour power generation: 

Power generation prediction: 0.890847 

Performance gain w.r.t. the original Python execution is about 65% in our experiments with 

CPU. 

Both experiments showcase the performance gains and the ability to produce unikernels-

compatible binaries for Torch based inference in a range of different applications 

(classification, regression). 

5.3.2.3 Unikernel execution 

The RustyHermit cross-compiler20 adheres typical standards to build larger C++ applications. 

It is based on gcc 7.5.0, offers an ANSI C library, the POSIX interface for thread handling, and 
adheres the C++14 standard. However, PyTorch must be modified to support RustyHermit. 

RustyHermit’s C library was originally designed for embedded systems. To reduce the 

 

19 https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/ml-inference-examples-for-unikernels/-

/tree/experiments/torch/power_generation_forecast 
20 https://github.com/hermitcore/hermit-toolchain  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/power_generation_forecast
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/power_generation_forecast
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/ml-inference-examples-for-unikernels/-/tree/experiments/torch/power_generation_forecast
https://github.com/hermitcore/hermit-toolchain
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overhead, the C library doesn’t offer all features of the GNU C library. Therefore, we must 
configure the PyTorch C++ runtime in the same manner as it is done for mobile platforms as 
e.g., iOS or Android, as these operating systems provides less features and thus don’t require 

features only present in the GNU C library. 

The second challenge is the adaption of all components, which handle threads. RustyHermit 

itself supports POSIX threads, but PyTorch’s source code and its helper library Kineto is only 
designed to run directly on top of Linux, Windows, macOS and their branches (e.g, Android) 
and uses processes instead of threads. Consequently, the source code must be modified to 

use the Pthread interface.  

Overall, the build system and C++ source code of PyTorch and Kineto are modtified to use 

already existing code, which was originally designed for Android or Pthread-based operating 
systems.  In total 31 files are modified with 305 insertions and 11 deletions. In comparison to 

the complexity of the whole PyTorch project with all helper library (10 million lines of code 
within 39737 files) are these changes minimal. 

Only the helper library cpuinfo provides new code for RustyHermit.  cpuinfo is used to 

determine the number of processors and their cache sizes. The library depends on operating 

system interfaces, which must be adapted to support RustyHermit. However, the complexity 
of the code is small (4 files, 275 insertions). We will submit all changes to the open-source 

projects so that future projects can also benefit from them. 

The source code of the modified libraries is available at: 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/pytorch 
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/kineto/-/tree/hermit 
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-

framwork/cpuinfo/-/tree/hermit 

 

The power generation forcast experiment (see section 5.3.2.2) is used to compare a unikernel 

with a common Linux application. To run the unikernel within a virtual machine, the microVM 
Uhyve is used. The RustyHermit toolchain builds a single image, which is bootable within any 

common VM. The image has a size of 89 (62 stripped) MByte. The Linux application has only 
a size of 153 KByte. But in comparison to the Unikernel, the Linux application has to load at 

runtime shared libraries with a total size of 480 (405 stripped) MByte which is more than five 
(six for stripped binaries) times higher. This is, because a dynamic linker can’t remove 

unneeded code, as also other applications could use the same shared library. This shows the 
benefits of a static code analysis, where the linker is able to optimize the applications and to 
remove unneeded code. In cloud environments, where often only one application (micro 

service) is running in a container, the advantages of code sharing do not come into play. 
Common containers share the host kernel, but every container provides their own set of 

shared libraries. 

In addition, the unikernel is 25% faster in comparison to the Linux applications. because the 

overhead of loading the shared libraries at runtime does the Linux application never 

compensate. This huge speed up is of course not representative for all applications and 
further analysis is needed to better understand runtime behaviour.  

The Alexnet classification (see section 5.3.2.1) is based on Pytorch and also OpenCV, which 

is used for ML inference and image pre-processing. To use OpenCV for Alexnet, OpenCV 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/pytorch
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/pytorch
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/kineto/-/tree/hermit
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/kineto/-/tree/hermit
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/cpuinfo/-/tree/hermit
https://gitlab.com/h2020-iot-ngin/enhancing_iot_underlying_technology/edge-cloud-framwork/cpuinfo/-/tree/hermit
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must be cross compiled for RustHermit. The number of changes is clearly smaller in 
comparison PyTorch, but the kind of changes are similar. Mainly the configuration files need 
to be modified. In total. 11 files are changed with 11 insertions and 9 deletions. In comparison 

to OpenCV’s 2 million lines of code, these changes are also rather insignificant. 

The size of the unikernel increase in comparison to the power generation forecast to 104 

MByte (75 MByte stripped). OpenCV seems to be highly optimized for Linux.  A deeper 
analysis is required to understand the behaviour completely. But the memory consumption is 
clearly high in comparison to RustyHermit, as at least PyTorch (>400 MByte) and a few 

components of OpenCV have to be loaded into memory.  

These first results show that the microVM Uhyve has an excellent start-up time and the 

unikernel toolchain doesn’t introduce new additional overhead. With the benefit of a low 
memory footprint and a stronger isolation from the host system, unikernels could be a 

scalable and robust architecture for cloud environments.  

5.4 Conclusions 

In this chapter we explained the different aspects of the secure execution framework that 

uses unikernels for micro-services. This framework builds upon Kubernetes, which allows the 
application in cloud and edge-cloud environments. The use of unikernels and micro-VMs 

provides a high isolation whilst maintaining high performance and thus scalability. The 
application of this framework was shown by running different approaches of ML inference 
using this technology. The various experiments have been described and the source is 

available on the project’s repository. The results show that ML models have a much smaller 
footprint and can execute even faster on the unikernel, which in combination with the higher 

isolation makes this technology an interesting choice for cloud/edge-cloud environments. 
Future work on this topic is the adoption of all the approaches for ML-support in the 

framework as well as running more models on the framework to explore all possible edge-
cases. 
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6 How the technology is transferred and 
demonstrated in use cases and living labs 

The deployment of CMC 5G Core including the TSN and 5GLAN functionality has been 

installed and tested in ABB living lab. In the testing CMC acquired latest 5G device that 
includes support for Ethernet PDU. The installation includes the latest release of CMC 5GC 
with support for Ethernet PDU. However, the ABB living labs include a different 5G base station 

compared to the one used in CMC laboratory. Thus, the base station in ABB living labs did 
not recognize the Ethernet PDU session from the 5G device and the connection was 

terminated. This led to failure of time synchronization process so the protocol taking care of 
time synchronization that works over Ethernet was not completed successfully. However, the 

same installation in CMC lab where there was the possibility of accessing the settings of the 
base station did allow to have an Ethernet PDU session which resulted in successful 
synchronization. 
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7 Conclusions 
This chapter will provide the conclusions on the four different enhancements for IoT 

underlying technology discussed in this deliverable. 

Starting with the enhancement of 5G coverage. The deliverable discussed the different 

possibilities for extending the device coverage. The focus was put on the utilization of UEs for 
relaying the communication and thus enabling devices that otherwise would not have cell 
coverage to still connect to cell services. Two types of communication were evaluated. The 

first examined the possibility to extend the network based on 5G relaying and the second 
WIFI direct communication. Both are compared based on throughput and RTT 

measurements. The 5G approach has an average RTT of about 23 ms and an average 
throughput of up to 115 Mbps. Comapraed to this the Wifi Direct connection achives a 

average RTT of also about 23 ms and an average throughput of up to 140 Mbps. Depending 
on the available UE and hardware configuration this shows a flexible solution for the 
coverage extension. 

The second major topic of this deliverable evaluates the possibility of deterministic 

communication. This is achieved by utilizing a custom 5G core. The measurements provided 

in that chapter show the time synchronization of the UE compared to a network without time 
sensitive networking feature. 

In the third chapter the developments concerning the 5G Resource Management API are 

described. The final version of the proposed simplified API is shown and explained. 
Furthermore the adapters for container control with Kubernetes, runh and for the slice 

creation and service control are described. The implementation is reduced to minimal 
examples as this is meant to be a proof of concept. The simplification can be seen with the 

calls needed for the slice manager. Here on call for starting a service results in four different 
calls to the slice manage backend. Since it was not possible to test the behaviour against 

the real hardware a additional simulator was implemented this software behaves like the real 
API and is based on the official open API specification for the slice manager. This shows the 
possibility for rapid prototyping without the final software stack up and running. For the 

unikernel and Kubernetes adapter it is shown that a single command for staring a webserver 
can be deployed on the specific infrastructure depending on the used software stack. 

Lastly, the Secure Edge Cloud Framework was presented, which introduces the novel 

unikernel technology to the cloud and edge-cloud domain. This approach provides a higher 
isolation for microservices through the use of virtual machines. By using microVMs, the 

overhead is kept low and is comparable to the widely used container technology. One of 
the primary targets for microservices in IoT-NGIN are machine learning applications, thus the 

framework includes serveral methodologies to execute inference on unikernels in cloud 
applications. The chapter demonstrates some of the most relevant ones. 

The demonstration of TSN and 5G-LAN in the ABB living lab could not be completed so far, 

but the process is still ongoing and successful results are expected during the remainder of 
the project. 

The presented technologies all have their own scope, but are all expected to have an 

impact in their own domain and do their part in shaping the future of the IoT landscape. 
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