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Executive Summary  
The main purpose of this document is threefold. Firstly, this document intends to provide the 

integration status of the IoT-NGIN framework. This corresponds both to the development, 
deployment and integration status of the project’s technical activities at the time of writing 

this deliverable, but also to next steps of the integration plan for each IoT-NGIN component 
for the following months. In addition, we have elaborated on integration considerations 
following a holistic approach and also taking into account the Living Lab integration and 

deployment requirements.  

Secondly, this document provides a thorough analysis of the application logic 

enhancements that were introduced in each LL Use Case. Moreover, it describes the logical 
connection of these modules within each LL UC specific IoT-NGIN architecture.   

Lastly, this document also encapsulates an extensive set of tests that have been conducted 

so far and focusing on the Federated Communication Layer of the IoT-NGIN architecture 
that consists of 5G networking software and tools. This includes the description of the 

implementation and the testing conducted for evaluating the performance of 5G as the 
communication network for the IoT-NGIN Use Cases but also the evaluation of the IoT-NGIN 

5G network related components on specific use cases. 
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1 Introduction  
The IoT-NGIN framework is built upon the IoT-NGIN meta-architecture that has been defined 

in the context of D1.2 [1] and updated in D1.3 [2]. The suggested meta-architecture dictates 
the necessity to build the corresponding IoT-NGIN framework that will materialise IoT-NGIN 

architecture instantiations that would address and comply to the project’s Living Lab needs. 
This requires the development of a large number of components and sub-components 
(modules) covering the complete vertical of the IoT-NGIN functional stack. Then, these 

components have to be tested, both for terms of functionality, communication and 
performance and then incorporated into the integrated IoT-NGIN platform. Taking into 

consideration also the added complexity due to the enhancements introduced for the 
application logic of the IoT-NGIN Living Lab Use Cases, one can easily argue that this is not 

a trivial task, but a rather challenging joint effort.  

D6.1 [3] elaborates on the IoT-NGIN platform architecture, derived by the IoT-NGIN meta-

architecture and providing a detailed component-level view of the IoT-NGIN platform. The 

integration and testing infrastructure, as well as the integration and testing methodology of 
the project have been presented. This includes the integration guidelines and the 

DevSecOps practices and tools adopted by the project. 

The aim of this deliverable, entitled “Integrated IoT-NGIN platform & laboratory testing 

results”, is twofold. On one hand, it presents the integration status and the associated 
evaluation and performance tests that will lead to the finalised IoT-NGIN platform which will 
be released at M30. On the other hand, it presents in detail the advancements on the design 

and implementation of the application logic enhancements that will complement the 
project’s technical developments in satisfying the UCs’ requirements.  

Therefore, we proceed with the necessary integration activities for building the integrated 

IoT-NGIN framework. More specifically, we elaborate on the IoT-NGIN CI/CD enhancements 

that have been introduced in order to provide a fully automated and at the same time 
Cloud Native compliant methodology that would be followed by the IoT-NGIN developers 
to accelerate the development and the integration process. A relevant guide presenting 

the integration steps that developers should follow in order to utilise the configured IoT-NGIN 
CI/CD pipeline is also included. Furthermore, the integration status of the IoT-NGIN 

developed technical solutions along with high-level interactions among IoT-NGIN’s 
components. 

In addition, the IoT-NGIN platform has to incorporate, including designing, developing and 

integrating, additional application enhancements in order to support the specific objectives 
that are addressed by each Living Lab. The respective application enhancements 

accompanied with the associated UCs’ architecture instantiation figures are presented in 
detail in the present document. 

Finally, within this deliverable an extensive set of tests that have been conducted so far and 

focusing on the Federated Communication Layer of the IoT-NGIN architecture that consists 
of 5G networking software and tools and includes the description of the implementation and 

the tests conducted for evaluating the performance of the 5G as the communication 
network for the IoT-NGIN Use Cases but also the evaluation of the IoT-NGIN 5G network 

related components on specific use cases are described thoroughly.  

In the upcoming D6.3, entitled “Interoperable IoT-NGIN meta-architecture & laboratory 

evaluation” due in M33, we will describe the finalised integrated IoT-NGIN framework and 
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present extensive integration and performance related tests of the IoT-NGIN implemented 
technical solutions. 

1.1 Intended Audience 

The intended audience of this document is primarily the consortium of the IoT-NGIN project, 
as well as the partners that were introduced through the project’s Open Calls (#1 and #2). 

More specifically, this deliverable presents to the technical partners of the consortium, the 
integration and testing status of the IoT-NGIN platform and the integration steps that need 
to be adopted in order to enable the configured CI/CD pipeline. In addition, this document 

would facilitate the Living Lab owners to better comprehend the IoT-NGIN architecture 
instantiations that will be deployed in their premises and intend to support the particular UCs 

narrative.  

Finally, software developers, engineers and system integrators might also find useful the 

present document as we present a detailed large-scale integration process that adheres on 

state-of-the-art Cloud Native approaches and covers the complete integration and testing 
spectrum, including practical examples and technical approaches. So, this document might 

be of interest to third party developers both for understanding the configuration and 
deployment of the IoT-NGIN framework, but also for taking a tour to our generic automated 

integration and deployment process which could be applied in other software projects as 
well. 

1.2 Relations to other activities 

Integration and testing activities act as the backbone of the system development process 
and thus of the integrated IoT-NGIN framework. This document is strongly connected with all 

the technical WPs (2-6) and also related to WP7 that consists of the Living Lab IoT-NGIN 
platform deployment and the subsequent validation work that need to be performed, as 
dictated by the IoT-NGIN specific Use Cases. Finally, it is also related with WP8 and WP9 in the 

context of impact creation and Open Calls, respectively. 

1.3 Document overview 

The present document provides insights on the integration and testing activities of the IoT-
NGIN framework. More specifically, the document is organised as follows. 

Section 1 provides an introduction on the objectives that are tackled by this deliverable and 

the relevant activities. 

Section 2 presents the integration status of the IoT-NGIN components, the advancements 

with respect to the project’s CI/CD pipeline and an IoT-NGIN developer’s guide describing 
the required integration steps that need to be taken to deploy and integrate the developed 

technical solutions. In addition, the IoT-NGIN integrated framework is presented focusing in 
particular on the IoT-Edge-Cloud computing integration and on the integration of the ML 
services/modes to the MLaaS component. Finally, it presents the configuration and 

deployment of the IoT-NGIN platform elaborating on Cloud Native technologies and tools 
that will be adopted in order to facilitate this process. (e.g., Helm Charts). 
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Section 3 describes the IoT-NGIN application logic enhancements design and development 

status and also the relevant architecture instantiation figures that support each of the Living 
Lab’s Use Cases. 

Section 4 provides information on the implementation and performance testing of 5G as the 

communications network for IoT-NGIN use cases. 

Section 5 presents information on the implementation and the evaluation of the IoT-NGIN 

components that comprise the Federated Communications layer of the IoT-NGIN framework 

Section 6 draws conclusions for this report. 

In addition, Annex 1 provides additional parameters for RWTH’s EdgePMU, which calculates 

phasors by utilizing the edge cloud. 

Annex 2 presents detailed information on the development and integration of each 

technical solution implemented in the context of the project in a tabulated format.  

Finally, Annex 3, provides indicative HELM-charts of IoT-NGIN components showcasing the 

utilization of HELM in view of the holistic deployment approach that will be adopted by the 
IoT-NGIN. 
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2 Integration of IoT-NGIN Components 
The integration of the IoT-NGIN framework is based on the principle of adopting the cloud-

native computing paradigm, which provides the benefits of Increased efficiency, reduced 
costs and ensured availability and scalability. The Cloud Native Computing Foundation 

(CNCF) provides the Cloud Native Definition v1.0 [4]: 

“Cloud native technologies empower organizations to build and run scalable applications 

in modern, dynamic environments such as public, private, and hybrid clouds. Containers, 

service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this 
approach. 

These techniques enable loosely coupled systems that are resilient, manageable, and 

observable. Combined with robust automation, they allow engineers to make high-impact 

changes frequently and predictably with minimal toil.” 

Aligned to this definition, IoT-NGIN builds a framework that is based on containerised 

microservices, which are built, tested, deployed and operated in the cloud, focusing on the 

automation of these processes to the extent possible. 

The IoT-NGIN components are developed as stateless microservices which provide 

functionality almost independent from other microservices and run as containers or 
unikernels in the IoT-NGIN Kubernetes (K8s) cluster, running on OneLab facilities [3]. The 

deployment of such containers relies on Helm charts [5], which provide the ability to provide, 
share, and use the containers built for Kubernetes, alleviating from the burden to manually 
author a set of configuration (yaml) files for the Kubernetes Deployments [6], Secrets [7], 

ConfigMaps [8], etc. In addition, HELM charts offer additional flexibility on deploying the 
various IoT-NGIN platform instantiations on the project’s Living Labs’ infrastructures.  

On the other hand, IoT-NGIN adopts a DevSecOps approach, based on GitLab CI/CD 

pipeline, as described in D6.1 [3]. Moreover, this pipeline is used to safely deploy the IoT-NGIN 

components to the IoT-NGIN Kubernetes cluster. IoT-NGIN has already delivered stable 
versions of individual components in the project’s GitLab group [9]. 

In the following, thorough technical guidance is provided to developers on deploying 

components’ source code already uploaded on GitLab into IoT-NGIN’s Kubernetes cluster 
via the GitLab Agent.  

Moreover, the updated IoT-NGIN architecture is provided in subsection 2.2, as a guide for 

the integration of the individual components, discussing the status of the integration, as well 
as the approach of IoT-NGIN towards the adoption of edge computing and delivery of ML 

services, which involve interaction of cross-WP components, while addressing IoT, edge and 
cloud integration, Digital Twins and MLOps. 

2.1 Continuous Integration – Continuous 

Deployment 

The IoT-NGIN project has adopted DevSecOps practices which support the project’s 

development and integration activities. DevSecOps practices are realised through the 
CI/CD pipeline that has been configured for the IoT-NGIN project. At the same time the 

various technologies adopted to support the CI/CD pipeline adhere to the Cloud Native 
paradigm. IoT-NGIN CI/CD is realised through GitLab which is an Open source DevSecOps 
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platform. In the context of this document, we elaborate on the functional enhancements 
that we have incorporated into the already setup CI/CD workflow. In addition, here we 
provide technical information that pertains to the utilization of the IoT-NGIN CI/CD pipeline 

by the IoT-NGIN developers.  

 GitLab Agent 

IoT-NGIN, adhering to the Cloud Native approach, provides automated delivery procedures 
realizing the CD part of the CI/CD pipeline through GitOps. GitOps is a deployment 

methodology centralized around a Git repository (GitLab) that advocates using versioned 
files in source control repositories to define and manage the underlying infrastructure. This 

agent based GitOps methodology for continuous deployment (CD) refers to running an 
active component within the infrastructure which handles the components’ deployments 

and is achieved with the GitLab agent. An agent is installed and deployed in the Kubernetes 
cluster and is used as a communication bridge between the source code in GitLab and the 
cluster. The agent is authorised to access all GitLab sub-groups and projects of the H2020 IoT-

NGIN group.  

IoT-NGIN project’s cloud infrastructure consists of two clusters, the main one and the auxiliary 

one which incorporates a dedicated GPU that facilitates ML pipelines (through Kubeflow 
[10]) facilitating the development and integration activities of WP3. Thus, one GitLab Agent 
is deployed in each IoT-NGIN cluster, as illustrated in the Figure 1 below. The GitLab-agent-

prod is deployed within the IoT-NGIN main cluster, while the GitLab-agent-sec is deployed 
within the auxiliary (secondary cluster).  

 

 

Figure 1 – IoT-NGIN Gitlab agents’ configuration. 

 

 Integration Steps 

The IoT-NGIN project, utilizing GitLab CI/CD, allows the developer to define and deploy jobs 
in order to build Docker images and publish them to the project’s container registry in docker 

hub [11]. The basic steps to enable GitLab CI/CD on an IoT-NGIN GitLab project and a 
sample pipeline template are described below. In addition, the required configuration files 

(.yaml files) that pertain to the docker and Kubernetes are also provided.  

In order to demonstrate the utilization of the CI/CD pipeline that has been configured for the 

project’s needs, we apply and configure the relevant files that would enable the CI/CD 
pipeline for an implemented IoT-NGIN component, which, in this case, is the IoT Device 
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Indexing (IDI) component. Its source code is available in the IoT-NGIN project’s GitLab under 
the “enhancing_iot_tactile_contextual_sensing_actuating” sub-group.  

IDI consists of a set of sub-components (modules). The following example demonstrates the 

steps that developers should follow in order to set up the CI/CD pipeline for the “Historic Data 
Registry” module.  

 

 Dockerfile 

First, we should create a Dockerfile file in the root of the repository. 

 

FROM node:19 

WORKDIR /app 

ADD . /app 

RUN npm install 

EXPOSE 3000 

CMD npm start 

 Kubernetes Manifest 

We should also create the Kubernetes.yaml configuration files in the config/k8s directory. For 

instance, here we have configured a deployment, a service, a secret, a persistent volume 
claim and an Ingress. 

It is important to specify the namespace as a work package and the exact image name as 

dictated by the IoT-NGIN architecture. It is also recommended to deploy to k8s cluster only 
Semantic Versioning (SemVer) tags. 

 

 Deployment 

As all IoT-NGIN docker images will be located in the project’s DockerHub registry, we have 
configured a kubernetes.io/dockerconfigjson type Secret in the Kubernetes cluster, reflected 

in all namespaces, with name public-regcred. This public-regcred secret must be specified 

as imagePullSecret in every deployment that uses these private images.  

 
apiVersion: apps/v1 

kind: Deployment 

metadata: 

    name: device-indexing-registry 

    labels: 

      app: device-indexing-registry 

spec: 

  selector: 

    matchLabels: 

      app: device-indexing-registry 

  replicas: 1 

  template: 

    metadata: 

      labels: 

        app: device-indexing-registry 

    spec: 

      imagePullSecrets: 

      - name: public-regcred 

      containers: 
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      - name: device-indexing-registry 

        image: iotngin/device_indexing_registry:v0.1.3 

        env: 

          - name: MONGO_HOST 

            value: device-indexing-registry-db 

          - name: MONGO_INITDB_ROOT_USERNAME 

            valueFrom:  

              secretKeyRef: 

                name: device-indexing-registry-db-secret 

                key: MONGO_INITDB_ROOT_USERNAME 

          - name: MONGO_INITDB_ROOT_PASSWORD 

            valueFrom:  

              secretKeyRef: 

                name: device-indexing-registry-db-secret 

                key: MONGO_INITDB_ROOT_PASSWORD 

          - name: MONGO_INITDB_DATABASE 

            valueFrom:  

              secretKeyRef: 

                name: device-indexing-registry-db-secret 

                key: MONGO_INITDB_DATABASE 

          - name: MONGO_PORT 

            value: "27017" 

          - name: FLASK_APP 

            value: ./main.py 

        ports: 

  - containerPort: 5000 

 

 Service 

apiVersion: v1 

kind: Service 

metadata: 

  name: device-indexing-registry 

  labels: 

    app: device-indexing-registry 

spec: 

  type: NodePort 

  ports: 

  - port: 80 

    targetPort: 5000 

    protocol: TCP 

  selector: 

    app: device-indexing-registry 

 

 Secret 

apiVersion: v1 

kind: Secret 

metadata: 

  name: device-indexing-registry-db-secret 

  labels: 

    app: device-indexing-registry-db-secret 

type: Opaque 

stringData: 

  MONGO_INITDB_ROOT_USERNAME: mongoadmin  

  MONGO_INITDB_ROOT_PASSWORD: secret 

  MONGO_INITDB_DATABASE: device-indexing-registry 
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 PersistentVolumeClaim 

apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  name: device-indexing-registry-pv-claim 

spec: 

  accessModes: 

    - ReadWriteOnce 

  resources: 

    requests: 

      storage: 5Gi 

 

 Ingress 

apiVersion: networking.k8s.io/v1 

kind: Ingress 

metadata: 

  name: device-indexing-registry-ingress 

spec: 

  ingressClassName: nginx 

  tls: 

  - hosts: 

      - device-indexing-registry.apps.kf.iot-ngin.onelab.eu 
  rules: 

  - host: device-indexing-registry.apps.kf.iot-ngin.onelab.eu 
    http: 

      paths: 

      - pathType: Prefix 

        path: "/" 

        backend: 

          service: 

            name: device-indexing-registry 

            port: 

              number: 80 

 

 GitLab CI/CD Pipeline 

In order to enable the IoT-NGIN GitLab CI/CD pipeline, we need to create the .gitlab-ci.yml 

file at the root of the repository. 

We have configured the Docker-in-Docker with TLS enabled in Kubernetes to use Docker in 
our CI/CD jobs, so we must specify the appropriate Docker variables and the 

docker:20.10.16-dind service. 

 

Since IoT-NGIN materialises the DevSecOps development practice and thus security 
initiatives are integrated in the CI/CD pipeline, we have enabled the GitLab Static 

Application Security Testing (SAST) by navigating to Security & Compliance > Configuration, 

to analyse our source code for known vulnerabilities. With the SCAN_KUBERNETES_MANIFESTS 
variable, we enable the Kubesec analyzer in SAST. 

https://docs.gitlab.com/ee/ci/docker/using_docker_build.html#docker-in-docker-with-tls-enabled-in-kubernetes
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In addition to the predefined Group Variables (DOCKER_LOGIN, DOCKER_PASSWORD), we 
have also specified the IMAGE repository variable as shown in Figure 2, by navigating to 
Settings > CI/CD > Variables in the repository. 

With the kubectl config use-context h2020 IoT-NGIN/gitlab-agent-prod:gitlab-agent-prod or 

h2020 IoT-NGIN/gitlab-agent-sec:gitlab-agent-sec, we select the GitLab agent’s Kubernetes 

context to run the Kubernetes API commands for the deploy stage. 

 

Figure 2 – GitLab CI/CD Repository Variables. 

image: docker:19.03.13 

 

include: 

  - template: Security/SAST.gitlab-ci.yml 

 

variables: 

  DOCKER_TLS_CERTDIR: "/certs" 

  SCAN_KUBERNETES_MANIFESTS: "true" 

 

services: 

  - docker:19.03.13-dind 

 

stages: 

  - sast 

  - test 

  - build 

  - deploy 

 

test: 

  stage: test 

  image: python:3.8.10-slim 

  script: 

    - echo "Write your tests here" 

  when: always 

 

lint-test:    

  stage: test 

  script: 

    - echo "Linting code... This will take about 5 seconds." 

    - sleep 5 

    - echo "No lint issues found." 

 

build-main: 

  stage: build 

  before_script: 

    - echo "$DOCKER_PASSWORD" | docker login --username $DOCKER_LOGIN --password-stdin 

  script: 

    - docker build -t $IMAGE:latest . 

    - docker image push $IMAGE:latest 

  only: 

    - main 

 

build-tags: 

  stage: build 

  before_script: 

    - echo "$DOCKER_PASSWORD" | docker login --username $DOCKER_LOGIN --password-stdin 

  script: 

    - docker build -t $IMAGE:$CI_COMMIT_TAG . 

    - docker image push $IMAGE:$CI_COMMIT_TAG 

  only: 

    - tags 

 

deploy-prod: 

  stage: deploy 
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  image: 

    name: bitnami/kubectl:1.22.15 

    entrypoint: [''] 

  script: 

    # - sed -i "s+\b$IMAGE:[^ ]*+$IMAGE:$CI_COMMIT_TAG+" config/k8s/combo.yaml 

    - kubectl config get-contexts 

    - kubectl config use-context h2020-iot-ngin/gitlab-agent:gitlab-agent-prod 

    - kubectl set image deployment/device-indexing-registry device-indexing-registry=$IMAGE:$CI_COMMIT_TAG -n iot-

ngin-wp4 

  only: 

    - tags 

 

# deploy-sec: 

#   stage: deploy 

#   image: 

#     name: bitnami/kubectl:1.22.15 

#     entrypoint: [''] 

#   script: 

#     # - sed -i "s+\b$IMAGE:[^ ]*+$IMAGE:$CI_COMMIT_TAG+" config/k8s/combo.yaml 

#     - kubectl config get-contexts 

#     - kubectl config use-context h2020-iot-ngin/gitlab-agent:gitlab-agent-sec 

#     - kubectl set image deployment/device-indexing-registry device-indexing-registry=$IMAGE:$CI_COMMIT_TAG -n iot-

ngin-wp4 

#   only: 

#     - tags 

 

We have configured three stages in the CI/CD pipeline: 

• Build - Push 

• Test (with SAST) 

• Deploy 

 

When source code is pushed to the main branch by the developer, the first two stages are 

triggered as shown in Figure 3. The build-main job also pushes the $IMAGE 

(iotngin/device_indexing_registry) to DockerHub with a tag latest. 

 

Figure 3 – CI/CD Pipeline when push to main. 
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When a tag is pushed, all stages are triggered, without the SAST operations, as shown in Figure 

4. The build-tags job also pushes the $IMAGE (iotngin/device_indexing_registry) to 

DockerHub with tags: $CI_COMMIT_TAG, which is the commit tag name. 

 

Figure 4 – CI/CD Pipeline when push a tag. 

Finally, once the CI/CD pipeline execution is completed successfully, then the component is 

deployed in the cluster. If any step of the pipeline is not successful, then manual corrections 
should be applied by the developer in order to correct the issue. Once everything is resolved, 

the CI/CD pipeline should terminate normally by deploying the component to the cluster.  

2.2 The IoT-NGIN integrated framework 

The IoT-NGIN components are being developed in the context of providing functionality in 

the framework of the functional groups (elements) of the IoT-NGIN meta-architecture [1]. The 
development of this functionality is materialised in the component-level architecture, 

presented in D6.1, in which each component represents an IoT-NGIN micro-service. 

The IoT-NGIN framework architecture has been updated, following the developments and 

progress of the work within the project so far, which have led to more comprehensive 

definition of the scope of each component, fine-graining the interactions among them and 
the project boundaries. The updated architecture is presented in Figure 5, in which the 

colours denote different functional groups, as described in D6.1. 

The main updates compared to the first version concern all of the five functional layers that 

comprise the IoT-NGIN architecture, namely the Federated Communications layer, the 
Micro-services and Virtual Network Functions (VNFs), the Federated Data Sovereignty, the 
Federation of Big Data Analytics & ML and the Human-Centred Augmented Reality Tactile 

IoT. More specifically, the updates relate to the following. 

The components providing 5G enhancements have been made more specific in the 

architecture diagram and now indicate comprehensively the enhancements and 5G 
capabilities exposed by the relevant APIs, as well as the way they manage 5G resources. 
Details can be found in D2.2 [12]. 

The “IoT Device Discovery” component has been presented in all four variants it is developed 

in IoT-NGIN, including the Computer Vision, Visual Light Positioning (VLP), Ultra-Wide Band 

(UWB) and Code Scanning (QR/barcode) variants, as detailed in D4.3 [13]. 

The “Deep Learning, Reinforcement Learning & Transfer Learning framework” has been split 

into “Reinforcement Learning framework” and “Online Learning framework”, which both 
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connect to the MLaaS framework. The Privacy-Preserving Federated Learning (PPFL) API has 
been added as an API to consume federated learning services across the different FL 
frameworks considered in the project. The updates on the project’s ML tools are 

documented in D3.3. [14]. 

The term “Semantic Twin” has been adopted to align with the definition and scope of the 

component developed, instead of the term “Meta-Level Digital Twin”. The latest updates 
can be found in D5.4 [15]. 

 

Figure 5 – The IoT-NGIN logical architecture. 

The “IoT Device Indexing” and “IoT Device Access Control” are treated as parts of a generic 

Digital Twin solution, providing data communication and persistence. The IoT-NGIN platform 
could also connect to third-party Digital Twin solutions, described in the “Semantic Twin”.  
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Moreover, the ML model storage, serving and sharing have been concretised as operations 

of the MLaaS platform, while model translation and sharing is provided by the “Polyglot 
Model Sharing” component. 

The functionality and inter-operation of the IoT Vulnerability Crawler and the MTD Network of 

Honeypots have been concretely defined and fine-grained. 

Moreover, Figure 5 indicates the updated interactions among the individual components, as 

well as the status of integration among them. Integration includes a number of steps, starting 
from the specification of interfaces, the development of the respective endpoints and 

potential logic, their testing and, finally, their automated deployment. Hence, dashed lines 
in the figure indicate that integration activities have been at least at the stage of 

development/testing, but are still in progress, while continuous lines indicate that integration 
among the interacting components has been performed at a mature level with interfaces 

working or even with automated configuration and deployment completed.  

 IoT-Edge-Cloud computing integration 

The cloud computing revolution has democratised the development of use of technology, 
offering both business and end-users the illusion of unlimited resources availability and 

always-on experience of mobile and web services. Cloud computing has enabled the 
emergence of wide range of applications, supported by the SaaS, PaaS or IaaS model, 
delivering complex functionality to the end user, without necessarily requiring powerful end 

devices. 

The centralization of intelligence at remote cloud resources has, however, been an obstacle 

to real-time applications and services or is critically addressed from the privacy perspective. 
The advances in IoT have allowed a multitude of diverse devices with varying computational 

and power resources to generate an overwhelming amount of data. While the analysis of 
those data can be a real gold mine, data transfer to the cloud and communication of results 
back to the end device can be too costly to support strict latency requirements of real-time 

services. Also, the data transfer raises significant security, privacy or legal concern, which 
have often been a major obstacle to public cloud adoption. Moreover, this remote task 

offloading comes with increased energy footprint, attributed to both communication costs, 
as well as increased consumption due to often inefficient management of available 

resources. These concerns can be placated by bringing computation closer to the data 
sources and offloading only higher computational and orchestration tasks to the cloud. On 
the other hand, IoT now avails of different devices or “things” which may support wider range 

of task execution on the end device or on a device that is close to it, e.g., in the network 
(LAN). 

The next logical step of evolution has thus been edge and fog computing, which enable 

architectures of distributed computation among a set of nodes close to the end user devices 

and the cloud infrastructure, yielding decreased latency and increased privacy. Time-critical 
applications can be executed at the edge devices, while heavier, less time-sensitive 
computations in more powerful devices located between the edge and the cloud 

resources, such as an IoT gateway or fog node with LAN-connected processors or within the 
LAN hardware itself. 

IoT-NGIN enables the integration of IoT, edge and cloud computing, through the Digital Twin 

of the Edge device, following AIOTI’s decentralised data space example for AI capability in 
the Digital Twin, as shown in Figure 6. Based on this paradigm, “a data space is a trustworthy 
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decentralised environment for data sharing” [16], in which decentralization is realised in two 
data space layers (processing and data layer) and three concepts (data exchanges, data 
interoperability and data operations) among organizations. 

 

 

Figure 6 – AIOTI example for AI capability in a digital twin [16]. 

In IoT-NGIN, the AIOTI example for decentralised data spaces is leveraged through the Digital 
Twin (DT), which is realised through the IoT Device Indexing (IDI) component that heavily relies 

on the FIWARE Orion Context Broker (CB) [17], extended with the Historic Data Registry and 
the Inactivity Checker submodules [18] for the “Data and knowledge” part of the Digital 

Twin. These DT services are protected by IoT-NGIN’s IoT Device Access Control (IDAC), which 
applies access and usage control on device data. 

As depicted in Figure 7, this mechanism is used for bi-directional message exchange: 

• Data communication from the IoT device to the digital twin and possibly the cloud 

• Command communication from a remote service to the digital twin and then to the 

IoT device, possibly using data that reside at the cloud resources. 

 

Figure 7 – IoT-edge-cloud integration. 

The Data communication constitutes Northbound Traffic of the FIWARE Context Broker, with 
the IoT agent receiving data updates through REST or publish/subscribe services. The 
communication of commands is treated as Southbound Traffic within the CB.  
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Assuming that devices are properly registered on the Device Indexing module, data could 

be communicated, using the services depicted in Table 1. Details on the use of these services 
is provided in D4.3 [13]. Both communication routes can be protected by the Access Control 

module, imposing criteria-based control on the usage of the requested resources by 
updating the relevant headers while issuing requests to IDI services. The criteria for access 

control could vary across use cases and may be realised as one or more plugins of the 
Device Access Control module. 

Table 1 – Digital Twin services for data and command communication. 

Description From To Service 

Data 

communication 
IoT Device Digital Twin IoT agent - REST 

/iot/d?k={apikey}&i={device_id} 

   IoT agent – MQTT 

/{apikey}/{device_id}/attrs 

Command 

communication 
Digital Twin IoT Device Context Broker 

/v2/op/update 

 

 Integration of ML services to MLaaS 

AI is a strategic priority in EU’s Digital Decade, while the arrival of 6G networks will enable 
further advances in AI/ML, such as exploiting data that is local to the 6G sensor by efficiently 

transporting the (AI/ML) algorithms [19]. Hence, the integration of ML services with the MLaaS 
platform is a significant part of the IoT-NGIN architecture. 

 

 

Figure 8 – MLaaS interaction with other ML services. 

 

The full fledge of the ML operations supported by the MLaaS platform are detailed in D3.1 

[20], D3.2 [21] and D3.3 [14]. Here, the exploitation of trained ML models through the platform 

is described. An ML service could use an already trained ML that is stored in MLaaS directly, 
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i.e. by retrieving the model and deploying it locally on the user’s premises, or have the model 
inference being provided as a service, i.e. sending input data to MLaaS and receiving the 
relevant predictions. 

In case of trained ML models, the following options are available for the ML developers to 

use them in their ML services: 

• Through the Digital Twin, retrieving the model and deploying it locally on the IoT 

device 

• Directly retrieving and deploying the ML model locally 

• Using the MLaaS model serving component, with the MLaaS performing serverless 

deployment of model inference for common ML frameworks Scikit-Learn, XGBoost, 
Tensorflow, PyTorch as well as pluggable custom model runtime. 

• Retrieving already trained ML models, stored in MLaaS, but translated in a different ML 

framework than the one that they have been trained. 

These use cases cover a wide range of diverse use cases, across which IoT-NGIN’s ML 
operations can be exploited. The adoption of the cases described above is also explained 

and discussed in section 3, in the context of each IoT-NGIN Living Lab particular Use Cases. 

 Configuration & Deployment of the IoT-NGIN 
platform 

In the framework of the IoT-NGIN project we have incorporated development and 
deployment automations that adhere to the Cloud Native paradigm and are driven via the 

GitLab CI/CD pipelines. The steps that are required by the developers in order to deploy their 
implemented technical solutions into the project’s cloud infrastructure are described in detail 

in section 2.1.  The IoT-NGIN integration and testing infrastructure is running in OneLab 
infrastructure and is managed via the Kubernetes container orchestrator. The infrastructure 
consists, at present, of two different Kubernetes Clusters which serve different purposes. A 

primary cluster as the production cluster and a secondary cluster for KubeFlow and for all 
components that require a Graphics Processing Unit (GPU) workload. The clusters’ master 

nodes have 8 vCPU cores, and 16 GB of RAM and slave nodes have 16 vCPU and 32GB of 
RAM each. The specific number of the slave nodes depends on the workload and on the 

deployed components’ hardware requirements. Since the IoT-NGIN integration and Testing 
infrastructure is managed by Kubernetes, we are able to scale out (Horizontally) and add as 
many additional VM nodes as necessary. In addition to the aforementioned Kubernetes 

clusters, the project also utilises a 5G mobile network established in Eurolab (Ericsson’s 
laboratory infrastructure). IoT-NGIN components that adhere to the WP2 development 

activities (e.g., M2M, MCM, 5G resource management etc.) are deployed and integrated 
there.    

More specifically, the Kubernetes namespaces which correspond to each WP activities and 

are defined within each IoT-NGIN cluster are described in Table 2 in tabulated format. 

Table 2 – IoT-NGIN WP, Namespace and cluster mapping. 

Kubernetes Namespace IoT-NGIN WP  IoT-NGIN cluster 

N/A WP2: Enhancing IoT Underlying 

Technology 

Eurolab cluster 
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Default WP3: Enhancing IoT Intelligence OneLab auxiliary 

cluster (GPU enabled) 

Iot-ngin-wp3 WP3: Enhancing IoT Intelligence OneLab main cluster  

Iot-ngin-wp4 WP4: Enhancing IoT Tactile & 

Contextual Sensing/Actuating 
OneLab main cluster  

Iot-ngin-wp5 WP5: Enhancing IoT Cybersecurity & 

Data Privacy 
OneLab main cluster  

Iot-ngin-wp6 WP6: IoT-NGIN Integration & 

Laboratory evaluation 

OneLab main cluster  

 

In Figure 9, some indicative IoT-NGIN components’ services deployed in the Kubernetes 

cluster are described.  

 

Figure 9 – Indicative IoT-NGIN Kubernetes services. 

 

 IoT-NGIN platform integration considerations 

The integrated IoT-NGIN platform is realised based on the IoT-NGIN meta-architecture that 
was defined and described in D1.2 [1] and further updated within D6.1 [3]. Moreover, within 

WP6 (T6.2 activities), additional application-logic enhancements have been introduced 
(described in detail in section 3), and then designed and developed, in order to both support 

but also refine the IoT-NGIN Living Labs’ particular UCs provided functionality and thus their 
operation. This indicates the necessity to configure the integrated IoT-NGIN platform in 
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multiple variations/instantiations and subsequently be able deploy them in the respective 
Living Labs’ cloud/edge infrastructures.  

The abovementioned integration procedure is rather complex and undoubtedly is not a 

trivial task to undertake effectively and at the same time not further increase the complexity 
both for the integration and also the deployment phase of the IoT-NGIN platform in the Living 

Labs. In order to facilitate this process, we opted to utilise HELM charts [5]. Helm is a package 
manager for Kubernetes that makes it easy to take applications and services that are either 
highly repeatable or used in multiple scenarios and deploy them to a typical K8s cluster and 

HELM charts essentially describe how to manage a specific application or set of applications 
on Kubernetes. More specifically, HELM charts consist of metadata that describe the 

applications and the infrastructure’s associated needs aiming to provide a simple, smooth 
and trouble-free deployment of the integrated IoT-NGIN framework variations.   

Adopting HELM, IoT-NGIN aims to deliver smooth integration between the numerous 

developed components and also an easy way to update (upgrade) them when is required. 
In addition, HELM eases the installation of the various IoT-NGIN platform instantiations that are 

dictated by the defined meta-architecture and the additional application-logic 
enhancements that have been incorporated. 

More specifically, HELM removes the necessity of going through a Kubernetes Manifest’s 

details to make the appropriate changes every time an update or new deployment is 

required. All the changes are handled via a “values.yaml” file. This approach allows the user 
of the HELM chart to be agnostic to the details of the underlying implementation and know 
only of the values they are required to set during preparation for the installation. Additionally, 

the user can deploy multiple instances of an application either on the same or different 
premises, each one being differently configured.  

Therefore, in the case of IoT-NGIN, where the meta-architecture is quite complex and 

involves a number of different components and different partners require to manage their 

own instances, HELM proves a helpful tool to easily rollout new updates or keep track of 
different instances of the installations. 

 Integration phases and time-plan  

The IoT-NGIN integration plan has been presented in D6.1 [3] and suggests that the IoT-NGIN 
implementation would be established in 3 phases that would result in 3 respective integration 
activities. Each IoT-NGIN integrated platform release takes place prior to the end of each 

phase and is tested and validated by the end of each phase. As indicated by the Figure 10, 
the main target here is to provide the completed IoT-NGIN integrated framework by M30 

and proceed on deploying and testing the platform both in a Lab setting and on the various 
Living Labs. Thus, the final integrated version of the IoT-NGIN framework should be delivered 

through incremental upgrades of the IoT-NGIN developed components and their associated 
interfaces.   
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Figure 10 – IoT-NGIN phased approach. 

 IoT-NGIN Integrated Platform (1st version) 

One of the main objectives of this document is to describe the process followed in order to 

provide the 1st version of the IoT-NGIN integrated platform. Therefore, the basic prerequisite 
for this activity is to have the IoT-NGIN developed technical solutions’ source code uploaded 

in the project’s git repository (GitLab) following the project’s development guidelines. In brief, 
these guidelines include the adoption of modular programming for delivering containerised 

applications, the provision of adequate documentation both for the component’s 
functionality and within the source code, the definition (and description) of proper interfaces 
following standardised formats and finally the provision of the necessary configuration files.  

Then, the IoT-NGIN developers would need to utilise the provided CI/CD pipeline and deploy 

their components in the integration and testing Kubernetes cluster. The required steps and 

indicative examples for setting up the CI/CD pipeline are provided in section 2.1.2. The 
associated integration activities can also be performed individually in a bilateral format by 

the relevant partners. This is more convenient for small scale integration activities that can 
be preliminary performed in a local level and then proceed on deploying the now integrated 
and tested components in the project’s integration and testing infrastructure. The applied 

integration activities concern the interconnection activities between the components’ 
implemented interfaces.  

The components that comprise the IoT-NGIN framework are described in a tabulated format 

in Table 3. 

Table 3 – IoT-NGIN Framework components' list. 

IoT-NGIN WP components IoT-NGIN components 

WP2: Enhancing IoT Underlying 

Technology 
• Secure Edge Cloud execution framework  

• 5G Resource Management API 

• Slice & Orchestration Engine  

• 5G device management API  

• Network Controller API 

• TSN Bridge 
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• Device-to-Device communication (5G 

Coverage Extension) 

WP3: Enhancing IoT Intelligence • MLaaS 

• Online Learning Framework 

• Reinforcement Learning Framework 

• Privacy Preserving Federated Learning 

• PPFL API 

• Polyglot Model Sharing 

WP4: Enhancing IoT Tactile & 

Contextual Sensing/Actuating 
• IoT Device Discovery (Computer-vision, face) 

• IoT Device Discovery (Computer-vision, 

object) 

• IoT Device Discovery (Visual Light Positioning 

- VLP) 

• IoT Device Discovery (Ultra-Wide Band - UWB) 

• IoT Device Discovery (Code scanning) 

• IoT Device Indexing 

• IoT Devices Access Control 

• AR tools 

WP5: Enhancing IoT Cybersecurity & 

Data Privacy 
• GAN-based Data Generator 

• IoT Vulnerability Crawler 

• Malicious Attack Detector (MAD) 

• Moving Target Defense (MTD) Honeypot 

Framework 

• Decentralised Interledger Bridge 

• Privacy Preserving Self-Sovereign Identities 

(SSI) 

• Semantic Twins 

• SAREF ontologies 

WP6: IoT-NGIN Integration & 

Laboratory evaluation 
• Quorum Network 

• Keycloak server 

• UCs’ application logic enhancements 

• Installation scripts 

In section 2.2, Figure 5 indicates the integration status of the IoT-NGIN developed 

components. Hence, dashed lines in the figure indicate that integration activities have been 
at least at the stage of development/testing, but are still in progress, while continuous lines 

indicate that integration among the interacting components has been performed at a 
mature level with interfaces working or even with automated configuration and deployment 

completed. IoT-NGIN related integration information is described in detail in Annex 2 “IoT-
NGIN Integration roadmap”. 

Automated configuration and deployment are achieved by combining (sub-)component-

level Helm charts with custom installation scripts. The IoT-NGIN framework comprises a set of 
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components or microservices and each of them may be composed of a set of submodules. 
Helm charts for IoT-NGIN components and their submodules will be configured and deployed 
via custom installation bash scripts, which will be called by a single setup script for the 

complete IoT-NGIN framework.  

 

Figure 11 – Installation of IoT-NGIN cybersecurity tools through a single script. 

At the current stage, IoT-NGIN cybersecurity tools have been already packaged under single 

“Master” Helm Charts (chart.yaml) which include the charts of the individual IoT-NGIN 
components and their dependencies as sub-charts. Annex 3 presents these charts for a 

subset of the IoT-NGIN components. In addition, values.yaml files that adhere to each IoT-
NGIN namespace have been also created. The latter includes configuration settings that 
enable the IoT-NGIN components to be deployed in each defined namespace. One-click 

installation is possible through a single script, as depicted in Figure 11. 

Once the integration of all IoT-NGIN developed components will be finalised, in the following 

months of the project’s lifespan and in view of the finalised and integrated IoT-NGIN platform 
that will be delivered on M30, we plan to consolidate the individual HELM charts under a 
single setup script, which will enable automatic selective configuration and deployment of 

all developed technical solutions. The namespaces defined in the IoT-NGIN Kubernetes 
cluster are associated to each WP that the developed components belong to (e.g. iot-ngin-

wp6 etc.).  
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A key attribute of the HELM Chart organization is the fact that by including all the sub-charts 

as entries to a values.yaml file, and setting the enabled variable accordingly, we are able to 
select the components of the “Master” Helm chart that are going to be deployed. Therefore, 

as we proceed towards the final IoT-NGIN integrated framework, we would be able to 
configure the appropriate IoT-NGIN infrastructure accordingly and deploy it in the required 

Living Lab. Thus, despite the initial overhead needed to author the necessary HELM charts, 
following this approach would significantly ease the deployment and subsequently the 
adoption of the IoT-NGIN platform by the project’s Living Labs. 

An indicative example of the chart.yaml is presented below.  

apiVersion: The chart API version (required) 

name: The name of the chart (required) 

version: A SemVer 2 version (required) 

kubeVersion: A SemVer range of compatible Kubernetes versions (optional) 

description: A single-sentence description of this project (optional) 

type: The type of the chart (optional) 

keywords: 

  - A list of keywords about this project (optional) 

home: The URL of this projects home page (optional) 

sources: 

  - A list of URLs to source code for this project (optional) 

dependencies: # A list of the chart requirements (optional) 

  - name: The name of the chart (nginx) 

    version: The version of the chart ("1.2.3") 

    repository: (optional) The repository URL ("https://example.com/charts") or 

alias ("@repo-name") 

    condition: (optional) A yaml path that resolves to a boolean, used for 

enabling/disabling charts (e.g. subchart1.enabled ) 

    tags: # (optional) 

      - Tags can be used to group charts for enabling/disabling together 

    import-values: # (optional) 

      - ImportValues holds the mapping of source values to parent key to be 

imported. Each item can be a string or pair of child/parent sublist items. 

    alias: (optional) Alias to be used for the chart. Useful when you have to add 

the same chart multiple times 

maintainers: # (optional) 

  - name: The maintainers name (required for each maintainer) 

    email: The maintainers email (optional for each maintainer) 

    url: A URL for the maintainer (optional for each maintainer) 

icon: A URL to an SVG or PNG image to be used as an icon (optional). 

appVersion: The version of the app that this contains (optional). Needn't be 

SemVer. Quotes recommended. 

deprecated: Whether this chart is deprecated (optional, boolean) 

annotations: 

  example: A list of annotations keyed by name (optional). 

In addition, an initial IoT-NGIN setup script (shell script) has been considered to be authored 

in order to facilitate further the installation process of the IoT-NGIN platform. Here, the plan is 
to provide separate installation workflows associated to the specific IoT-NGIN platform 
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instantiation required by each Living Lab. Within this setup script the user among other is able 
to define e.g. the IPv4 address of the installation machine, the docker registry password, 
namespaces, the Kubernetes client type etc.  
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3 IoT-NGIN implementation for Living Lab Use 
Cases  

In this section, the planned IoT-NGIN implementation across the Living Lab use cases is 

described. Based on the living lab preparation for IoT-NGIN validation reported in D7.2 [22], 
in particular the technology alignment with the project’s developments and the sequence 
diagrams provided for each use case, the IoT-NGIN architecture instantiations are presented 

for each use case. These architecture instantiations also incorporate the application logic 
enhancements that are tailored to each LL specific UC needs. These business specific 

components which fall into the scope of WP6 are further elaborated, where relevant. 

3.1 Human-Centred Twin Smart Cities Living Lab  

The Human-Centred Twin Smart Cities Living Lab focuses on Jätkäsaari, which is a long and 

narrow peninsula in southern Helsinki. For vehicle traffic, Jätkäsaari has only two connections 
to the mainland: the root of the peninsula itself and a bridge near the outermost tip. This 

limited connectivity leads to regular traffic congestions as not only is the peninsula expected 
to eventually reach some 17.000 residents and 6.000 jobs, but it also already hosts a ferry 

harbour, where large ferries from Tallinn, Estonia arrive every 3 hours throughout the day. To 
help the passengers and locals move around, Jätkäsaari is serviced by three tramlines, but 
the numerous trucks and other vehicles arriving on the Ferries still create significant 

congestion. 

All three use cases UC1-3 in the Smart Cities Living Lab, therefore, aim at reducing traffic 

congestion in Jätkäsaari by focusing on different types of traffic: UC1 focuses on vehicle 
traffic, UC2 focuses on pedestrians both on the streets of Jätkäsaari and in the ferry terminal, 

and UC3 focuses on the co-commuting of the ferry passengers. 

 UC1 - Traffic Flow Prediction & Parking prediction 

This use case focuses on the vehicles in Jätkäsaari and neighboring areas. Of particular 
interest are the trucks arriving to and from the ferries as they create more noise and pollution 

than regular vehicles, but simply focusing on them alone will not be sufficient to resolve the 
congestion issues, so other vehicles, including the vehicles of people living and working in 
Jätkäsaari, will be considered. 

The main approach is to first collect sufficient information about the vehicle flows using 

different types of sensors (e.g. cameras, radars, lidars and under-the-street sensors) and then 

process the information using ML and simulation models to create the necessary situational 
awareness and predictions of traffic flows. This information is then utilised for optimizing the 

timing of the traffic lights in the area and on the route to the closest freeway to increase the 
traffic throughput in the critical directions as well as to advise the drivers on best routes and 
parking options. A key collaboration partner here is the Smart Junction projects, which is 

deploying additional traffic sensors in the area and developing the traffic light controlling 
solution. 
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Figure 12 – Architecture instantiation for UC1. 

The IoT-NGIN project contributes multiple components to improve and deploy the solution as 

shown in Figure 12. One area of interest is the easy deployment and management of the IoT 
devices. Here, IoT-NGIN is developing the Semantic Twin (ST) concept, which can be utilised 
to describe the device’s and its Digital Twin’s (DT’s) capabilities in an machine-readable 

manner. The Semantic Twin component builds on SAREF ontologies to ensure interoperability, 
on Self-Sovereign Identities (SSIs) to improve privacy, and on Distributed Ledger Technologies 

(DLTs) via the Decentralised Interledger Bridge (DIB) to enable an immutable shared history 
to further increase trustworthiness of the STs. The Installer app can then be utilised to help 

configure the STs and DTs of the installed devices in an easy-to-use and secure (enabled by 
the IoT Device Access Control component) manner. 
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The second focus for the IoT-NGIN components are the ML-based vehicle recognition and 

simulation models. Here, the MLaaS platform and federated ML components support the 
recognition of the IoT Device Discovery. 

The third focus area is the cybersecurity of the IoT devices, which is supported with the 

Vulnerability Crawler that relies on the IoT Device Access Control and Indexing components 

to scan the devices deployed in the area for potential vulnerabilities. 

 Business-specific components 

Four main business-specific functionalities can be identified in this use case as described in 

the following subsections. 

 Traffic simulation model  

The traffic simulation model utilises the information from the different sensors to build the 
situational awareness and predictions of the traffic in the area. 

 Traffic controllers 

The traffic controller utilises the traffic predictions from the simulation model to optimise the 

traffic flows in the critical directions by managing the timings of the traffic lights in the area, 
but it also makes the congestion information available to the different drivers’ applications 

and other information channels such as Traffic Announcements on car radios’ RDS systems 
so that drivers can better time and route their movements as well as find suitable parking slots 

faster to minimise unnecessary circulation. 

 Drivers’ application 

Drivers’ applications cover a wide range of existing application that the driver is likely to utilise 
in connection with travelling to or from Jätkäsaari. Examples include Google/Apple/Open 

Street Maps used for navigating, so providing better predictions of congestion information to 
these map services could help provide better routing information. Similarly, the ferry 
company’s (Tallink’s) app that is already used by many passengers for their tickets could also 

integrate traffic information to guide the drivers. Finally, parking apps used to pay for the 
parking services could also help find available parking spaces by utilizing the parking 

predictions. 

 Installers’ application 

Installer’s app is a new app prototype being developed in IoT-NGIN for helping the installer 
configure the Semantic and Digital Twins related to the IoT devices being installed and 

maintained. Each device has a sticker with a unique QR code that the app can then scan 
using the mobile device’s camera to easily and securely discover the Twins related to that 
device and to allow secure access for managing the information within the Twins. 

 UC2 - Crowd Management 

The Crowd Management use case is very similar to UC1 one except it focuses on managing 
pedestrians and public transit passengers on the streets of Jätkäsaari and ferry passengers in 

the harbour terminal.  
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The approach is, therefore, also nearly identical to the UC1: collect information using sensors 

such as cameras and Bluetooth beacon detectors and process it to create predictions of 
the movements of the crowds. Finally, different existing apps and other channels can, again, 

be used to disseminate useful information to the crowds and service providers such as taxis 
to help improve traffic flows. 

The IoT-NGIN components are, as shown in Figure 13, also used for identical purposes as in 

the UC1 detailed in the previous section. 

 

 

Figure 13 – Architecture instantiation for UC2. 

 Business-specific components 

Again, four main business-specific functionalities can be identified in this use case as 
described in the following subsections. 
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 Crowd simulation solutions 

Same as UC1 except for the crowds. 

 Crowd control model 

The crowd is controlled by changing the timings of the traffic lights for pedestrians but also, 

e.g., by providing the congestion predictions to related service providers such as taxis 
companies and e-scooter services to better match the available capacity to the need for 

rides. 

 Pedestrians’ application 

These, again, include different existing applications the crowds are likely to utilise. Examples 
include the different maps used for navigation and public transport information as well as 

the apps for using the public transport services including different MaaS apps. Also, the ferry 
company app can provide relevant advice to the crowds. 

 Installers’ application 

The app and its usage is identical to UC1. 

 UC3 - Co-commuting solutions based on social 
networks 

UC3 is designed to be built on top of the UC1 and UC2. The main goal of UC3 is utilising open 

data sets and citizen data to design accessible on-demand co-commuting platforms for 
solutions and enrich the awareness of the transportation needs via use of social networks. 

The approach of the use case includes harvesting data from the Twitter feed to the co-

commuting platform, performing analysis of the “tweets” for the demand prediction model, 
and disseminating the generated content to potential 3rd party applications, such as ride-

sharing apps, ferry company apps, scooter apps etc.  

The IoT-NGIN components shown on Figure 14 are, again, used for the same purposes as in 

the previous use-cases.  
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Figure 14 – Architecture instantiation for UC3. 

 Business-specific components 

Three main business-specific functionalities can be identified in this use case as described in 
the following subsections. 

 Co-commuting platform 

Social network data integration into the Co-commuting platform is considered a key enabler 

for this use case. Twitter is selected as an integration target due to its high utilisation in the 
tested environment, thus generating data with sufficient quality to estimate commuting 

demand. 

The Co-commuting platform builds on the Urban Open Platform, giving 3rd party 

organizations easy access to the co-commuting data. Urban Open Platform (UoP) is an 
Open Data platform developed as part of the FinEst project, is focused on collecting sensor 
data between cross-border cities, city systems, city infrastructure of private/public sector. In 

the context of UC3, UoP acts as the data processing layer for Co-commuting platform, 
performing such tasks as data integrations, Exchanging ML training data sets, 
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communicating with 3rd party applications, and generating high demand reminders 
between sub-systems. Such reminders are already used by taxi operators offering pre-
booking functionality. In addition to reminders data exchange between sub-systems includes 

routes of the passengers, commute times, trip features, and ride information.  

The listed extracted data is then processed by the Co-commuting platform, to therefore 

indicate potential demand to the ride-sharing applications. It is also expected that such 3rd 
party applications might benefit from the outputs by expanding their offering based on the 
demand, such as ferry organizations offering taxis as extra services. 

 Driver and pedestrian mobile application (3rd part applications) 

As stated in D7.2, the scope of the project does not include a ride-sharing service so the UC3 
will focus on the information flows coming from twitter feeds to demonstrate the potential 
benefit of the IoT-NGIN concept towards the applications of public transportation, ride-

sharing, harbor applications etc.  

As with the previous use-cases, this might again include different existing applications used 

by commuters. Such examples include ferry operators’ apps used for ticket sales, extra ferry 
services, checking the crowdedness in the harbor. Applications providing the rented scooters 

is another example, benefitting from predicting the demand to therefore provision the right 
number of scooters on the place. Lastly, taxi service apps are likely to be used by commuters, 
thus predicted demand allows proper allocation of assets to the place. 

3.2 Smart Agriculture Living Lab  

 UC4 - Crop diseases prediction. Smart irrigation and 
precision aerial spraying 

The “Crop diseases prediction. Smart irrigation and precision aerial spraying” use case aims 
at enhancing the Smart Farmer’s work related to the irrigation and spraying processes. 

Specifically, the IoT-NGIN tools are employed to  

• Improve the farmer’s awareness about the crop/field conditions, while exposing 

enhanced cyber-physical interaction to facilitate the irrigation process. This is 
achieved by presenting relevant data/metric and exposing advanced device 

discovery and access control capabilities to facilitate the farmer’s interaction with the 
monitoring/irrigation devices. 

• Maintain healthy crops, by decreasing the occurrence of crop diseases through 

advanced detection or prediction, while requiring less physical effort and rationalised 
investments. IoT-NGIN provides tools for effective training of Machine Learning models 
for crop disease prediction, which are then deployed on Unmanned Aerial Vehicles 

(UAVs) performing live predictions while flying over the Smart Farm.  

• Ensure protection of Smart Farm against cyber-attacks, which could affect individual 

farms or even regions, depending on the extent or the spread of such attacks. The 

Smart Farm’s cybersecurity relies on scanning for potential vulnerabilities and tracing 
potential attack patterns, as well as detecting potential attacks at the network level. 
In addition, the technical robustness of the ML models and operation is protected via 

ML-based attack detection against model and poisoning attacks, while ML models 
are securely executed in SEE. 
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On top of these, IoT-NGIN aims to reduce network overheads and increase resource usage 
efficiency by leveraging edge computing and Digital Twins in the Smart Farm. 

IoT-NGIN offers these capabilities through the architecture instantiation depicted in Figure 

15. As shown in the figure, network data are forwarded to IDI and dispatched to the IoT 
Vulnerability Crawler for detecting potential vulnerabilities, which are communicated to 

both IDI and MTD Network of Honeypots for deploying honeypots in the context of those 
vulnerabilities. However, Synelixis’ SynField [23] and UAVs are the main data sources for the 
UC, which provide monitoring data/metrics and images to IDI, protected by the IDAC 

component.  

The Smart Farmer that is close to a SynField device may access its data through the “Smart 

Agri app”. The app scans the SynField’s QR code and retrieves its ID through IDD QR. It then 
sends images of the device to “IDD - Computer Vision” to identify the device. This is 

performed via model serving through the MLaaS platform. If the device is recognised, it 
requests SynField’s data from IDI through IDAC, which performs access control, based on the 
requester’s identity and proximity to the device. If access is granted, the SynField data are 

presented in the app over SynField image in the form of AR objects. The user is also provided 
AR buttons to start or stop the irrigation on this device. 

In addition, the drone images are used to train the disease prediction model via Federated 

Learning (FL). This is initiated by an AI developer calling the PPFL API. Moreover, synthetic 

data of the “GAN-based IoT Attack Dataset Generator” are used to perform a data 
poisoning attack, which is detected by the “Malicious Attack Detector” (MAD). 

After training, free of attacks, the model is stored in MLaaS model storage and its deployment 

can be triggered by the AI developer through IDAC and IDI to the UAV. Upon reception of 
a new model, the UAV performs inference on the acquired images, which is the “Crop 

Disease Prediction” in the figure. 
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Figure 15 – Architecture instantiation for UC4. 

 Business-specific components 

In this section, the components identified specifically for the execution of UC4 are described. 

Specifically, the “Smart Agri Application” and “Crop Disease prediction” are such 
components. 

 Smart Agri application 

Τhe Smart Agri app provides the interface for the Smart Farmer to experience enhanced 

cyber-physical interactions with SynField devices in the context of introducing ambient 
intelligence in the Smart Farm. 
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(a) 

 
(b) 

Figure 16 – Login (a) and logout (b) options in the Smart Agri app. 
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(a) 

 
(b) 

Figure 17 – Scanning a QR code (a) and informing about successful scan result (b) in the Smart 

Agri app. 

  

The Smart Agri App has been developed as a React [24] web application, which interfaces 

with the IDD Code Scanning, IDD – Computer Vision and IDAC components. Indicative 
screens of the app are provided. The login and logout options are presented in the screens 
of Figure 16. This functionality relies on the Keycloak plugin of IDAC. Next, the screens 

supporting the QR scanning operation are presented in Figure 17 for a successful scan. This is 
supported by IDD – QR.  

Next, the IDD -Computer Vision functionality is triggered by the screen of Figure 18(a). In the 

second part of the same figure, the user is informed that access is denied and is prompted 

to move closer to the device. This indicates that the proximity constraints set for the requester 
and the device are not satisfied. Last, the (c) part of Figure 18 illustrates the current version 
of the screen after successful access. The data are SynField data of the requested device, 

which have been provided through IDI.  

In the next version of the Smart Agri app, the AR functionality will be incorporated for data 

presentation and device actuation. 
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(a) 

 
(b) 

 
(c) 

Figure 18 – Acquiring image for device recognition (a), screen of denying access due to proximity 

criterion not satisfied (b), and (c) SynField Data presentation when access is granted in the Smart 

Agri app. 

 Crop disease prediction 

The Crop Disease Prediction component leverages an AI service which is based on an ML 
model for recognition of Esca [25] disease in vineyards. In this section, the training process 

followed for the Convolutional Neural Network (CNN) model created for Esca disease 
recognition is described. Specifically, will be a breakdown of the dataset selection, the 

architecture of the CNN model, and the model's performance. 

Dataset Selection 

The dataset used is the ESCA dataset used in [26]. The dataset provides a set of RGB (Red, 

Green, Blue) images of grapevine leaves. The images consist of two different classes. The first 
class belongs to the grapevine leaves that are infected by the Esca disease and the second 

belongs to the healthy grapevine leaves. The dataset contains 1770 images in total where 
888 belong to the Esca class and the rest 882 images belong to the healthy class. To increase 
the size of the dataset M. Alessandrini et al. [26] suggest applying data augmentation to the 

images. Specifically, they used the original images and applied 14 different data 
augmentation techniques (e.g., horizontal flip, blur, saturation, brightness, etc.) to increase 

the amount of data. Therefore, after the data augmentation process, the final size of the 
dataset is 12,432 for the Esca class and 12,348 for the healthy class. 
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Model Architecture 

The model that was used for the training process is a CNN model. The CNN architecture 

consists of 5 Convolutional 2D layers followed by ReLu activation function and 5 2D Max 

Pooling with a 2 x 2 pool size. In the final stage, a flatten, two dense layers, with ReLu and 
softmax activation functions have been attached respectively to classify the provided input 

training images. Between the ReLu and softmax activation function also a dropout layer has 
been added. Figure 19 shows the model architecture with 80 x 45 as the input size of the 
images. At this point, it should be mentioned that for the model training α reduction to image 

resolution from 1280 x 720 to 80 x 45 was applied. The reduction of image resolution offers the 
opportunity to deploy the model to low-cost devices with low-resolution camera and 

reduced image size. Moreover, there is a trade-off when the resolution of the image 
decreases but the difference in the performance from 1280x70 to 80x45 resolution of the 

images in our case is about 4% accuracy. 

 

Figure 19 – Architecture of the CNN model. 

Model training and performance 
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Before the training process data split was carried out. From the dataset 60% was used for 

training, 15% for validation, and the rest 25% for testing.  shows information about the size of 
the dataset and the batch size. The model was trained on the NVIDIA TITAN X GPU (Graphics 

processing unit) with 32 GB RAM (Random-access memory) and the duration of the model 
training lasted about an hour. The number of epochs used to train the network is 50 for all the 

experiments with 32 batch size. 

Table 1 – Information about batch size and split of dataset. 

Epochs Batch size Total size Training dataset Testing dataset Valitation dataset  

50 32 24.780 14.868 6.195 3.717 

The accuracy of the model reached 0.9667 on the test data. Figure 20 visualises the 

performance of the model during every 5 epochs. 

 

Figure 20 – Performance of the model. 

Since the training model process is completed, with satisfactory results, an inference script is 
created that receives a single image as input or a directory of images. Image preprocessing, 

such as converting images to tensors, is applied to the images, and afterward the script loads 
the trained model and predicts if the grapevine leaves of the image are healthy or not. 

 UC5 - Sensor aided crop harvesting 

UC5 - Sensor aided crop harvesting aims to enhance the harvesting process in Smart Farms. 

Specifically, AGLVs will alleviate the farmers from the heavyweight task of carrying full crates, 
while ensuring efficient and safe movement of them within the farm, effectively avoiding 

obstacles, like trees, or humans which may be in the farm. 

The operation of the AGLV leverages the IoT-NGIN capabilities, as depicted in Figure 21. The 

data sources here are the sensors of the AGLV, e.g., camera, ultrasonic sensor, etc. Acquired 
data, that are used for training an ML model for object detection, are stored at the IDI 
component residing at the edge. 

An AI developer may trigger model deployment through the MLaaS platform, which is then 

sent on the AGLV through IDI, after passing access controls by IDAC. Upon reception of the 
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new model, the AGLV stops the already executed one and runs the new model. Then, it uses 
the model to detect obstacles and identify potential collisions while moving in the farm. 

 

Figure 21 – Architecture instantiation for UC5. 

 Business-specific components 

UC5 includes two business specific components, which are required for performing the pilot 
activities. First, a “Smart Agri robot app” is used to manage and present information about 

the AGLV, in order to facilitate testing. Moreover, the “Collision Avoidance” service is 
mandatory to identify potential collisions, based on the detected objects. 
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 Smart Agri robot application 

The Smart Agri robot application is mainly aimed for supporting the test activities. It provides 

options to the user to manually control the AGLV wheels, as well as set device configurations 
and receive monitoring information at the test stages. App screenshots have been already 

provided in D7.2 for the presentation of the preparation activities for UC5. 

 Collision avoidance  

As the goal of UC5 is to deliver an Automated Guided Land Vehicle (AGLV), which is able to 
move autonomously within an orchard, carrying the harvested crops, the Collision 

Avoidance service is the main driver for this use case. The service is based on an ML model 
for object detection, which has been trained and stored in the MLaaS model storage. The 
model per se has been developed within WP3 and will be further enhanced with the 

availability of datasets from the pilot site. The Collision Avoidance service is intended to run 
on the device (AGLV), together with the trained model. Based on the ML predictions 

regarding the detection of humans or trees, the Collision Avoidance service will trigger 
control actions on the AGLV, leading to a change in the AGLV’s trajectory, in order to avoid 
the potential collision, but also to be able to reach the set destination. 

 

Figure 22 – Collision avoidance service for UC5. 

The following operations are carried out by the Collision Avoidance service, leveraging on 

the Robot Operating System (ROS) [27]: 

• Receive and deploy ML model 

• Receive images from AGLV’s camera 

• Detect objects  

• Identify potential collision, based on ML object detection and SLAM 

• Send control commands to the AGLV’s wheels 

As a first step of the development of the Collision Avoidance service, the retrieval of ML 
models stored in MLaaS platform (at cloud resources) has been already completed and 

validated on the AGLV hardware. Following the logic of IoT-edge-cloud integration 
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presented in section 2.2.1, the ML model URL has been communicated to the AGLV 
hardware through the Digital Twin. 

First, the AGLV has been registered in the Devices of the Device Indexing component, by 

issuing a POST request to IoT Agent of IDI at the endpoint URL http://{iot-agent}/iot/devices, 
with the following body. 

{ 

   "devices": [ 

      { 

         "device_id": "jetson6", 

         "entity_name": "urn:ngsi-ld:Jetson:4", 

         "entity_type": "Jetson", 

         "endpoint": "xxxx", 

         "protocol": "IoTA-JSON", 

         "transport": "HTTP", 

         "commands": [ 

            { 

               "name": "url", 

               "type": "command" 

            } 

         ] 

      } 

   ] 

} 

Next, the URL of the ML model, stored in MLaaS Minio service, is communicated to the AGLV 

through the IoT Agent. For the purposes of this test, a Minio installation in Synelixis premises 

has been used. The URL is provided to the AGLV by issuing a POST request at the IDI service 
accessible at the endpoint URL https://{orion-url}/v2/op/update, with the following request 

body. 

{ 

    "actionType": "update", 

    "entities": [ 

        { 

            "type": "Jetson", 

            "id": "urn:ngsi-ld:Jetson:4", 

            "url": { 

                "type": "command", 

                "value": "minio/testminio/test.txt" 

            } 

        } 

    ] 

} 

In the following, the logic developed at the AGLV side for receiving updates like the above 

is illustrated via screen captures. A python script is initiated in Figure 23 which executes the 
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docker container of the DT API, implemented as a FLASK app. The docker container 
execution is shown in Figure 24. 

 

Figure 23 – Initiation of DT API at the AGLV hardware. 

 

Figure 24 – Execution of Docker container of the DT API at the AGLV hardware.  

With the DT API running, it is now possible to receive updates from the IDI component. The 
request providing the URL of a new ML model has been received, as shown in Figure 25. Then, 

the DT API retrieves the model from the provided URL and deploys it locally. The last step is 
shown in Figure 26. 

 

Figure 25 – URL of ML model for object detection has been received by DT API at the AGLV 

hardware. 
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Figure 26 – ML model for object detection has been deployed at the AGLV hardware. 

3.3 Industry 4.0 Living Lab 

 UC6 - Human-centred safety in a self-aware indoor 
factory environment  

This UC aims to improve the efficiency of processes within Industry 4.0 in relation to: 

• The autonomous movement of Automated Guided Vehicles (AGVs). AGVs should be 

able to move between source and destination safely, avoiding collisions with human 
workers or Human Driven Vehicles (HDV) present at the industry facilities while AGVs 

are moving, but also avoiding falling of containers during emergency braking. 

• Enhancing the presentation of information related to such AGVs, providing 

Augmented Reality (AR) interfaces which will provide information about AGVs, HDV 
and humans, as well as about potential collisions. 

IoT-NGIN contributes to the concept of Ambient Intelligence (AmI) by adopting and 
developing a set of components and modules, enablers henceforth, that strategically 

integrated aim at providing innovative beyond state-of-the-art solutions. In the context of 
the Industry 4.0 Living Lab, and its associated “Human-centered safety in a self-aware indoor 

factory environment” Use Case, four types of enablers can be highlighted. 

IoT Device Discovery (IDD): These include two main categories of methods using specific 

sensors, hardware setups and software solutions to discover and detect specific IoT sensors 

or elements: (i) visual methods, like advanced computer vision based recognition methods 
from external cameras and based on trained models for specific dynamic objects (e.g., 

vehicles, persons, carts, etc.), simpler methods from built-in cameras on smartphones or 
Augmented Reality (AR) headsets for static visual targets, and even methods based on Visual 
Light Positioning (VLP) using cameras and LED lamps; and (ii) non-visual methods, based on 

Ultra Wide Band (UWB) trilateration using beacons and tags.     

IoT Device Indexing (IDI): This module allows registering and retrieving information (e.g., 

characteristics, status, etc.) related to the target sensors or elements being detected or to 
be detected. 

IoT Device Access Control (IDAC): This module can grant or reject access to the information 

registered in the IDI module, based on different criteria (e.g., authentication, roles, proximity, 
etc.). 

IoT AR Service (IAR): This service interfaces with the IDI module to get the information of 

detected sensors. It also implements methods to present the obtained information and 
interaction modalities in an intuitive and meaningful manner, minimizing the cognitive load 

and attention split. 
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By integrating these enablers and leveraging their distinct but complementary features, two 

business-specific components have been envisioned to meet the requirements of this use 
case, namely the “Collision Detection” and the “Device app”. 

IoT-NGIN supports UC6 through the architecture instantiation of Figure 27. This UC focuses on 

three variants of IDD, namely the VLP, the UWB and the Computer Vision variant for the 

recognition of objects and other entities such as humans, which are registered in IDI, after 
IDAC controls, The ML model for the Computer Vision variant is provided through the MLaaS 
platform to IDD, which then uses this model to perform predictions related to the detection 

of objects. The output of all three IDD variants is used as input to the Collision Detection 
component. Moreover, the AR functionality is provided to the user via the “Device app”, 

running on the worker’s mobile phone, tablet or headset. 

 

Figure 27 – Architecture instantiation for UC6. 

 Business-specific components 

In the following subsections, the business specific components for UC6 are briefly presented. 

 Device application 

Device application interfaces the IDI and IDAC modules in order to detect and get 
information from specific sensors or elements. In some cases, it can also implement specific 
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IDD methods, like detection of visual targets using an AR camera or QR code scanning. Such 
features for information presentation and interaction are provided by an instance of the IAR 
component running on the device application. The information can be provided just once 

under request, periodically, or in an event-driven manner, depending on the needs and/or 
preferences, and it is presented as an AR overlay (ideally close to the detected element), 

such that attention can still be kept on the explored real environment. In addition, the device 
application can also incorporate the required interfaces to actuate target sensors, via the 
IDI and IDAC modules. 

 Collision detection 

All IDD methods provide the sensors’ / elements’ positions, even in indoor scenarios where 
GPS coverage is not available, by relying on a relating coordinates system. In the same 
manner, it is also possible to obtain the position of the AR device, running the Device 

Application component, by means of: (i) attaching an UWB tag to it; (ii) being detected by 
a computer vision-based method (e.g., as it will be used by a person); (iii) including an own 

ad-hoc positioning system; or combinations thereof. With the information especially, 
positions) from all detected sensors / elements, it is then possible to implement a Collision 

Detection module to provide: (i) a comprehensive situational awareness of the sensors / 
elements being active or detected environment (i.e. the factory in this UC), by e.g. displaying 
their position on a map, even by detecting those elements / sensors outside the user’s field 

of view (e.g., behind walls), and potentially filtered by configurable distance thresholds; and 
(ii) provide alarms, and potentially actuate sensors (e.g., stop a moving element) in case that 

proximity thresholds are exceeded between specific types of sensors (e.g., two AGVs, an 
AGV and a person, etc.). Such information and features provided by Collision Detection thus 

contribute to an enhanced safety in and Industry 4.0 environments. 

It is important to remark that the particular implementation for UC6 consists of deploying and 

running the IAR service and Collision Detection module as part of the Device application 

component. However, they have been described in separate subsections given that 
specially the Collision Detection module could be deployed and run e.g., on the Edge and 

interface other presentation and interaction methods (e.g., a 2D dashboard), depending on 
the needs and/or resources available for each particular implementation. 

 UC7 - Human-centred augmented reality assisted 
build-to-order assembly  

The “Human-centred augmented reality assisted build-to-order assembly” use case (UC7) in 
ABB’s facilities involves the assembly and wiring of ABB’s drive cabinet products. The aim of 

this use case is to facilitate the assembly and wiring process of ABB’s drive cabinet products 
through: 

• 3D digital cabinet model for precise cabinet builds 

• detailed, up-to-date documentation for all components and wiring routes, available 

at the physical site 

• advanced human-machine (AR) interfaces to visualise assembly instructions. 

IoT-NGIN hosts this use case through the architecture depicted in Figure 28. The 3D cabinet 
models are registered and retrieved via the IDI component, after passing authorization 

checks via the IDAC component. The models are retrieved by the AR service, which provides 
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the appropriate guidance via AR tools. The information is visualised at the Device app at the 
assembly site. 

 

Figure 28 – Architecture instantiation for UC7. 

 Business-specific components 

 Device application 

Digital models of the cabinets are developed which contain both mechanical and 

electronic CAD data. These digital models are used to visualise the different assembly phases 
to the assembly worker in the proprietary Smart Wiring™ software created by EPLAN. The 
models are also used to create an AR application for training, sales, and/or maintenance 

purposes. AR device application for HoloLens2/Mobile includes the following features: QR 
code scanning, tracking and model interactions.  

Digital models and AR solutions has several benefits. Training of assembly works gets easier 
and more effective, productivity and quality of assembly work will increase and use of 

material can be reduced, for example.  
The use case will take place at ABB’s Helsinki factory site in the cabinet production facility. 
The main UC component is the digital model created by combining MCAD data (generated 

by Creo™ software) and ECAD data (generated by EPLAN’s software suite). The digital 
model is then used to visualise assembly steps in EPLAN’s Smart Wiring™ software, and to 

create an AR application utilizing the repository of software tools provided by T4.4.  
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 UC8 - Digital powertrain and condition monitoring 

UC8 “Digital powertrain and condition monitoring” aims to leverage IoT-devices, 5G 

telecommunication and cloud platforms to utilise novel ideas in the area of data 
engineering, analytics and condition monitoring. Specifically, these will be based on 

powertrain application data, i.e., data gathered from equipment involved in transforming 
energy provided by a power source into useful work. 

In IoT-NGIN, UC8 is materialised through the architecture presented in Figure 29. Device 

registration and updates are supported by IDI and IDAC components. Last, but not least, the 
powertrain data are made discoverable and available through the Semantic Twin for the 

powertrain devices.   

 

Figure 29 – Architecture instantiation for UC8. 

 Business-specific components 

 Condition monitoring software 

In the context of this use case, a powertrain includes an AC motor and a variable speed 
drive responsible for its control. The goal in this use case is to leverage IoT-devices, 5G 

telecommunication and cloud platforms to utilise novel ideas in the area of data 
engineering, analytics and condition monitoring. The goal is to create a holistic view of the 

condition and status of each powertrain, especially the drive unit and the motor itself. Instead 
of using a traditional data-siloed site-specific approach, a decentralised and federated 
approach is taken, leveraging the IoT-NGIN paradigm and technologies. 
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A condition monitoring application needs to be able to access the sensor data gathered 

from powertrains in order to produce analytics results that can be used to monitor the 
condition of the devices. 

The sensors and devices themselves are not directly capable of running any additional 

software. Thus, data is gathered to a RaspberryPi or Cassia gateway using available device-

specific protocols (OPC DA/UA, plain Transmission Control Protocol (TCP) byte stream, MQTT, 
File Transfer Protocol (FTP)). The data can then be accessed from the gateway using any 
protocol of choice. Currently, the gateway device is running Node-RED which can be used 

to easily create endpoints of preferred protocol/format e.g., MQTT. 

The various devices are connected to the gateway using a private 4G network and 

additional 4G capable gateway modems are used where needed (most sensor devices do 
not have built-in 4G/5G capabilities). 

Twin description documents are created for the powertrains and sensors of the use case. The 

documents are used in application development, abstracting the underlying protocols used 
for a specific powertrain setup. More details about the solution are available in the 

deliverable D5.4. 

3.4 Smart Energy Living Lab  

 UC9 Move from reacting to acting in smart grid 
monitoring and control  

UC9 "Move from reacting to acting in smart grid monitoring and control” aims at monitoring 

and optimizing the grid operation. Specifically, the IoT-NGIN tools are employed to support 
the DSO towards the following: 

• Forecasting of energy generation and consumption for the day ahead 

• Optimise the grid operation, suggesting consumption pattern adaptation to avoid 

over- or under-voltage grid situations. 

• Integrate Demand Response capability. 

IoT-NGIN offers these capabilities through the architecture instantiation depicted in Figure 
30. As shown in the figure, network data are forwarded to IDI and dispatched to both the IoT 
Vulnerability Crawler and the Malicious Attack Detector (MAD). The former scans for 

potential vulnerabilities, which are communicated to IDI as vulnerability reports, while the 
latter performs anomaly detection to identify potential attacks on the network level. Energy 

generation and consumption forecasting rely on ML models trained in the MLaaS platform, 
leveraging the Online Learning framework for training. Data coming from grid IoT devices 

are used as input for both the training and the inference processes of these services. Last, 
but not least, UC9 addresses data privacy and sovereignty, integrating the Semantic Twin 
and SSIs for facilitating device discoverability. 
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Figure 30 – Architecture instantiation for UC9. 

 Business-specific components 

In the following subsections, the business specific components for UC9 are presented. 

 DSO dashboard 

DSO dashboard is a web platform developed by ENG in which the historical and real-time 
data of the monitored smart meters will be shown as well as the main DSO outcomes, namely: 

- Self consumption rate (%) 

- Self sufficiency rate (%) 
- Reverser power flow (kWh) 

- Flexible energy shifted (kWh) 
- Voltage issues (#) 

- RES used for EV charging (%) 

Furthermore, DSO dashboard is developed to host the Generation and Consumption 

Forecasting service, together with the Grid Operation Optimization service, and Demand 
Response marketplace API. 
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 Generation and consumption forecasting for DSO 

In the context of the Smart Energy LL UC9 “Move from Reacting to Acting in Smart Grid 

Monitoring” forecasting services are required, in particular, the Power Generation 
Forecasting and the Power Consumption Forecasting. These services predict the behaviour 

of certain parameters of the electric grid. The grid includes metering devices to measure 
such parameters like the electric power, voltage or current, among others, in distinct nodes 
of the grid and publish them all in a MQTT broker. 

Power Generation Forecasting and Power Consumption Forecasting services have been 

designed, implemented and tested in both UC9 as a joint collaboration between WP6 T6.2 

and WP3 T3.2, by leveraging the MLaaS Online Learning framework. They have been 
integrated as part of the WP3 MLaaS platform and its technical details preliminary reported 
in D3.3. Currently they are being integrated into the Smart Energy dashboard.  

These forecasting services are subscribed to the MQTT broker topics where grid nodes are 

publishing power (generated, consumed) data. Once incoming data is received, it is pre-

processed, the forecasting DL model is retrained, and a new prediction for next 24-26 hours 
is published back on the topic. 

Since the M23 release of these forecasting services (reported in D3.3) some improvements 

have been implemented in the forecasting model training and prediction process, including: 

• date/time frames (days of week) have been added to the training data set as new 

features to improve the detection of weekly variability in the prediction process for 

power generation and consumption,  

• weather conditions at the electric grid location have been added to the training data 

set as new features to improve the detection of climate-driven consumer behaviour 

in the prediction process for power generation and consumption, 

• the online learning framework these forecasting services leverage on offers a new 

feature that shows explainable AI (XAI) which offers explanations on the way training 
set features influence the performance on predictions. Preliminary results show a 

memory effect on the training set, whereby it is shown recent metrics have stronger 
influence on the prediction than metrics collected hours before. 

Borrowed from D3.3, Figure 31 shows the power generation forecasting for UC9. 
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Figure 31 – Forecasting for power generation forecasting of UC9. 

3.4.1.1.2.1 Grid Optimization 

Smart Energy LL UC9 “Move from Reacting to Acting in Smart Grid Monitoring” requires the 

Grid Operation Optimization service. This service is being designed and implemented by a 
joint collaboration between WP3 T3.2 and WP6 T6.2. In the following we will provide a detailed 

specification of the Grid Operation Optimization scenario for UC9. 

The Smart Energy LL uses an electric grid described in Figure 32. 

 

Figure 32 – Electric grid for Smart Energy LL. 

The electric grid consists of 14 buses, one connected with the primary substation (NP0008-

000) and the others connected with secondary substations. The primary substation injects 

main power to the grid, while the secondary ones provide power service to users, who may 

act as consumers, producers or prosumers. Each secondary substation offers power to the 

grid regulated by a contract for domestic and industrial users. 

In this scenario the optimization process is specified by the main reinforcement learning 

entities, namely: 

Agents 

Agents, as entities that can introduce changes in the scenario environment through the 

application of actions, are the domestic and industrial consumers. These agents can modify 

their consumption behaviour by switching their peaks of higher consumption to other time 
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slots. This can be done by reducing/increasing their power consumption in a certain 

percentage during time frames of high/small consumption. 

States 

States of the environment can be specified for the agents (I.e., the consumers) and the 

electric grid. 

Consumers’ states: the consumer states are a continuous of the power consumed over a 

day. In can be discretised on a range from minimum to maximum consumption, in steps of 

5% for instance. 

Electric grid (EG) states: the EG can transition through the following states (as described in 

D3.3): 

• EG shows disturbances, 

• EG does not show disturbances 

The main disturbances EG can show are: 

• Overloads: the power flowing in the transformers is greater than the rated power, 

• Over-voltages: the voltage at a node is more than 1.1 times the nominal voltage, 

• Under-voltage: the voltage at a node is less than 0.9 times the rated voltage. 

Under these conditions the network can face serious consequences such as the damage of 

certain components, so circuit breakers must be opened to prevent this situation. UC9 

considers over-voltages and under-voltages only, as there are no sensors to monitor the 

transformers or lines. 

Actions 

The possible actions taken by agents, that is, the domestic and industrial consumers are those 

that modify their consumption behaviour during the day time, concretely:  

• Increase power consumption at time slot T by percentage P 

• Decrease power consumption at time slot T by percentage P 

P can be taken from a set of percentages [1%, 3%, 5%, 10, 15%] for example. T can be a 

discretization of the daytime [24 hours discretised in slots of 30 min] for example.  

Rewards 

For the electric grid, as described in D3.3, there are different optimization objectives, with 

associated rewards: 

• Self-consumption ratio (SCR), defined as the ratio of the portion of the photovoltaic 

power-voltage (PV) production consumed by the loads over the produced energy 
(Ep) of the PV plant. It ranges between 0 % and 100 %. The optimization objective is to 

maximise self-consumption. 
o Positive reward +R1 if the self-consumption increases. R1 could be computed 

as proportional to the increment.  
o Negative reward −R1 if the self-consumption decreases. R1 could be 

computed as proportional to the decrement. 

• Self-sufficiency ratio (SSR), defined as the portion of energy produced that has been 

consumed, out of the total energy consumed by the utility, i.e., the absorbed energy 
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(Ea) and the self-consumed energy. It ranges between 0 % and 100 %. The optimization 
objective is to maximise self-sufficiency. 

o Positive reward +R2 if the self-sufficiency increases. R2 could be computed as 

proportional to the increment.  
o Negative reward −R2 if the self-sufficiency decreases. R2 could be computed 

as proportional to the decrement. 

• Power losses, defined as the dissipated energy across the EG. It is computed by 

summing over the segments of the EG of the dissipated energy by Joule effect. The 

optimization objective is to minimise power losses.  
o Positive reward +R3 if the power losses decrease. R3 could be computed as 

proportional to the decrement.  
o Negative reward −R3 if the power losses increase. R3 could be computed as 

proportional to the increment. 

• Disturbances: EG should not show disturbances. High negative reward is expected if 

EG shows them. A better analysis of the EG disturbances is required to include this 
factor in the Reinforcement Learning (RL)-based optimization control. 

 

The total reward RT in a single optimization step, starting from state s∈S , selecting an action 
a∈A  , and transitioning to a new state s′∈S can be computed as a linear function of previously 

mentioned individual rewards: 

RT = w1R1+w2R2+w3R3+fdist 

where wi are normalised weights defined as hyperparameters of the RL model, and the 

function fdist will compute the reward associated with the EG disturbances. 

 

Based on the above-described scenario and the reinforcement entities required, the Grid 

Optimization service aims at optimizing the consumers’ demand, as a demand site 

management service that optimises the grid behavior. The behavior is optimised by 

maximizing the rewards, that is: 

• Maximizing the grid SCR and SSR, 

• Minimizing the grid power loss, 

• Discarding the occurrence of grid disturbances. 

A RL-based optimization service requires a grid simulator that can: 

• Simulate the consumer’s power consumption behavior, accepting actions to 

increase/decrease that consumption of specific day time frames, 

• Simulate the grid behavior, after modifying the consumers behavior for a particular 

substation node, and return the observe state of the grid from where the RL-based 
optimization service can compute the grid SCR, SSR, power loss and occurrences of 

disturbances. 

Currently, this electric grid simulator is under development. It will be used to train the RL-based 
optimization service, which will be released by M30 and integrated within the Smart Energy 

LL dashboard. 
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 Demand Response marketplace API (for DSO) 

Demand Response (DR) marketplace API enables P2P energy trading between DSO and 

energy users in an automated, decentralised and flexible way using Ethereum smart 
contracts; in particular DSO will be able to create a DR auction-based request (Figure 33), 

specifying when, where and how much energy flexibility have to be provided to improve 
power quality in its distribution grid. 

 

Figure 33 – DR request creation. 

Figure 34 shows how an auction takes place using SOFIE [28] Marketplace component. First, 
the party wishing to sell something (Manager) creates a new auction, after which the 

potential buyers can submit their bids. Once the bidding time concludes, the Manager closes 
the auction and decides the winner. The winning bid can be the highest or the lowest 

depending on the type of auction as the Marketplace component supports different pricing 
models. The winner then pays for the item and the Manager delivers the item. Finally, the 

winner confirms successful reception of the item, thus creating a complete audit trail of the 
auction event. At any time, anyone with access to the Marketplace (Marketplace can be 
public or limited to members only) can view and audit the status of the Marketplace. 
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Figure 34 – Auction flow using SOFIE Marketplace component. 

 UC10 Driver-friendly dispatchable EV charging  

The Driver-friendly dispatchable EV charging use case (UC10) aims at facilitating the 
integration of EVs into the grid and leveraging those asset’s flexibility potential for responding 

to grid stabilization motives. 

IoT-NGIN supports UC10 through the architecture depicted in Figure 35. Here, as well, network 

data feed vulnerability scanning and ML-based attack detection to protect the IT energy 
infrastructure from potential cyberattacks. Moreover, energy generation and consumption 
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forecasting for the DSO relies, as in UC9, on the MLaaS platform, with training taking place in 
the Online Learning framework.  

In order to leverage the charging stations’ flexibility, monitoring data are forwarded to IDI, 

creating a Digital Twin at the edge. Such data feed the CPO dashboard which presents 
energy/financial efficiency information per charging station to CPOs. Moreover, EV users 

may visualise on-board diagnostics data related to their EV. EV users may also access 
charging station information through advanced interfaces, which present this information 
through AR objects. This also requires that the charging station is recognised through ML 

models offered via the MLaaS platform. 

UC10 integrates a Demand Response Marketplace API for CPO, which ensures the reliability 

of the transactions through immutable storage of DR campaign info, supported by the 
“Decentralised Interledger Bridge”, protected via SSI technologies. 

 

Figure 35 – Architecture instantiation for UC10. 

 Business-specific components 

In the following subsections, the business specific components for UC10 are presented. 
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 CPO Dashboard 

The CPO dashboard, presented in Figure 36, is a web platform developed by EMOT in which 

the historical and real-time data of the monitored charging stations (Figure 37) will be shown 
as well as the main CPO outcomes, namely: 

• Renewable energy usage for EV charging (kWh, %); 

• Money saved participating in DR campaign (€); 

• CO2 emissions avoided (kg). 

 

Figure 36 – CPO Dashboard. 

 

Figure 37 – Charging Station data. 
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Furthermore, the CPO dashboard is developed to host EV User Application, EV Flexibility 

Forecasting service and Demand Response marketplace API. 

 EV user application 

The CPO dashboard is developed to host electric vehicle users in order to aggregate 
sufficient users for DR campaigns and provide energy flexibility to DSO, so as to balance the 
grid, increase the use of renewable energy and reduce the cost of EV charging.  

 

Figure 38 – Dashboard User Login 

The CPO dashboard is enabled for electric vehicle users’ registration (Figure 38), associating 

on-board diagnostic device (OBD) to each electric vehicle users (Figure 39); OBD is an IoT 
component to collect real-time data from the electric vehicle and send data to the server 

utilizing a TCP/IP communication (Figure 40).  
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Figure 39 – EV User Dashboard. 

Each EV user is enabled to watch on the dashboard historical and real-time data collected 

by OBD, as shown in Figure 40. 

 

Figure 40 – EV data. 

 Generation and consumption forecasting (for DSO) 

In the context of the Smart Energy UC10 “Control, and Driver-friendly dispatchable EV 

charging” forecasting services are required, in particular, the Power Generation Forecasting, 
the Power Consumption Forecasting and the Energy Demand Forecasting. These services 

predict the behaviour of certain parameters of the electric grid and EV chargers.  
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Power Generation Forecasting and Power Consumption Forecasting services have been 

designed, implemented and tested in UC10 as a joint collaboration between WP6 T6.2 and 
WP3 T3.2, by leveraging the MLaaS Online Learning framework. They have been integrated 

as part of the WP3 MLaaS platform and its technical details preliminary reported in D3.3. 
Currently they are being integrated into the Smart Energy dashboard. Energy Demand 

Forecasting service will be designed, implemented and texted in next development sprint 
and released in M30 version of the MLaaS platform. 

Borrowed from D3.3, Figure 41 shows the power generation forecasting UC10. 

 

Figure 41 – Forecasting for power generation forecasting of UC10. 

 EV flexibility forecast 

Smart Energy LL UC10 “Control, and Driver-friendly dispatchable EV charging” requires the 

Grid Operation Optimization service. This service is being designed and implemented by a 
joint collaboration between WP3 T2.2 and WP6 T6.2. A preliminary specification of the UC10 

scenario for electric chargers and grid optimization was reported in D3.3. This document also 
describes a range of potential baseline solutions for the implementation of this Grid 
Operation Optimization service, based on AI reinforcement learning algorithms and libraries. 

As for UC9, simulators for this scenario are required to train a RL-based optimization services. 

Both simulators for the EG and EV chargers are under discussion between WP3 and WP6 

teams and under designed and implementation. They will be used to train the RL-based 
optimization service, which will be released by M30 and integrated within the Smart Energy 

LL dashboard. 

Finally, EV flexibility provision forecasting is developed by leveraging the MLaaS Online 

Learning framework as for generation and consumption forecasting, focusing on SoC (state 

of charge) data collected by electric vehicles. 

 Demand Response marketplace API (for CPO) 

Demand Response (DR) marketplace API enables P2P energy trading between CPO and 
DSO in an automated, decentralised and flexible way using Ethereum smart contracts; in 
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particular CPO will be able to provide an offer to DR auction created by DSO. Once the 
bidding time concludes, DSO will close the auction and decide the winner. The winning bid 
will be the lowest, since DSO is interested in receiving energy flexibility provision service at the 

lowest price. After the energy flexibility has been supplied, it is confirmed by deployed smart 
meters and payment is immediately issued. Lastly, a complete audit trail of the auction event 

is provided and, at any time, anyone can view and audit the DR campaign status. 
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4 Implementation and testing the 
performance of 5G as the communications 
network for IoT-NGIN use cases  

In this section, we describe: 

• How we have completed the test series of the latency performance of live 5G in a 

laboratory environment supporting the communication of synthetic data streams 

representative of project use cases. Data streams and traffic patterns of project use 
cases were presented in D6.1. Since preparing D6.1, we have been able to analyse 

and test further use cases in order to complete the planned set of synthetic data tests 
proposed in D6.1. In this deliverable, we present tests with data streams of seven 

project use cases which cover all four vertical areas – smart agriculture, smart cities, 
smart manufacturing and smart energy. The tests with synthetic data use a range of 
protocols and traffic characteristics, such as protocols and message periods. 

• Results of a new series of tests investigating an advanced 5G feature prototype for 

prioritizing and pre-scheduling uplink data and potentially improving network 
performance for IoT-NGIN use case data streams.  

• Results of tests of the performance of a live 5G in a laboratory environment supporting 

the communication required by the edgePMU hardware. The edgePMU device 

generates high loads of data typical of smart energy use cases. 

• TSN tests on CMC laboratory based on 5G Core connected to Analog Devices off 

the shelf TSN switches to validate they get in sync.  

4.1 5G latency performance tests of project use 

cases  

In this subsection, we describe the laboratory infrastructure used and the test results obtained 

in our sets of tests on: 

• Live 5G in a laboratory environment supporting the communication of synthetic data 

streams representative of project use cases, and 

• An advanced 5G feature prototype for prioritizing and pre-scheduling uplink data 

and potentially improving latency performance for IoT-NGIN use case data streams. 

As we used the same infrastructure and test methodology for both sets of tests, we provide 
the description of the test infrastructure used in Section 4.1.1 below.  

In Section 4.1.2, we provide the description and the results of the test series of a live 5G in a 

laboratory environment supporting the communication of synthetic data streams 

representative of project use cases. 

In Section 4.1.3 we provide the description and the results of the test series of an advanced 

5G feature prototype for prioritizing and pre-scheduling uplink data and potentially 

improving network performance for IoT-NGIN use case data streams. 

In Section 4.1.4, we provide a conclusion of the subsection. 
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 Description of 5G laboratory infrastructure and the 
test methodology 

Objective  

To verify the performance of 5G networks supporting IoT-NGIN use cases, one-way radio link 

latencies (time delay between the sending and the arrival of a message) were measured 
and compared for a range of message periods (time interval between the sending of 

consequent messages).   

5G test infrastructure  

For the performance tests, a 5G infrastructure was designed and configured in a laboratory 

environment. The infrastructure comprised a 5G standalone mobile network, hosting an edge 
cloud, a use case data simulator deployed on a PC, and a 5G radio modem connected to 

the PC. To record the latencies of transmitted data streams, the tool ‘tcpdump’ [29] was 
used at the data simulator and edge cloud side. The timestamps of the sent and received 

message were extracted from the recordings of tcpdump. Then, the latency was computed 
by subtracting the times of the received and the sent message. Both uplink and downlink 
traffic were traced so that the measurement of both one-way latencies was performed 

separately. By using NTP [30], the clocks on both sides were synchronised to ensure precise 
one-way latency measurement. More information about the test infrastructure is given in 

D6.1. 

 

Figure 42 – 5G test infrastructure. 

Limitations of the radio network 

The components are optimised regarding throughput of eMBB, i.e., not for latency. This 

should be considered when looking at the results. In the future, there will be features to 
choose, e.g., a URLLC system could be chosen if latency should be very low and reliability 

high.  

Data streams and communication traffic patterns 
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This section provides a tabular overview of the data streams and their communication traffic 

patterns transmitted in the 5G laboratory test infrastructure as well as a brief description of 
the individual communication protocols used.  

In the following table, the terms unidirectional and bidirectional are used. Unidirectional 

describes the uplink traffic from the user to the base station, i.e., in this case from the PC to 

edge cloud. Uplink and downlink traffic is described by bidirectional. The traffic patterns are 
specified by message size and message period. The message size is defined by the sample 
data gotten from the living labs. It ranges from 10 bytes to 6.5 MB. The message period is the 

time interval between the sending of consequent messages and goes from 30 ms to 5 s. To 
investigate the possibilities of the 5G link to handle more frequent packets, a shorter message 

period than specified in the requirements was used in some test cases. This might become 
more relevant for future scenarios. The following traffic pattern was used: 

Table 4 – Communication traffic patterns of IoT-NGIN use cases. 

Use Case 

Test Object 
Comm. 

Protocol 

Comm. 

Direction 

Message 

Period [s] 

Message 

Size 

[bytes] Vertical # 

Smart City  

1 
smart micro 

radars 
WebSocket Unidirectional 0.1 

356 

2 
Video 

transmission 
RTSP Unidirectional 

Continuous 

video stream 

6,501,000 

Smart 

Agriculture 

4 Synfield [23] 
HTTP, MQTT Bidirectional 

0.03, 0.1, 0.3, 

1 

325 

5 Jpg file 0.1, 0.2, 0.5, 1 36,645 

Smart 

Industry 
8 Smart sensor OPC UA Bidirectional 0.1, 0.5, 1, 5 140  

Smart 

Energy 

9 

PQA HTTP 

Unidirectional 

0.1, 0.3, 1 1,073 

PMU MQTT 0.1, 1 665 

smart 

meters 
MQTT 0.1, 3, 5 

1,000 

10 

 

charging 

stations 
MQTT 

Bidirectional 

0.1, 2 
10 

electric 

vehicles 
MQTT 0.1, 1, 3, 5 

50 

smart 

meters 
MQTT 0.1, 1, 3, 5 

100 

Table 4 does not include test results of use cases 3, 6 and 7, as resources for testing with live 

5G in the first project reporting period were focused on testing those use cases placing 
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stringent requirements on mobile network performance and not planned to be tested by 
other partners in the second reporting period of the IoT-NGIN project. 

• UC3 (Co-commuting solutions based on social networks): The description of this use 

case available during the period when 5G tests were being planned by the IoT-NGIN 

project (end of 2021) focused on the transmission of data to the internet from standard 
mobile phones and mobile devices. The data is social network data streams and in 

this use case, the focus is on the use of twitter messages to identify opportunities for 
co-commuting. Such Twitter data streams are characterised by small message sizes 
and low requirements on data transmission rates. The use case plans the use of any 

available wireless network in the vicinity of the user as the carrier network including 
WiFi, 3G, 4G and 5G networks where available. The communications sector has many 

years of experience in the use of such networks to support such data streams and 
experience has shown that all of these networks are more than capable of 

adequately supporting such data streams. The added value of running tests of such 
data streams on a live 5G network using the resources of the IoT-NGIN project would 
be minimal and the project decided to focus its testing efforts on those use cases 

which place stringent requirements on the mobile network performance, and which 
were not planned to be tested by other partners such as I2CAT or CMC.  

• UC6 (Human-centred safety in a self-aware indoor factory environment): As this use 

case has been planned to be lab-trialled in I2CAT’s wireless network laboratory 
infrastructure, the added value of running tests using synthetic data would be minimal 
and the project decided to focus its testing efforts on those use cases which place 

stringent requirements on the mobile network performance, and which were not 
planned to be tested by other partners such as I2CAT. These tests will be reported in 

D6.3. 

• UC7 (Human-centred augmented reality assisted build-to-order assembly): As this use 

case has been planned to be lab-trialled in CMC’s wireless network laboratory 
infrastructure, the added value of running tests using synthetic data would be minimal 

and the project decided to focus its testing efforts on those use cases which place 
stringent requirements on the mobile network performance, and which were not 

planned to be tested by other partners such as CMC or I2CAT. These tests will be 
reported in D6.3. 

MQTT (Message Queuing Telemetry Transport) works in a publish-subscribe architecture so 

that a client transmits data by publishing and receives data by subscribing. A client can be 
publisher, subscriber, or both at the same time. No point-to-point connections are 

established. Therefore, all clients are connected to a MQTT broker. The broker acts as a 
central unit.  Every message is sent to it. The published messages are handled by distributing 

them to the corresponding subscribers. The tool for MQTT broker is called mosquitto. In our 
setup, the PC is publisher and subscriber at the same time. Packets are generated by using 
synthetic data (text files) as input. Then, the packets are published and transmitted as MQTT 

messages over the 5G link. The broker is deployed in the edge cloud of the 5G network and 
receives the messages. If a bidirectional link is specified, the packets or control messages are 

sent back to the subscriber on the PC.  

HTTP (Hypertext Transfer Protocol) is a request-response protocol based on client-server 

model. It is an application layer protocol assuming an underlying reliable transport protocol 

like TCP. HTTP is mainly known from data communication of the world wide web. Before a 
message exchange can take place, a three-way TCP handshake is executed between 

client and server. The client sends a SYN message. The server answers with a SYNACK so that 
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the client successfully finishes the handshake by an ACK.  Then, the client sends a POST 
request via the 5G link which includes the synthetic data in message body. The server 
receives the packets and answers by sending a control message. This procedure is repeated 

for every new packet to be sent [31] Here, the client is the PC, and the server is the edge 
cloud. The server is established by opening a dedicated port to HTTP over which PC and 

edge cloud can communicate. Important to mention is that the communication is used 
without proxies.  

OPC UA (Open Platform Communications Unified Architecture) is a machine-to-machine 

communication protocol based on server-client model. It results in a service-oriented 
architecture (SOA) and subscribe/publish communication. There are servers, clients, and 

nodes. A node is a basic abstract data in the network and can be a variable, an object, a 
method and much more. Nodes are handled by the server and the main way to 

communicate with clients. Clients can be subscribed to a node event so that they are 
informed when the node’s data changes, i.e., the node publishes new data. OPC UA is 
commonly known from IoT applications and industry 4.0 [32] Here, the OPC UA is based on 

TCP. A node is created by the edge cloud which is responsible for the node’s data (for 
simplicity the payload is only increasing) as the node cannot change its own payload, e.g., 

by measuring the temperature. The client is the PC which is subscribed to the node. The client 
begins to request the data and the node answers by sending a response including the data. 
This is done every time when the data is changing, i.e., when the payload is increased.  

WebSocket (WS) is a communication protocol on layer 7 depending on TCP. Prior to sending 

messages, a three-way TCP handshake is run like in HTTP. Then, the client sends a WS 

handshake requests by using the HTTP upgrade header to switch from HTTP to WS. The server 
answers with the WS handshake response indicating success or failure of the upgrade. If the 

upgrade was successful, the data is sent in a POST request via the 5G link from the client to 
the server. The server uses a control message as an answer. The client-server connection is 
persistent and is finished automatically after the last control message is received. [33] Here, 

the client is the PC, and the server is the edge cloud. The server is established by opening a 
dedicated port to WS over which PC and edge cloud can communicate. 

RTSP is short for Real Time Streaming Protocol. It is an application-level network protocol 

based on a TCP connection designed for multiplexing and packetizing multimedia transport 
streams (such as interactive media, video, and audio) over a suitable transport protocol. The 

transmission of streaming data itself is not a task of RTSP. Most RTSP servers use the Real-time 
Transport Protocol (RTP) in conjunction with Real-time Control Protocol (RTCP) for media 

stream delivery. Before messages are transmitted, the request types, the RTSP URL (rtsp://…) 
and the setup are defined. [34] Here, the edge cloud hosts the RTSP server which opens a 
dedicated port for the video transmission. The PC sends the video to the edge cloud. Only 

uplink is considered. When the transmission is finished, the TCP connection is closed.  

Test methodology and statistical analysis approach  

The following test methodology was performed stepwise for each test:  

• The tcpdump was started on the PC, 

• The tcpdump was started on the 5G edge cloud, 

• A data stream was configured with the protocol, message size and message rate 

requested by the use case, 

• The data simulator was started, 

• The data simulator was stopped after a specified number of messages sent, 

• The tcpdump was stopped on the simulator and the cloud, 
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• The trace files for each test sequence were collected, and finally the 

• Latencies for each test were computed. 

To ensure representative statistical results, the following measures were undertaken: a high 

number of samples were collected to minimise untypical behaviour. Therefore, each test was 
repeated several times collecting around 5,000 samples. An appropriate approach to 

interpret the results was chosen. Our approach was to calculate the average and the nth 
percentile and the reduction of latency:   

• The average is also known as the arithmetic mean indicating the sum of all samples 

collected and divided by the number of samples.  

• The nth percentile is used as a second statistical measure which means that n% of all 

samples are smaller than this value. It is a measure of reliability because it shows an 
overall picture of the sample distribution.  

• Reduction describes the difference between lowest and largest value given in 

percentage which could be achieved when using optimal configurations compared 
to the weakest configuration, e.g., by using an optimal message period or 
communication protocol.  

 Results of 5G latency tests of IoT-NGIN use case 
synthetic data streams 

Seven use cases were investigated representing four Living Labs (smart city, smart industry, 

smart agriculture, smart energy) by investigating the communication traffic patterns of the 
use cases, designing the data streams, and performing laboratory tests using those data 

streams. In the following, the results for each use cases are given using the statistical means 
introduced previously and summarised in a table.  

Test results 

This section provides the results of the 5G latency tests per use case. The latency results are 

shown as average and 99th percentile. In tests where traffic patterns such as message period 

or communication protocol were compared, we show the reduction of latency.  

Traffic Flow and Parking Prediction (UC1) 

In use case 1, sample data of 356 bytes was transmitted. Only uplink for a message period of 

0.1 s was investigated. The results show that the average latency is 6.59 ms. The average 99th 
percentile is around 5 ms larger.  

Table 5 – Results use case 1. 

 Uplink 

Average latency 6.59 ms 

99th percentile 11.5 ms 
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Crowd Management (UC2) 

In use case 2, a video of 6.5 MB was transmitted in uplink. The average latency is 8.88 ms and 

the average 99th percentile increases by 8 ms.  

Table 6 – Results use case 2. 

 Uplink 

Average latency 8.88 ms 

99th percentile 16.7 ms 

Crop Disease Prediction: Smart Irrigation and Precise Aerial Spraying (UC4) 

In this test, two communication protocols were tested: MQTT and HTTP. For both 

communication protocols, sample data of size 325 bytes were sent. The results show that HTTP 

has a worse performance because it uses a 3-way handshake each time before sending a 
message. The average latency is around 10ms and the 99th percentile is up to 18 ms. MQTT 

uses this handshake only at the beginning of the transmission so that its average latency has 
a minimum value of 8 ms and the 99th percentile shows the smallest value of 10 ms. Hence, 
MQTT has a latency reduction of at maximum 24 % and a 99th percentile reduction of up to 

33 % in contrast to HTTP so that it performs better regarding latency values and reliability. 
MQTT can be recommended to improve latency because HTTP was used in its normal 

configuration with new handshake and request every time before a new packet was 
transmitted. The smallest values are achieved by using a message period of 0.03 s and 0.3 s. 

The results with those message periods when MQTT is used are shown in Table 7.  

Table 7 – Results Use Case 4 using MQTT protocol. 

 
Uplink Downlink 

0.03 s 0.3 s 0.03 s 0.3 s 

Average latency 8.91 ms 7.86 ms 7.84 ms 9.86 ms 

Reduction of average 

latency compared to HTTP 
14.01 % 23.07 % 24.48 % 7.46 % 

99th percentile 13.53 ms 9.94 ms 10.76 ms 11.31 ms 

Reduction of the 99th 

percentile compared to HTTP 
25.14 % 27.51 % 27.22 % 33.22 % 

Sensor Aided Harvesting (UC5) 

In this test, two communication protocols were tested: MQTT and HTTP. A jpg file of 36,645 

bytes was transmitted in this use case. The synthetic data tests result in larger values in HTTP 
than in MQTT. Especially in uplink, MQTT leads up to 42% better results. The average latency 

performance is around 10 ms in HTTP and up to 4 ms faster in MQTT. Even though MQTT has a 
larger deviation of values around the latency median, they are still smaller than the actual 
HTTP values. In the 99th percentile, HTTP reaches maximum values around 16ms. MQTT values 

are smaller or equal to HTTP. To ensure a high reliability as well as small latencies, MQTT with 
a message period of 0.1 s is recommended. The results with the message period of 0.1s when 

MQTT is used are shown in Table 8. 
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Table 8 – Results Use Case 5 using MQTT protocol and 0.1s message period.  

 Uplink Downlink 

Average latency 5.8 ms 10 ms 

Reduction of average latency 

compared to HTTP 
42 % 10 % 

99th percentile 11.5 ms 11.3 ms 

Reduction of the 99th percentile 

compared to HTTP 
14 % 28 % 

Digital Powertrain and Condition Monitoring (UC8) 

In this use case, the communication protocol was OPC UA. The uplink latency is around 9 ms 

and the downlink latency around 5 ms. The 99th percentile is in uplink around 15 ms and in 
downlink around 8 ms to 10 ms. A preferable message period is 0.1 s or 0.5 s which makes the 

results 5% in average faster in and up to 15 % the 99th percentile in downlink. An appropriate 
uplink message period can improve the results by 13 % in average and by 2 % in the 99th 

percentile. The small improvements can be explained by the independence of the latency 
values from the message periods. The best results with the message periods of 0.1s and 0.5s 
are shown in Table 9. 

Table 9 – Results Use Case 8 with message periods of 0.1s and 0.5s. 

 Uplink Downlink 

Average latency 8.4 ms 5.11 ms 

Reduction of average latency with 

optimal message period 
13 % 5 % 

99th percentile 5.1 ms 8.4 ms 

Reduction of the 99th percentile with 

optimal message period 
2 % 15 % 

 Move from Reacting to Acting in Smart Grid Monitoring and Control (UC9) 

Use case 9 uses multiple protocols. PQA (Power Quality Analyser) uses HTTP and has message 

size of 1073 bytes. Smart meters with a message size of 1000 bytes and PMU (phasor 

measurement unit) of 665 bytes use MQTT.  

For PQA, the latency is around 10 ms while the percentile is around 16 ms. Optimal 

performances can show 2 % faster results in average latency while the 99th percentile results 

in nearly no improvement. PQA has an average latency of 9 ms and its 99th percentile 
reaches 13 ms. Reducing the message period to 0.1s leads to an improvement of 4 % to 6 %. 

Since the improvements are very small, these two message types are nearly independent 
from the message period. For smart meters, the latency ranges from 8 ms to 10 ms and the 
percentile from 15 ms to 20 ms. In this case, an appropriate message period can improve the 

results in average by 19.4 % and in 99th percentile by 28.8 %. Since it has the highest 
percentile, smart meters have the worst reliability. The best reliability has PMU having a 

deviation of 0.5ms around the mean. For the smallest latency and the highest reliability, the 
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message period of 0.1s is recommended for smart meters while the periods of the other use 
cases behave equally. 

Table 10 – Results Use Case 9 with optimal message periods. 

 PQA Smart meters PMU 

Average latency 10.1 ms 8.37 ms 8.1 ms 

Reduction of average latency with 

optimal message period 
2 % 19.4 % 6.3 % 

99th percentile 16.7 ms 14.5 ms 12.5 ms 

Reduction of the 99th percentile with 

optimal message period 
1.26 % 28.8 % 4.4 % 

Driver-friendly Dispatchable EV Charging (UC10) 

The three message types of use case 10 use MQTT as communication protocol. The message 

size is 10 bytes in charging station, 50 bytes in electric vehicles and 100 bytes in smart meters.  

The average uplink latency is around 6 ms, and the average downlink (DL) latency is around 

8 ms. By choosing the optimal message period the uplink results at maximum in 10 % 
improvement and in downlink in 3 %. Like in the previous use case, the results show the same 
characteristic that they seem to be independent from the message size, i.e., that the 

difference between the values is in uplink at maximum 0.5 ms and in DL 0.03 ms.  
The 99th percentile is in uplink between 7 ms and 9 ms. In downlink, it is more distributed from 

10 ms to 14 ms. This shows that uplink is more reliable than downlink. This is underlined by the 
general fact that the uplink is always smaller than downlink for both latency and 99th 
percentile. Moreover, there is a higher maximum reduction in DL except for the message 

type of charging stations. Since the uplink performances are very similar, the message 
periods can be chosen based on their best 99th percentile. Consequently, 1 s is 

recommended for electric vehicles and smart meters achieving an improvement of up to 35 
%. For charging stations, all message periods can be taken since the reduction is at maximum 

10 %.  

Table 11 – Results Use Case 10 with optimal message periods. 

 

Uplink Downlink 

Charging 

stations 

Smart 

meters 

Electric 

vehicles 

Charging 

stations 

Smart 

meters 

Electric 

vehicles 

Average latency 5.69 ms 5.7 ms 5.69 ms 8.01 ms 7.6 ms 7.84 ms 

Reduction of 

average latency 
with optimal 

message period 

8.27 % 9.37 % 8.53 % 0.12 % 3.33 % 2.51 % 

99th percentile 7.63 ms 7.85 ms 7.77 ms 13.93 ms 9.68 ms 9.15 ms 

Reduction of the 

99th percentile with 
9.93 % 9.3 % 10.4 % 0.014 % 29.7 % 34.6 % 
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optimal message 
period 

 Results of 5G latency tests of a prototype service-
adaptive prescheduling feature 

In addition to the standard configuration of the 5G network, we had the opportunity to test 
a new feature for service-adaptive prescheduling. Based on this feature the uplink data can 

be prescheduled and prioritised enabling faster time-to-content especially for small data 
transmission. Moreover, it supports a reduction in the air interface contribution for end-user 

latency resulting in decreased latency for specified radio modems configured with this 
mode.  

In the test of this series, we generated background traffic using iperf on a second 5G radio 

modem connected to the same 5G network. The background traffic was running in parallel 
to the use case data streams without prioritised configuration to show that the synthetic data 

was prioritised to the background traffic. In the first round of tests, the radio modem used for 
MQTT data transmission was not prioritised while in the second round of tests, that radio 

modem was configured to be prioritised for service-adaptive prescheduling. The following 
use cases of test series 1 with MQTT as communication protocol were used: 

• UC4 a): SynField with message period of 0.1s 

• UC4 b): SynField with message period of 0.03s 

• UC9 a): PMU with message period of 0.1s 

• UC9 b): Smart meters with message period of 0.1s 

• UC10 a): Charging station with message period of 0.1s 

• UC10 b): Electric vehicle with message period of 0.1s 

The results of the average uplink latency are illustrated in Figure 43. It shows that latencies are 
lower when the modem was prioritised. The improvements of using a prioritised modem were 

up to 7.5%. A greater effect of the feature may be achieved with more modems generating 
a higher load of background traffic.  
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Figure 43 – Test results with service-adaptive prescheduling feature. 

 Conclusion of the 5G latency tests of project use 
cases and of the prototype prescheduling feature 

Our tests demonstrated that 5G can support the latency requirements of the IoT-NGIN use 
cases. We gave recommendations how to optimise the latency by using optimal message 

periods and communication protocols.  

Tests with the new service-adaptive prescheduling feature showed that 5G provide low 

latencies even under high load and the feature can be used to prioritise specific devices.  

4.2 5G latency performance tests of edgePMU 

data streams  

In this subsection, we describe the laboratory infrastructure used and the test results obtained 

in our sets of tests on edgePMU data streams in a live 5G laboratory environment. 

In Section 4.2.1, we introduce the edgePMU concept. 

In Section 4.2.2, we provide the description of the 5G laboratory infrastructure and the test 

methodology used for the tests.  

In Section 4.2.3, we provide the description and the results of the test series of a live 5G in a 

laboratory environment supporting the communication of edgePMU data streams. 

In Section 4.2.4, we provide a conclusion of the subsection. 
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 Introduction to the edgePMU concept  

The edgePMU is a new approach on how to calculate phasors by utilizing the edge cloud, 

that is available in the 5G network. In contrast to the classical concept, where the 
measurement of the samples and the estimation of the phasors is performed in a single 

device, the edgePMU splits this in two. As shown in Figure 44 the device, deployed in the 
field, acquires the samples and time tags them. The samples are then transmitted to an edge 
cloud service, where the phasor estimation is executed. This approach enables new 

possibilities for utilization of algorithms, as well as for more compute intensive estimation 
approaches. 

 

 

Figure 44 – edgePMU concept.  

 Description of 5G laboratory infrastructure and the 
test methodology for 5G edgePMU tests  

Objective  

To verify the 5G performance with data streams generated by the edgePMU, an edgePMU 

device was integrated in the setup used in test series 1. The data characteristics of the 

edgePMU show higher data rates and throughputs than the data characteristics of the 
project use cases investigated in test series 1.  

Infrastructure 

The 5G SA network used in test series 1 was modified by adding the following components:  

• edgePMU hardware including Ethernet cables and PoE (Power-over-Ethernet)  

• VM (virtual machine) located in the 5G edge cloud 

• Switch to create a mirror link for capturing data traffic of the edgePMU 

Since synchronization between the 5G network and the edgePMU was unavailable, a switch 
was integrated between the edgePMU and the WNC 5G modem to mirror the data of the 

edgePMU to the PC. The PC was time synchronised via NTP with the 5G network and time 
stamped packets were captured on the PC. In this way, precise one-way latency 

measurements were performed.  

The uplink transmission between the edgePMU and the 5G network was traced. The 

edgePMU uses up to eight channels which can be turned on and off depending on the use 
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case. For instance, voltage calculation needs three channels for each phase and one 
channel for the synchronization.  The number of channels is changed in the configuration file 
on the Raspberry Pi.  

In a real deployment, the edgePMU device would be connected with an analogue cable 

from the outside, e.g., from the power grid, to the DAQU. Since we performed the tests in a 

5G laboratory, the analogue connection stayed open. The device hence generated 
dummy messages which had the same characteristics as if the device would be connected 
to a power grid.  

 

Figure 45 – Schematic diagram of the test infrastructure with the edgePMU. 

Data streams 

The signals generated by the edgePMU were transmitted as UDP packets to the VM via the 

5G link. In contrast to TCP, UDP is a connectionless protocol and does not use ACKs, 

congestion control, packet ordering and retransmission. 

Limitations 

Since the setup has only minor changes, the limitations of the edgePMU tests are identical to 

the 5G performance tests. 

Statistical aspects 

Since the setup has only minor changes, the statistical aspects of the edgePMU tests are 

identical to the 5G performance tests of test series 1. 

Traffic patterns 

Three parameters were configured in the edgePMU: number of channels, sampling rate and 

vectorize. The number of channels depends on the use cases and ranges from one to eight. 

Sampling rate defines how many samples are generated per second. It can range from 1000 
up to 60,000 Hz. Vectorize defines how many samples one UDP packet contains. 10,000 

packets were sent for each test.  

These configurable parameters have a direct impact on the communication characteristics. 

Table 12 shows the impact of the parameters on packet size, message period and 

throughput. Detailed information on the configurable parameters and which ranges have 
been used for the tests is provided in Annex 1. 
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Table 12 – Impact of the parameters on communication characteristics.  

 Packet size Message period Throughput 

Number of channels X  X 

Sampling rate  X X 

Vectorize  X X  

Test methodology  

The following test methodology was performed stepwise for each test:  

• The tcpdump was started on the PC, 

• The tcpdump was started on the VM, 

• The edgePMU was configured with the sampling rate and vectorize, 

• The edgePMU was started, 

• The edgePMU was stopped after a specified number of messages sent, 

• The tcpdump was stopped on the PC and the VM, 

• The trace files for each test sequence were collected, and finally the 

• Latencies for each test sequence were computed. 

 Results of 5G latency tests of edgePMU data 
streams 

In this set of tests, the sampling rate was set to 20kHz or 50kHz. Vectorize as well as the number 
of channels was varied. The number of channels was increased from 1 to 4 and 8 while the 
vectorize was stepwise increased from 10 to 50, 100 and 200. Figure 46 shows that a higher 

number of channels resulted in a higher latency which can be explained with the higher 
throughput.  

With 20kHz sampling rate, the average uplink latency also slightly increases when the 

vectorize parameter was increased. This behaviour was not observed for a sampling rate of 

50kHz where the average latencies of 4 channels, for example, stayed constant around 14 
ms in all vectorize settings.  A potential explanation could be that a sampling rate of 50kHz 
matched better with the scheduled transmission slots in the 5G radio.  

Overall average uplink latencies lay in the range of 11 to 15.5ms for 20kHz sampling rate and 

in the range of 11 to 16ms for 50kHz sampling rate. 
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Figure 46 – Average uplink latency for a range of settings.  

Left: Sampling rate 20kHz, right: Sampling rate 50kHz. 

 Conclusion of the 5G latency tests edgePMU data 
streams  

Our tests demonstrated that the edgePMU device can be integrated in a live 5G network. 
The capabilities of 5G support the high throughput and low latency which the edgePMU 

requires. 

4.3 Implementation and testing of TSN networks  

The usage of 5G networks in industrial environments requires a set of features different from 
consumer mobile networks. 5GLAN or the integration of 5G devices as part of the fixed Local 
Area Networks (LAN) is a key enabler for connecting mobile with fixed industrial devices. Time 

Sensitive Networks (TSN) deliver additional functionality to provide deterministic 
communications between fixed and mobile devices.  

Time-Sensitive Networking (TSN IEEE 802.1Q), is an Ethernet technology that provides 

deterministic messaging on standard Ethernet. When centrally managed, the TSN 

technology offers the capability of guaranteed delivery of messages with reduced jitter. TSN 
uses time-scheduling in providing deterministic communications and works at Layer 2 (L2) of 
the Open System Interconnection. The advantage of TSN working at L2 is that TSN entities 

(switches and bridges) only need the information contained in Ethernet headers to make 
forwarding decisions. In addition, the information carried in Ethernet frame payloads does 

not have to be limited to IP only, making TSN applicable in industrial applications with 
different application payloads. 

5G would behave as standard TSN switch so all the complexity of mobile networks should be 

hidden and instead the 5G looks like a Logical (TSN) switch as shown in Figure 47. 
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Figure 47 – 5G represented as TSN logical bridge. 

This section describes the initial design and implementation of time synchronization modules 

such as Network TSN Translator (NW-TT) and the Device Side TSN Translator (DS-TT) defined in 
the 3GPP standards to synchronise the clocks of the mobile devices with the fixed devices. 

The preliminary implementation of NW-TT and DS-TT has been used to test the accuracy of 

the time synchronization and results are shown in this section. The experimentation based on 
the IEEE Working Group (WG) recommendations and publications providing the necessary 

modifications to Precision Time Protocol version 2 (PTPv2). The IEEE standards specify the 
packets that needed to be modified to develop generalised Precision Time Protocols (gPTP). 

Before entering and exiting the 5G System (5GS), the gPTP messages are changed. These 
encompass all the needed packet header modifications and necessary calculations to 
achieve the synchronization accuracies of 900 nanoseconds as stipulated by the IEEE 

802.1AS standard. 

 Description of the laboratory configuration and the 
test methodology 

The implementation of the NW-TT is deployed in standalone server running Linux Ubuntu 20.04 
LTS that is connected to the 5G Core network through the User Plane Function (UPF) network 

function. The UPF has direct link with the base station (gNB) to send the time synchronization 
that NW-TT receives from the Grand Master clock located in the fixed network. 

The implementation of the DS-TT is deployed in a Linux server that incorporates 5G modems 

for connecting to the 5G network. The language of choice for this was “C” since it provided 
the different Linux libraries vital when writing code that interacts with the kernel.  Linux offers 

multiple ready-to-use libraries and modules that make writing sockets that handle traffic 
between different nodes straightforward. Thus, the DS-TT will receive the time synchronization 

from the modem i.e., User Equipment (UE) that is integrated in the same server. The DS-TT will 
perform the required adaptation of the time synchronization and will forward to the TSN 
switch that will get synchronised with TSN switch located in the fixed network and connected 

to the NW-TT as shown in Figure 48. 
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Figure 48 – Time synchronization test setup.  

 Results of tests of TSN synchronization 

The TSN synchronization setup discussed in the previous section forms the basis upon which 
the final testing results are retrieved from. The final synchronization results after the messages 

are finally modified and sent by the DS-TT, are visible from the console of the TSN switch 
directly attached to the DS-TT. These synchronization results are visible through the GUI 

offered by the TSN switch. To achieve the experimentation results, a simple bash script that 
scrapes the synchronization results from the GUI is taken into use. The script goes occasionally, 

to the website page, retrieves the synchronization value reported and stores it in a text file. 

To achieve substantial synchronization results test data, the command was run from Friday 

evening (17:00) to Monday morning (10:00). This resulted in around 637 synchronization results 

data points. A summary of the data is denoted in Table 13, which shows the minimum values 
recorded when synchronization was started as 0.9 µs and maximum to be around 15 

milliseconds. The median values are about 328 µs. The summary data provided is just a 
general overview, to help understand better about synchronization and how it happens over 
a period, graph plots are more useful. MATLAB plots of the data during the whole duration of 

running the TSN modules gives a better trend and helps in further understanding the 
synchronization. 

Table 13 - Summary of synchronization results. 

Summary Value [µs] 

count 637.0 

Mean 343.8 

std  647.19 

min 0.90 

25th percentile  328.89 

50th percentile 462.45 

75th percentile 678.39 
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Max 15961.43 

 Conclusion of the test series of TSN synchronization 

Figure 49 shows the plot using the whole dataset. As can be seen from the figure, during the 
first parts, when the TSN modules start, the synchronization accuracy fluctuates a lot. This 

continues for some time and even reaches a maximum value of 15961 µs. When the 
synchronization reaches the datapoint around 240, which is roughly after one day, the 
synchronization becomes stable with a synchronization accuracy of 328 µs. This is the 

synchronization value that stays for the rest of the time which is more than one day. This shows 
that the synchronization accuracy obtained in this the TSN modules implementation 

becomes stable over a period of time to a constant value. 

 

Figure 49 – Synchronization trend and eventual stabilization. 

The results show that time synchronization of mobile devices using as clock reference a 
Grand Master in the fixed network is feasible. However, the variable delay of the radio link 

and the asymmetry of the delay in the radio link makes the accuracy lower than what is 
required for high-precision TSN devices. 

As future work the usage of network slice isolated for time synchronization with similar delay 

for uplink and downlink could improve the accuracy of the synchronization. 
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5 Testing the IoT-NGIN components and 
evaluation of specific use cases  

IoT-NGIN framework’s holistic testing and evaluation requires the finalization of the 

integration activities that are necessary in order to realise the integrated IoT-NGIN platform 
prototype. The IoT-NGIN development, integration and testing plan, as described in section 
2.2.3.2, indicates that the integration activities will conclude in M30. Therefore, in this section 

we provide an indicative selection of evaluation tests performed on IoT-NGIN developed 
components. The comprehensive integration tests will be presented in the following 

deliverable D6.3. 

5.1 D2D Communication 

 Introduction 

In cellular networks, D2D communication is defined as direct communication between two 

or more mobile devices without these being mediated by a Base Station. Moreover, D2D 
does not require direct communication with network infrastructures and therefore opens up 

a range of applications that can be used to enhance existing network infrastructures or 
leverage them to perform other independent services. 

Within the fundamentals of D2D, we find that it operates in both inband and outband 

spectrum. D2D shares the same spectrum with cellular networks in the inband, resulting in it 
having a dedicated portion of the spectrum or competing for its resources. In contrast, in 

outband, D2D uses an unlicensed spectrum, typically being the ISM bands. Therefore, D2D 
communication is correlated with the integration of several available technologies, being 
LTE direct, Zigbee, Bluetooth Low Energy (BLE), or WiFi-Direct (WFD) part of them. However, 

the selection of these technologies will depend on the trade-off generated by them and the 
required use case. 

One of the applications of IoT-NGIN is the realization of an implementation to extend network 

coverage. To this end, D2D is intended to be used to enable an out-of-coverage device to 

relay to another 5G-connected device in order to provide service to it (see Figure 50).  

However, given the nature of mobile wireless technologies, the out-of-coverage device must 

be able to identify relay-enabled devices for coverage extension. In addition, it must have 

mechanisms that allow it to self-connect to other relays while in motion when necessary. It 
should be noted that in the event that an out-of-range device is in range of two or more 

relay devices, it should have mechanisms to select the relay that best suits its needs. 
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Figure 50 – D2D Out of coverage UE. 

 

 Testing Scenario 

To establish a connection between an out-of-range device and the outside, we have 

created a TCP/IP connection scenario between UEs and a socket server. Our goal is to 

provide alert messages from the server to any UE registered to it. For this purpose, Sorbonne 

University and EBOS have set up the following configuration. 

5G LAN: To maintain a controlled environment, a 5G LAN will be provided where all devices 

will belong to the same network using the same 5G core. 

 

Message Forwarding: Given the peer-to-peer nature of the D2D, we have established two 

roles within the D2D. On one side, we have the UE relay, which will be any UE device located 

within the coverage radius of the 5G network. On the other hand, we have the out-of-

coverage User Equipment (UE), which encompasses all UE outside the 5G coverage radius 

but within the range of the UE relay. Based on this, the UE relay must forward all messages 

corresponding to its D2D out-of-coverage UE. 

 

Client-server architecture: To facilitate traffic between the UE and the outside, we have 

developed a TCP socket server to register the devices with which it will communicate. This 

includes both UE relay devices and out-of-coverage UEs. Then, the TCP server is notified with 

routing updates from each UE to create its routing table to establish communication with the 

registered UEs. This way, the TCP server will know which relay to address if a message is 

forwarded to a UE outside the coverage area. 
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Therefore, the configuration will consist of a 5G LAN directly connected to a TCP server and 

covering a set of mobile devices. Additionally, another group of devices will be located out 
of the coverage range of the 5G LAN (Figure 51). 

 

 

Figure 51 – 5G LAN directly connected to a TCP server and covering a set of mobile devices. 

 D2D Application 

To establish D2D communications between UEs, Sorbonne University has developed an 

application for Android platforms called AtomD. This application allows devices to engage 
in D2D communications by performing device discovery via Bluetooth 5 and establishing 

communication links via WiFi direct. The current version of this application enables users to 
perform two ways of approaching D2D.  

The first is to allow users to perform experiments to evaluate the performance of D2D. These 

include transmitting a single message over chunks of data, transmitting a fixed-size binary file 
over multiple chunks of data, and running various automatic link establishment procedures 

through a Discoverer node. From the tests performed to evaluate D2D, we conducted 
experiments to assess the time it takes for two devices to establish a D2D link using Bluetooth 

Classic and BLE. More specifically, we evaluated the delay of a Discoverer node (Figure 52) 
in performing neighbour discovery and connection establishment with an Advertiser node 

between distances of 0 m, 20 m, 40 m, 60 m, 80 m, and 100 m (Figure 53). A test has also 
been performed by transmitting binary files using the exact distances mentioned above. 
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Figure 52 – During D2D data exchange, part of the timespan is used for the connectivity process 

between devices. 

 

Figure 53 – Experimental set-up at different distances where the discoverer is located at p_0 while 

the advertiser is located at distance from p_1 to p_5. 

 

The second approach is to focus AtomD to make D2D connections with the feature of relay 

selection at the moment the devices are being discovered. In this way, if there is more than 
one candidate for a device to exchange traffic, then the relay selection algorithm will select 

the device that best suits the requirements of this device to perform a one-to-one 
communication. It should be noted that to establish connections to the outside, AtomD was 
provided with a library that allows connections to TCP socket servers in a persistent manner. 

This way, in case of any disconnection with any server, the application will retry in a constant 
way the re-connection to it. 
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 Evaluation methodology 

To manipulate the TCP socket server in a simplified way, Sorbonne University has developed 

a WebSocket-based daemon to communicate one or more web-based user interfaces and 

the TCP server. 

 

This interface is made of a table with the necessary information to identify the different 

participating UEs and a text entry to send them a message. The table consists of 4 columns 

listed below: 

 

Type: This column indicates which role the connected device belongs to, with Relay UE or 

Out-Of-Coverage (OC) UE as possible options. The UE Relay tag belongs to all devices 

directly connected to the TCP server. On the other hand, the OC UE tag identifies all the out 

of coverage devices that are connected to a UE relay. 

 

Device ID: ID Corresponding to the device ID to which the row points. Its source can be found 

at 

https://developer.android.com/reference/android/provider/Settings.Secure#ANDROID_ID. 

 

Connected To: Corresponds to the ID of the device to which the device is connected 

through D2D. In case no device is connected, this field will remain empty. 

 

Send Message: In this column, there is a text field where the user can send messages to a 

device. If the device is a UE OC, the message will be sent to its corresponding relay to be 

forwarded later. 

The life cycle of each connection 

In order to register UEs on the TCP socket server, each newly connected device announces 

what type of role it is running. So, if the new connected device is a relay, it will communicate 

its information directly to the server. In case it is a new UE OC, it will tell the UE relay to inform 

the server of its existence. Then the server will register the UE OC on the same output as the 

UE relay.   

 

In the event of disconnection by a UE OC, the UE relay will notify the server to update its 

routing table and unlink the UE OC from the connected devices. If a UE relay has 

disconnected, the server will remove that node from its registry, and the UE OC linked to it if 

it exists. 

 

Finally, if a message has to be sent, the server identifies to which output the message has to 

be sent. In addition, it will provide within the message to be sent the ID of the destination UE 

to which it is to be communicated. Thus, if the message is sent to a UE OC, the UE relay can 

identify if this message belongs to it or should forward to its UE OC. 
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5.2 edgePMU  

The RWTH Real time laboratory as described in D6.1 [3] is utilised to test the latest revision of 
the edgePMU now featuring integrated 5G connectivity. The laboratory allows for 

comparison of different types of PMUs under well controlled conditions. 

The testing at has two major objectives.  

• Objective 1: Investigate if the hardware modifications, that enable 5G connectivity, 

impact the measurement result precision.  

• Objective 2: Investigate the impact of different real life communication channels. 

Specifically wired LAN as reference channel, then LTE and finally communication via 
a private 5G network. 

 Test description 

Reference PMU 

As reference measurement device, a commercial Alstom MiCOM P847 PMU is used. This 

device allows for extracting the phasors with the synchrophasor protocol C37.118 [35]. The 

phasors are then forwarded to a central database and compared to other measurements. 

 

Figure 54 – FAlstom MiCOM P847 PMU. 

Signal generator 

As a signal generator, a TTI TG2000 [36] is used. This signal generator can provide up to 20 

MHz with an amplitude of 10V on a single channel. 
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Figure 55 – TTI TG2000 DDS Function Generator. 

Real time simulator 

The RTDS real time simulator provides a test bed for PMUs. This test bed is utilised by using an 

analog output card and generating predefined signals in the time domain. As real time 
simulator a RTDS [37] device is used. 

 Testing scenarios 

Scenario 1 

In scenario 1 a generated signal is provided by a signal generator and both PMUs are 

synchronised via GPS. The measurements are sent to a database and analyzed. The schema 
of this scenario is shown in Figure 56. 

 

Figure 56 – 5G edgePMU scenario 1. 

Scenario 2 

In scenario 2 the real time simulator is generating the test signal waveform as well as a 

synchronization signal. With this approach, the measurements of the edgePMU are 

referenced to a virtual time base provided by the real time simulator. The results are then fed 
back to the real time simulator and compared to the expected values. The schema of this 
scenario is shown in Figure 57. 
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Figure 57 – 5G edgePMU scenario 2. 

Scenario 3 

In scenario 3 the 5G edgePMU is synchronised with GPS and signal generator is providing the 

test waveform. This test is done with different kinds of test networks and will provide insights 
into the real-life performance of the network under test. The schema of this scenario is shown 

in Figure 58. 

 

Figure 58 – 5G edgePMU scenario 3. 

 Tests for edgePMU Objective 1 

Steady state analysis (Scenario 1) 

• Run a test with a fixed frequency input and varying amplitudes. 

• Run a test with fixed amplitude input and varying frequency. 

Dynamic analysis (Scenario 2) 

• Run the RTDS PMU test bench with different parameters 

 Tests for edgePMU Objective 2 

Communication tests (Scenario 3) 

• Set sampling rate to 10 kSmps/channel and measure the network parameters for LAN, 

LTE and 5G 

• Set sampling rate to 20 kSmps/channel and measure the network parameters for LAN, 

LTE and 5G 

• Set sampling rate to 50 kSmps/channel and measure the network parameters for LAN, 

LTE and 5G 

• Set sampling rate to 60 kSmps/channel and measure the network parameters for LAN, 

LTE and 5G. 
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5.3 DSO Dashboard 

 Test description 

Test: Validation of operation of AR app for EV charging station recognition 

Objective The main objective of this test is to show data coming from smart meter and 

ML framework if inference is requested. This means for the CPO to be able to 

control production and energy consumption as well as show inferences result 
rely on the MLaaS service. 

Components 

• DSO Dashboard 

 

Figure 59 – DSO dashboard architecture. 

Features to 

be tested 

In order to increase network stability, DSO leverages the huge amount of 

data gathered from IoT devices to have real-time evaluation of the smart 
grid parameters. With this aim, data are continuously collected from the field 

and shown on the dashboard views. Moreover, in order to estimate energy 
demand for the DR campaign, DSO must have consumption and production 

forecasts at the grid level. Forecasting of energy demand, which will be 
calculated every day. 

Requirements 

addressed 
REQ_SE1_NF01, REQ_SE1_NF02 

Test setup 
This dashboard will be in place in the operator premises. For testing the 

OneLab infrastructure is taking in account. 

Steps 

User registration 

• The user accesses the application page 

• The user clicks on the sign-up link  

• In the registration page the user enters all the necessary data and 

clicks the SIGN UP button 

• A notification message if the registration was successful 

 

Login 

• The user accesses the application page 

• The user log-in with previously registered email and password. 
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• The user clicks on the SIGN IN button 

• Device information divided by table is shown 

 

Navigation in home page 

• The user logs in  

• The user verifies that the data displayed in the table matches the 

device. 

 

Visualization of data  

• The user logs in  

• The user clicks on the tab choosing time span and the service needed 

• The dashboard shows the field devices consumption and or 

production data 

 

Prediction visualization  

• The user logs in  

• The user clicks on the device tab and forecast buttons and make a 

request for a given time interval 

• The ML inference as result is showed on the dashboard 

 Test outcomes 

Sign Up 

The page allows the registration of a new user. 

 

Figure 60 – SIGN UP page in the DSO Dashboard 

. 



H2020 -957246    -   IoT-NGIN  

 
D6.2 – Integrated IoT-NGIN platform & laboratory testing results 

 

103 of 137 

 

Login 

The page allows you to log in to get access to the monitoring tool (local database). 

 

Figure 61 – SIGN IN page in the DSO Dashboard. 

Navigation in Home page 

The page is currently integrated with the MQTT bus provided by ASM, for now it shows the 

most important fields of the device in a table and is still under development. It is being 
decided whether to show graphs on this page as well. 

 

Figure 62 – home. 

5.4 Augmented Reality App 

These tests have the main purpose to demonstrate the planned tests for the Augmented 
Reality (AR) app that will be delivered early 2023. For the meanwhile we are describing the 
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different test cases that will complete the full integration of the AR in the LL. The planned test 
is specified in Table 14. 

Table 14 – Test specification for AR app (UC10). 

Test: Validation of operation of AR app for EV charging station recognition 

Objective The objective of this test is to recognise a given EV charging station, to 

identify it and to augment information on a mobile phone display. Finally, 
some commands are sent and executed on the real device. 

Components 

• AR tool for EV charging station recognition 

 

Figure 63 – High-level architecture of the AR application for EV charging station 

recognition (UC10). 

Features to 

be tested 

The main purpose of this test is: 

• to check if the AR app is work accordingly with device indexing to 

identify the component 

• to check if the AT app is working properly and it is capable to 

augment the EV charging station image in the mobile camera 

• It is able to send command to the EV charging station 

Requirements 

addressed 
REQ_IN1_F10, REQ_IN1_F03, REQ_IN1_F06 

Test setup 

The application will be hosted in edge LL installation and the preliminary tests 

will start using also OneLab infrastructure 

The following data will be used in testing phase depending on the needed 

results 

• Logos and images to identify the EV charging station (EVCS) 

• GPS measurements to identify and locate the EVCS 

• VUFORIA database artifacts hosted in the cloud  

• Device indexing data from digital twin, for visualization 

• Data will send to the EV charging station to be applied to the real 

asset. This will be done through device indexing southbound 

interfaces. 
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Steps 

• Camera on mobile phone connection 

• Retrieving real time images 

• Track of a target image in the EV charging station (EVCS) 

• Detection and localization EV charging station with Unity and GPS 

service 

• Identification of EVCS 

• Extraction data from Device Indexing 

• Augmented reality data presented on mobile camera phone 

• Data command send through device indexing southbound 

interfaces 

5.5 Testing of the 5G Device Management API with 

IoT-NGIN use cases  

Ericsson provided a laboratory infrastructure with a prototype 5G network to perform the 

functionality testing of the 5G Device Management API and the demonstration of its features 
with a Graphical User Interface (GUI). In this chapter, the following topics will be explained in 

detail: 

• The objectives related to the 5G Device Management API,  

• The features of the 5G Device Management API relevant for the IoT-NGIN use cases, 

• The objectives of the tests of the 5G Device Management API, 

• The laboratory infrastructure used for testing the proof-of-concept implementation of 

the 5G Device Management API, 

• The limitations of the 5G Device Management API proof-of-concept implementation, 

• The 5G-enabled advanced IoT-NGIN use cases defined for the smart agriculture and 

smart industry domains within the project, and 

• A demonstration scenario investigated and presented during the first project review 

with an IoT-NGIN smart industry use case. 

 Introduction 

In this subchapter, the objectives of our work related to the 5G Device Management API, the 
features of the API, the objectives of the tests of the API, the 5G Device Management API 
laboratory infrastructure, and the limitations of the 5G Device Management API proof-of-

concept will be described. 

Objectives related to the 5G Device Management API 

Currently, 5G is becoming more important and accessible for various industrial domains. As 

many industrial domains consider deploying and using 5G in their environments, it becomes 

increasingly important to make the capabilities of 5G easier to access for users and 
developers working in these domains. The exposure of 5G network capabilities to users will 
not only enable faster development and integration of new services with 5G, but also faster 

adoption of 5G into industrial infrastructures. Therefore, we investigated requirements of IoT-
NGIN use cases to see whether they could be addressed by the 5G Device Management 
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API and to define which 5G Device Management API features would be relevant and 
beneficial for the IoT-NGIN use cases.  

One of our objectives was to define the requirements of IoT-NGIN use cases related to the 

API and a second was to define new 5G-enabled advanced use cases for vertical domains 
studied in IoT-NGIN. Starting from the current IoT-NGIN use cases, we defined 5G-enabled 

advanced use cases based on the likely future evolution of current IoT-NGIN use cases and 
prepared a demonstration of an advanced use case with the 5G Device Management API. 
This study helped not only to describe and evaluate the potential benefits of the API in these 

vertical domains, but also it helped to identify new requirements and new use cases to be 
investigated and proposed to standardization bodies.  

Features of the 5G Device Management API 

The concept of having a 5G Device Management API for allowing users to manage the 

connectivity of their devices is described under the 3GPP study called “Service Enabler 
Architecture Layer for Verticals (SEAL)” and this description is being standardised in 3GPP  
[38]. The specifications and features of 5G Device Management API are continuously 

investigated and defined by the 3GPP SA6 group.  

The features of the 5G device management API proof-of-concept relevant for the IoT-NGIN 

use cases were defined and summarised in D2.2 [12]. For simplicity, a summary table is 
included below in Table 15. 

Table 15 – Descriptions of the 5G Device Management API features. 

5G Device Management 

API feature 
Description of the feature 

Provisioning and 

onboarding devices 

It allows users to provide the unique identifiers of their 5G 

devices to the 5G network, so that these devices are 

accepted by and attached to the 5G network. 

Getting a list of devices It allows users to get a list of devices that are attached to 

the 5G network.  

Creating, modifying, and 

removing device groups 

It allows users to create device groups having same or 

different purposes, unite some devices in the same group 
and remove a device from a group. 

Monitoring the quality of the 

communication links of 
devices 

It allows users to monitor the quality of the communication 

links (e.g., signal strength, packet loss, latency) of their 5G 
devices. 

Defining and changing QoS 

parameters of individual 
device connections 

It allows users to set and change the values of Quality-of-

Service (QoS) parameters for communication links of 
devices. 

Getting location information 

of devices 

It allows users to get the geographical location of their 

connected devices to track their mobility. 

Objective of the tests with the 5G Device Management API 

The objectives of tests with the 5G Device Management API were to create a test scenario 

to realise an IoT-NGIN use case in a lab environment with the API, to use the 5G Device 

Management API as an authorised user in order to test the functionality of its features, to 
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validate that the features are working, and to demonstrate the API features through its GUI 
with one of the 5G-enabled advanced use cases defined for the smart industry domain 
within the project. 

The 5G Device Management API laboratory infrastructure 

In the laboratory, a prototype private 5G network, in which the 5G Device Management API 

proof-of-concept had been deployed, was used. The following components were 
integrated into the implementation:  

• Raspberry Pi acting as data generator/s (e.g., devices of the use case), 

• 5G edge cloud acting as data receiver/s (e.g., AI/ML services from IoT-NGIN 

technologies used in the use case), 

• 5G Device Management API proof-of-concept hosted in the 5G mobile network, 

• Graphical User interface (GUI) of the API hosted in the 5G mobile network, 

• 5G radio dot, and a 

• 5G radio modem. 

Figure 64 below shows the overview of the laboratory infrastructure in which the 5G Device 

Management API was deployed. As illustrated with “yellow” lines in Figure 64, the 
infrastructure allows authorised users to use the GUI of the API to manage and monitor the 

5G connectivity of devices, establish end-to-end communications between 5G devices and 
the edge cloud. After establishing all necessary connections through the API, the user can 
start sending data streams from 5G devices acting as data generators to the edge cloud 

acting as data receivers that is shown with “black” solid and dashed lines.  

A local area private 5G network hosting the 5G Device Management API proof-of-concept 

implementation was used in the laboratory as seen in Figure 64 and several Raspberry Pi 
devices connected to different 5G radio modems were available.  

 

 

Figure 64 – 5G Device Management API Laboratory Infrastructure. 

The required 5G connections between endpoints were provided using the graphical user 

interface (GUI) of the 5G Device Management API. The authorised user could send requests 
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to the 5G Device Management API and effectively to the relevant core network functions 
through this GUI. Upon receiving the commands from the GUI, the 5G Device Management 
API further transmitted the commands to the related 5G network functions to perform the 

requested operation, such as adding a device to a device group. The success or failure info 
about this operation was then shown to the authorised user in the GUI. The communication 

illustrated with “yellow” lines allows the user to: 

• manage and modify the 5G connectivity of devices,  

• monitor the quality of the connectivity status of devices,  

• create and remove device groups,  

• manage the members of the device groups, and to 

• modify the QoS levels of the connectivity of individual devices or devices within groups 

in the 5G mobile network.  

While preparing a demonstration with the 5G Device Management API and its GUI, the 

functionality of relevant API features was tested. For example, we observed whether or not 
the devices were successfully onboarded to the 5G network, the requested device groups 
were successfully created, the devices were successfully added to the suitable device 

groups and the quality of the communication links of the devices were monitored in terms of 
latency and packet loss etc.  were maintained.   

Limitations of the 5G Device Management API proof-of-concept implementation 

• The laboratory 5G network hosting the 5G Device Management API proof-of-

concept implementation was a prototype network. The components were 
configured to enable new features through the API proof-of-concept and some of 

the configurations included solutions which have not yet been standardised. 
Therefore, the prototype network does not have the same characteristics or 

configurations as commercial 5G standard networks currently have.  

• Currently, chips in many 5G devices do not provide the capability to have more than 

one active data transmission for a device, meaning that a device cannot send two 
different data streams at the same time from two different radio link channels. 

Therefore, a device can only have one active connection in a device group created 
by the API to send its data to a service hosted on edge cloud.  

 Defining a 5G-enabled advanced smart 
agriculture use case  

This subchapter describes a 5G-enabled advanced IoT-NGIN use case for the smart 

agriculture domain. This use case was defined based on the investigations on IoT-NGIN use 
case requirements and investigations of how the 5G Device Management API could be 
beneficial for them in future. From the smart agriculture domain, one of the IoT-NGIN use 

cases, specifically the IoT-NGIN Use Case 4 – “Crop diseases prediction, Smart irrigation and 
precision aerial spraying”, was investigated to define a more advanced use case including 

the 5G Device Management API. Both the original use case and the 5G-enabled advanced 
use case will be described in this subchapter. 

The IoT-NGIN Use Case 4 - Crop diseases prediction, smart irrigation, and precision aerial 

spraying  
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IoT-NGIN Use Case 4 focused on using the data coming from sensors, is illustrated in Figure 

65. Data from SynField devices developed by SYN, drone camera video images of the soil, 
leaf and weather conditions and ML services developed by IoT-NGIN combine to better 

predict the growing conditions of the crops and the need for further aerial spraying, as 
described in D1.1  [39]. The main objective of this use case is to detect diseases on crops and 

leaves located in the green field and to optimise the precision on aerial spraying based on 
real-time video streams coming from the drones  [39].  

In a smart agriculture field, many sensors would be located in the field to measure the 

temperature and humidity conditions of the soil and leaves, with several SynField devices 
and drones being deployed. To represent this use case on a field trial scale, Figure 65 

illustrates, a single SynField device being used to integrate data from a number of sensors, 
aggregating their data and transmit it to the relevant ML services from IoT-NGIN technologies  

(on the left), and a drone equipped with a multi-spectral camera used to capture videos 
and images of the crops and leaves and to perform aerial spraying whenever necessary (on 
the right).   

 
© SYN 2022 

 
© SYN 2022 

Figure 65 – A SynField device deployed in the field, a drone used for the crop disease detection and 

aerial spraying. 

The 5G-enabled advanced smart agriculture use case based on the IoT-NGIN Use Case 4 

Because the large-scale deployment of this use case requires many devices (e.g., SynField 

devices and drones) to be connected to the IoT-NGIN ML services to optimise disease 
prediction and irrigation, the use of the 5G Device Management API was considered as 

beneficial for the smart agriculture use case described above. The 5G Device Management 
API can be used to connect various devices to the 5G network, to create device groups, to 

set different QoS levels for the data traffic and to monitor the connectivity status of the 
devices. An advanced use case and a solution architecture for this use case were defined, 
including the 5G-API deployment, based on the IoT-NGIN’s smart agriculture use case 4 and 

illustrated in Figure 66. 
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Figure 66 – Solution architecture defined for the 5G-enabled advanced smart agriculture use case. 

As seen in Figure 66, the solution architecture consists of an authorised user from the smart 
agriculture domain, such as a farmer working in a field, a 5G mobile network hosting the 5G 
Device Management API, its GUI and edge cloud for hosting corresponding ML services from 

IoT-NGIN technologies, and some devices that were considered for the use case, such as 
SynField devices and drones. As the characteristics of the data being transmitted from 

SynField devices and from drones are different in terms of their load, transmission frequency, 
required bandwidth, and required latency, we considered separating their traffic and 

splitting the devices into two different device groups. Thus, the farmer can group all SynField 
devices into a “SynField Group” carrying the sensor data and she can modify the 
requirements of their communication links by changing their QoS level, whereas she can 

group all drones into a “Drone Group” carrying the video streams from the field and setting 
their QoS parameters to higher values. In addition, as the data processing of the sensor data 

and the video streams is performed by different services from IoT-NGIN technologies, having 
device groups can help the farmer manage connectivity to devices as groups and connect 
them to the relevant service hosted on an edge cloud, isolating the traffic of different 

devices as needed. 

The potential benefits of the 5G Device Management API defined for the 5G-enabled 

advanced smart agriculture use case  

The potential benefits of the 5G Device Management API based on the IoT-NGIN use case 4 

were described in IoT-NGIN D2.2. To save the reader looking for this source, a summary of the 

benefits is included below as Table 16. The examples given for IoT-NGIN smart agriculture use 
case 4 are not only related to the current status of the use case studied in IoT-NGIN, but they 

also include potential future use cases as use case 4 evolves in the coming years. 

Table 16 – Potential benefits of the 5G Device Management API to the 5G-enabled advanced smart 

agriculture use case. 

5G device management 

API feature 

Example - Why does a smart agriculture use case need or 

benefit from this API feature? 
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Provisioning and 

onboarding devices 

Devices that are used in the smart agriculture use cases can 

be onboarded to the 5G network easily by a farmer without 
the need to contact a mobile operator or cellular systems 

expert. In addition, as each of these devices will have a 
unique ID. These unique IDs can be used to list devices and 

to do further analysis, such as vulnerability checks, on each 
device. 

Getting a list of devices The IoT vulnerability crawler being developed in WP5 in IoT-

NGIN uses a “list of devices” as a component for security 
checking. If 5G can provide this information directly to the 

vulnerability tool, then the integration of new devices to the 
IoT-NGIN platform would be easier, digital twins can be 

created more quickly and vulnerability crawling process 
can start earlier.  

Creating, modifying, and 

removing device groups 

Creating device groups per specific purpose would be 

relevant for devices used in the smart agriculture use cases. 
For example, groups of devices could indicate e.g., devices 

monitoring a certain crop type or devices belonging to a 
single farmer.  

Monitoring the quality of the 

communication links of 
devices 

If the data rate of the communication link drops due to bad 

radio conditions, an alert could be sent to the drone 
inspecting the field. Based on the alert, the drone could 

change to a lower resolution codec and thereby adapt the 
video streaming quality to the link capacity. 

Defining and changing QoS 

parameters of individual 

device connections 

If the QoS parameters for the communication links of drones 

are low, the resolution of the images taken by the drone 

camera would also be low. By changing or increasing the 
relevant QoS parameters of the communication link, the 
resolution of the image or video could be increased, and 

the diseased crop can be identified more easily. 

Getting location information 

of devices 

For future use cases, it would be relevant to receive the 

coordinates of the drones location, e.g., the drone can be 
automatically moved from one location to another to 
perform aerial spraying of specific areas with diseased 

crops. 

 Defining a 5G-enabled advanced smart industry 
use case  

This subchapter describes a 5G-enabled advanced IoT-NGIN use case for the smart industry 
domain. This use case was defined based on the investigations on IoT-NGIN use case 

requirements and of how the 5G Device Management API could be beneficial to them in 
future years.  From the smart industry domain, one of the IoT-NGIN use cases, specifically the 

IoT-NGIN Use Case 6 – “Human-centred safety in a self-aware indoor factory environment”, 
was considered as the basis for defining a more advanced use case including the 5G Device 
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Management API. Both the original use case and the 5G-enabled advanced use case will 
be defined in this subchapter. 

The IoT-NGIN Use Case 6 - Human-centred safety in a self-aware indoor factory environment  

Figure 67 illustrates IoT-NGIN Use Case 6, which is based on the needs of a factory owned by 

IoT-NGIN partner BOSCH. This use case focuses on detecting human workers in the factory 

with safety cameras, ultra-wide band sensors and Radio Frequency Identification (RFID) 
nodes and avoiding collisions between Automated Guided Vehicles (AGVs) and human 
workers walking on the factory floor as described in D1.1  [39]. The main objective of this use 

case is to improve the safety of workers in factories by enabling automated operations, 
particularly in those where workers and AGVs are working together  [39]. 

In a factory setting, many such AGVs, safety cameras and workers will be on the factory floor. 

A representative scenario for this use case, illustrated in Figure 67, shows an AGV moving in 

a factory on the left, some workers walking in the factory floor in the middle section of the 
illustration and typical safety cameras in the factory used to detect people on the factory 
floor are shown on the right. The location data from sensors, RFID nodes and cameras are 

transmitted in the uplink direction to relevant IoT-NGIN AI/ML services for processing, whereas 
the control data is transmitted in the downlink direction from the AI/ML services to the AGVs 

to perform specific operations such as “start to follow a new and optimal route”, or “brake 
as there is a human or obstacle nearby”. 

         

Figure 67 – Automated Guided Vehicles in the factory, workers walking in the factory, safety 

cameras deployed in the factory. 

The 5G-enabled advanced smart industry use case based on IoT-NGIN Use Case 6 

As many devices need to be connected to each other to maintain safety in a factory, the 

use of the 5G Device Management API was considered as beneficial for the smart industry 

use case described above. The 5G Device Management API can be used to manage 5G 
devices, connect them to the 5G network and monitor their connectivity statuses to support 

and improve automated operations and safety for the human workers in the factory. An 
advanced use case and a solution architecture for this use case were defined based on the 
IoT-NGIN’s smart industry use case 6 and illustrated in Figure 68. 
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Figure 68 – Solution architecture defined for the 5G-enabled advanced smart industry use case. 

As illustrated in Figure 68, the solution architecture consists of an authorised user from the 
smart industry domain, such as a human worker in a factory, a 5G mobile network hosting 
the 5G Device Management API, its GUI and edge cloud for hosting relevant IoT-NGIN AI/ML 

services, and some devices needed for the use case, such as safety cameras and ultra-wide 
band sensors. The characteristics of the data being transmitted from safety cameras and 

from ultra-wide band sensors differ as the safety cameras need to send video streams or 
pictures from the factory floor and require high bandwidth, whereas the ultra-wide band 

sensors need to send localization information about moving objects or obstacles and require 
less bandwidth compared to the safety cameras. For the use case, it was considered to split 
these two entities into two different device groups. Thus, the factory worker can group all 

safety cameras into a “Cameras Group” carrying the videos and pictures from the obstacles 
or moving objects in the factory and set the QoS requirements of their communication links 

to “high” values. Alternatively, she can group all ultra-wide band sensors into a “Sensors 
Group” carrying the localization information of the obstacles and objects in the factory.  

In addition, to increase the security of the human workers in the factory and avoid potential 

incidents, the communications system needs to be reliable, the latency of data transmissions 
should be low, and the data processing should be done on the edge cloud, as near as 

possible to the devices. Having device groups can help to increase the system security, as 
the data traffic in one group is isolated from that of the other groups. This can reduce the 

chances of having communication problems in both groups for all devices and increase the 
chances of AI/ML services receiving at least some data to process and detect any potential 
collisions. 

The potential benefits of the 5G Device Management API defined for the 5G-enabled 

advanced smart industry use case  

The potential benefits of the 5G Device Management API for IoT-NGIN use case 6 are 

summarised in Table 17. The examples given for IoT-NGIN smart industry use case 6 are not 
only related to the current descriptions of the use case studied in IoT-NGIN, but they also 

include potential future use cases based on enhancing the scenario and communications 
features of use case 6. 
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Table 17 – Potential benefits of the 5G Device Management API to the 5G-enabled advanced smart 

industry use case. 

5G device management 

API feature 

Example - Why would a smart industry use case 

need/benefit from this API feature? 

Provisioning and 

onboarding devices 

Easy connection of devices or disconnection of devices 

from the 5G network is enabled. 

Getting a list of devices When there are many 5G devices available in a factory, it 

can be challenging to see which devices are powered on 

and still connected to the 5G network. Through the 5G 
device management API, a user can easily get a list of 

devices connected to the 5G network to see which devices 
are available and active in the network.  

Creating, modifying, and 

removing device groups 

Different communication priorities are needed for different 

operations in a factory. E.g., robot control is the most 
important operation in a factory and its data traffic needs 

high priority, whereas data being recorded for statistical 
purposes is not required so often, and this traffic could have 
a low priority compared to the data traffic for robot control. 

Device grouping helps in this situation by enabling the 
setting of different priorities for different machines, 

algorithms, and operations.  

Monitoring the quality of the 

communication links of 
devices 

Protocols used in Smart Industry use cases require 

deterministic communication. Knowing what packet loss is 
occurring and what latency the communication is 
experiencing is important. High latency in the 

communication to a production line could affect the whole 
line. E.g., if the 5G Device Management API provides the 

service with data on the current packet loss and latency of 
the communications, the service hosted on an edge cloud 

could take a proper action at an early stage avoiding the 
production line being totally stopped. 

Defining and changing QoS 

parameters of individual 
device connections 

The requirements of various operations in a factory can 

differ from each other, e.g., the control of an AGV requires 
low latency communications, whereas sending video 

streams over the 5G link would require higher bandwidth but 
may not be so dependent on low latency. When creating 
two separate device groups, a user can set different QoS 

values for each individual device or for devices in the same 
group. 

Getting location information 

of devices 

When a moving object is detected by sensors or cameras, 

the current location information for that connected asset, 

as well as the geographical coordinates of relevant sensors 
and cameras, could be provided by the 5G device 
management API to relevant services operating in the 

factory. 
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 The demonstration of the 5G Device Management 
API with an IoT-NGIN smart industry use case  

This subchapter describes the demonstration of the 5G Device Management API in relation 

with an IoT-NGIN smart industry use case, namely the IoT-NGIN Use Case 6 – “Human-centred 
safety in a self-aware indoor factory environment”.  

The API procedures used to perform the relevant API features, diagrams illustrating the output 

of these API procedures, and screenshots showing the end-to-end data transmission 
between devices and services hosted on edge cloud are presented in the deliverable. For 

the detailed descriptions of the features of the 5G Device Management API, see D2.2  [12]. 
As an example, Figure 69 demonstrates a replica of the GUI of the 5G Device Management 
API illustrating the resulting end-to-end connections between 5G devices and virtual 

machines on the edge cloud that can host the AI/ML services from IoT-NGIN technologies. 
The API and its related features were used to establish these end-to-end connections and to 

provide monitoring of the connectivity status of these connections. The figure shows the IP 
addresses of communication endpoints assigned by the 5G network to allow them to 

communicate.  

 

Figure 69 – A replica of the API GUI illustrating the end-to-end connections between devices and 

AI/ML services as representatives of the use case 6. 

A set of pre-conditions had to be satisfied before we could start to use the 5G Device 
Management API or its GUI in the laboratory. These pre-conditions were that: 

• The 5G Device Management API implementation is working properly in the laboratory,  

• Raspberry Pis connected to 5G radio modems (called as “5G devices”) are available 

in the laboratory and ready to send data, once they are attached to the 5G mobile 

network,  

• Each 5G radio modem has a SIM card or eSIM available that allows them to be 

authenticated by the 5G mobile network, and that 

• The user is authorised to access to the 5G mobile network, the 5G Device 

Management API and its GUI.   

“Provisioning and onboarding devices” feature of the API: 
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To successfully be onboarded to the 5G mobile network, the subscription identity of each 5G 

device must be provisioned to the network. In the lab environment, multiple Raspberry Pis 
connected to 5G radio modems equipped with unique SIM information were used as 5G 

devices and onboarded to the network through the 5G Device Management API. The steps 
below were sequentially implemented:   

• A unique device name was defined for each device, e.g., “Safety Camera 1”, “Safety 

Camera 2”. 

• General Public Subscription Identifier (GPSI) numbers of devices were provided to the 

5G Device Management API and effectively to the 5G core network. This enables the 
network to authenticate and then successfully onboard the intended device to the 

network. 

• The GPSI numbers of each device were available in SIM cards of the 5G radio modems 

attached to each Raspberry Pis. 

• Four different Raspberry Pis were onboarded separately in the lab environment. Each 

device was connected successfully to the network with default QoS parameters, and 

thus visible on the GUI. 

• After onboarding performed successfully, each device was assigned with an IP 

address by the 5G core network. 

The information of onboarded devices in the API GUI is given in Table 18. 

Table 18 – 5G devices provisioned and onboarded to the 5G mobile network. 

5G Device in the lab 5G Device Name 5G Device GPSI IP address 

“Raspberry Pi 1” connected to 

5G radio modem 

Safety Camera 1 msisdn-xxxx76 10.134.130.2 

“Raspberry Pi 2” connected to 

5G radio modem 
Safety Camera 2 msisdn-xxxx75 10.134.130.3 

“Raspberry Pi 3” connected to 

5G radio modem 

Ultra-wide Band 

Sensor 1 
msisdn-xxxx77 10.134.134.2 

“Raspberry Pi 4” connected to 

5G radio modem 

Ultra-wide Band 

Sensor 2 
msisdn-xxxx78 10.134.134.5 

“Getting a list of devices” feature of the API:  

The user can easily access a list of onboarded devices using the 5G Device Management 

API. Once the feature of “Provisioning and onboarding devices” is successfully performed, 

the list of devices can be requested from the API which responses with the following output: 

• Safety Camera 1 

• Safety Camera 2 

• Ultra-wide Band Sensor 1 

• Ultra-wide Band Sensor 2 

Detailed information of each device was given by the API as a list including the information 
on Table 18. 

“Creating, modifying, and removing device groups” feature of the API:  
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The 5G Device Management API allows the user to create groups of 5G devices serving for 

specific purposes or having the same QoS requirements. To address the requirements of the 
IoT-NGIN Use Case 6, two different device groups were created in the laboratory using the 

5G Device Management API. The steps below were sequentially implemented:   

• Group names and the QoS parameters were defined by the user.  

• The groups were named as “Cameras Group” and “Sensors Group”. 

• The QoS parameters relevant for the Use Case 6 were the priority level and the 

maximum bitrate (uplink and downlink). Therefore, these two parameters were set to 
the required values through the API.  

• After both device groups were created, Security Cameras 1,2 and Ultra-wide Band 

Sensors 1,2 were added to the groups “Cameras” and “Sensors” respectively, and  

• After a device becomes a member of a group, all the QoS parameters set for that 

group are automatically applied to the connectivity characteristics of the device. 

• Table 19 shows the groups created, QoS parameters set for the groups and devices 

added to the groups as group members. 

Table 19 – Device groups created through the 5G Device Management API. 

Group Name 
QoS Parameters 

Group Members 
Priority Level Maximum Bitrate 

Cameras Group High Default 

(104 kbps) 

Security Camera 1 

Security Camera 2 

Sensors Group Medium Default 

(104 kbps) 

Ultra-wide Band Sensor 1 

Ultra-wide Band Sensor 2 

“Monitoring the quality of the communication links of devices” feature of the API:  

The 5G Device Management API enables the user to actively monitor the communication 

link of the devices such as monitoring of latency, packet loss, and bitrate. Among these 
parameters, latency monitoring was performed in the lab environment using the 5G Device 

Management API. The latency monitoring consists of round-trip time (RTT) measurement 
between two endpoints for a given duration of time. 

The 5G Device Management API requires measurement duration and latency window for 

generating a plot. The following settings were used: 

• The measurement duration was defined as 100 seconds meaning that the latency will 

be measured for the upcoming 100 seconds.  

• The latency window was defined as 5 seconds meaning that the latency is measured 

every 5 seconds. 

• As a result, the API measured the latency (RTT) every 5 seconds for 100 seconds and 

showed the results on a plot to the user.  

“Defining and changing QoS parameters of individual device connections” feature of the 

API:  

The user can set different QoS parameters per individual devices in a group through the 5G 

Device Management API. To validate this feature, the QoS parameters of the Security 
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Camera 1 from Cameras group was updated to have maximum bit rate of 2x106 kbps instead 
of the default value of 104 kbps. This process was completed by the 5G Device Management 
API, by sharing the device GPSI to the 5G core network to perform the required actions to 

change the intended parameter. 

“End-to-end data transmission tests”:  

The grouping feature of the 5G Device Management API separated devices into two groups 

and allowed them to only communicate between group members but not with any other 
devices. To check the functionality of the API that has performed necessary steps to establish 

communication links between group members, ping tests were performed as follows: 

• Ping messages using the Internet Control Message Protocol (ICMP) were transmitted 

from Raspberry Pis to the virtual machines which were hosted on the edge cloud in 

the lab environment. 

• The groups were configured to share the data from the devices with two different 

virtual machines hosted on edge cloud acting as two different AI/ML services from 
IoT-NGIN use case 6. As devices on one group should only send their data to one 

specific virtual machine as a feature of device grouping, it was tested and validated 
that the other virtual machine cannot receive this data. 

• The connections between devices and virtual machines were checked whether the 

ping messages were successfully received on the receiver side, and the echo reply 
message was received on the transmitter side. 

The first set of tests was conducted for the devices added to the Cameras group. A cluster 

of ping messages were transmitted from a Raspberry Pi to each virtual machine acting as a 
AI/ML service hosted on edge cloud. 

• As seen in Figure 70, from Security Camera 1 to the Service 1, cluster of ping messages 

were transmitted. Messages received successfully which indicates the existence of 
the connection between two endpoints. 

 

Figure 70 – End-to-end data traffic between Security Camera 1 and Service 1. 

• As seen in Figure 71, from Security Camera 1 to the Service 2, cluster of ping messages 

were transmitted. Messages could not be received successfully by the receiver and 

failed, which was the desired output. This indicates that the connection between 
these two endpoints does not exist, and the Raspberry Pi in Cameras group can only 
share its data with the Service 1 that it is connected to.  
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Figure 71 – End-to-end data traffic between Security Camera 1 and Service 2. 

The second set of tests was conducted for the devices added to the Sensors group. A cluster 

of ping messages were transmitted from a Raspberry Pi to each service hosted on edge 
cloud. 

• As seen in Figure 72, from Ultra-wide Band Sensor 1 to the Service 2, cluster of ping 

messages were transmitted. Messages received successfully which indicates the 
existence of the connection between two endpoints. 

 

Figure 72 – End-to-end data traffic between Ultra-wide Band Sensor 1 and Service 2. 

• As seen in Figure 73, from Security Camera 1 to the Service 1, cluster of ping messages 

were transmitted. Messages could not be received by the receiver and the ping test 
was failed, which was the desired output. This indicates that the connection between 

these two endpoints does not exist, and the Raspberry Pi in the Sensors group can 
only share its data with the Service 2 that it is connected to. 

 

Figure 73 – End-to-end data traffic between Ultra-wide Band Sensor 1 and Service 1. 
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 Conclusion 

The objectives of tests conducted with the 5G Device Management API were to: 

• realise a 5G-enabled advanced use case from the use cases studied in IoT-NGIN in a 

laboratory environment,  

• demonstrate the 5G Device Management API in use,  

• describe potential benefits of the API on different vertical domains, and to  

• demonstrate the API features through its GUI with a 5G-enabled advanced use case 

defined for the smart industry domain. 

The results of the tests with the 5G Device Management API proof-of-concept validated that 

the API, its features, and its GUI, were working correctly. They showed that the ping tests were 
successfully run on the 5G device and on the 5G edge cloud. With these simple ping tests, 

we could show that operations, such as onboarding devices to the 5G network, creating 
isolated device groups, and monitoring the quality of the communication links of the devices, 
were simplified by using the API GUI. 

Using the 5G Device Management API, it is possible to offer the ability to manage and 

monitor the 5G connectivity of devices to users or developers from any vertical domain, 

especially to those domains studied in IoT-NGIN. Furthermore, the API makes it possible to 
integrate more devices to mobile networks, automate their operations, and adopt 5G into 

private infrastructures in a faster and simpler manner. For instance, a worker from an industrial 
factory gains the capability to onboard more of their 5G-capable safety cameras and ultra-
wide band sensors to a private 5G network serving the factory floor, to group their devices 

according to their location into various device groups, and to monitor the quality of the 
communication links of the 5G devices used in the factory. 
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6 Conclusions  
In this deliverable the main activities of the IoT-NGIN project towards integration, instantiation 

in the Living Labs, as well as validation activities, focussed on 5G enhancements, have been 
presented. 

Specifically, the integration of the IoT-NGIN framework based on the principle of cloud-native 

computing and through DevSecOps has been presented. GitLab CI/CD and Kubernetes are 
the main tools to automate the integration, build, testing and deployment processes to the 

extent possible and realise a cloud-native IoT-NGIN framework. 

Moreover, the component-level architecture has been updated, following the realm of the 

work across the development teams of the project, while considering support of the LL use 
cases. The integration of IoT, edge and cloud, as well as the integration of ML services 

through the MLaaS platform have been also discussed. The current state of the IoT-NGIN 
framework configuration and deployment has been presented, based on the Helm charts 
for IoT-NGIN components and custom automation scripts. 

Next, the usability of the IoT-NGIN framework is proven through use case specific 

instantiations of the architecture in the context of the 10 use cases across the 4 Living Labs 

of the project. Business-specific functionality is also presented, to leverage and complement 
the IoT-NGIN functionality in the relevant use cases. 

On the validation side, results of validation tests of the 5G enhancements have been 

presented. These include latency performance tests of live 5G in a laboratory environment, 
as well as tests investigating an advanced 5G feature prototype for prioritizing and pre-

scheduling uplink data and potentially improving network performance for IoT-NGIN use 
case data streams. In addition, the performance of a live 5G in a laboratory environment 

supporting the communication required by the edgePMU hardware is validated. Last, but 
not least, TSN tests on CMC laboratory based on 5G Core connected to Analog Devices off-

the-shelf TSN switches to validate they get in sync. 

Moreover, IoT-NGIN components, also in the context of specific use cases, have been tested, 

including the D2D communication enhancements and the new version of the edgePMU, 

featuring 5G connectivity. The 5G Device Management API has been tested against the use 
cases, showcasing its value in the Smart Agriculture and Smart Industry domains. Moreover, 

business specific functionality tests have been successfully conducted and presented. 

The validation results will feed enhancements in the development of the IoT-NGIN 

components for the next integration cycle. 

The future work includes integration towards the final version of the IoT-NGIN platform, as well 

as laboratory testing and evaluation results of the integrated prototype comprised by the 

complete spectrum of the project’s developed technical solutions. The work will be 
documented in D6.3 “Interoperable IoT-NGIN meta-architecture & laboratory evaluation”, 

due in the second quarter of 2023.  

The IoT-NGIN framework is available as open source on the project’s GitLab group [9]. 
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Annex 1 edgePMU parameters  
The relation between the different edgePMU parameters is explained in the next paragraphs. 

The packet size is influenced by the number of channels and vectorize. It holds the following 

relation: 

Packet_size = (20 + (number_of_channels – 1) * 4) * vectorize 

For a vectorize of 10 and different numbers of channels, it leads to Table 20. 

Table 20 – edgePMU packet size. 

Number of channels 1 2 3 4 5 6 7 8 

Packet size [bytes] 200 240 280 320 360 400 440 480 

Important to mention is that packet fragmentation occurs if the packet size is larger than 

1472 bytes, i.e., that the original packet is divided into smaller packets so that the channel 

capacity is used more efficiently. The packet limit is determined by the normal Ethernet MTU 
(Maximum Transmission Unit) which is 1500 bytes but without the IP header (20 bytes) and 

without the UDP header (8 bytes).   

The message period is computed by  

Message_period = vectorize / sample_rate 

The throughput is influenced by the number of channels and the sampling rate. It follows the 

relation: 

Throughput = 8 * (20 + (number_of_channels – 1) * 4) * sampling_rate 

The throughput has a factor 8 so that it is calculated in bits per second. To give an example, 

Table 21 presents the throughput for a fixed sampling rate of 50kHz. 

Table 21 – edgePMU throughput. 

Number of channels 1 2 3 4 5 6 7 8 

Throughput [Mbps] 8 9.6 11.2 12.8 14.4 16 17.6 19.2 

 

An overview of all traffic patterns is given in Table 22. 

Table 22 – edgePMU traffic patterns. 

Number of 

channels 

Sampling 

rate 

[samples/s] 

Vectorize 

[samples/packet] 

Packet size 

[bytes] 

Throughput 

[Mbps] 

Message 

period [ms] 

1 – 8 20k – 50k 10 – 200 200 – 9,600 3.2 – 19.2 0.2 – 10 
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Annex 2 IoT-NGIN Integration RoadMap 
 

 

Table 23 – IoT-NGIN components details and interfaces. 

IoT-NGIN components details Interfaces 

 

Component 

Name 

WP/ 

Task 

DESCRIPTION INPUT 
(from comp. x, 

y,z) 

OUTPUT 
(to comp. x, 

y,z) 

Other Dependencies 

Secure Edge 
Cloud framework 

(for IoT micro-
services) 

WP2 An innovative “by design” framework 
using the most advanced 

programming language in security 
(Rust) and unikernels to support 
secure, deployable and scalable 

edge cloud execution framework for 
IoT focused micro-services. 

MLaaS, Virtual 
Infrastructure 

Manager (VIM)  

Virtual 
Infrastructure 

Manager (VIM), 
MLaaS  

Apache TVM, 
TensorFlow, Pillow, 

Ninjga 

5G Resources 
Management API  

WP2 Open 5G Resources Management 
API to enable IoT devices to access 

the IoT-NGIN resources, providing 
connectivity, along with its native 
secure, tactile, low-latency and 

reliable connectivity facilities. 

IoT devices 
(outside world), 

Slice & 
Orchestration 

Engine, Network 

Controller API, 5G 
device 

management API 

IoT devices 
(outside world), 

Slice & 
Orchestration 

Engine, Network 

Controller API, 
5G device 

management 
API 

Microservices 
Management API, 

Network Controller API, 
5G Device 

Management API 
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Slice & 
Orchestration 
Engine (Nework 

Controller API) 

WP2 The 5GC includes network slice 
manager to separate devices and 
traffic with different requirements i.e. 

IoT traffic from consumer data. The 
5GC includes features such as 

5GLAN, TSN required specifically for 
private installation and integration 
with industrial infrastructure. 

5G Resource 
Management API  

5G Resource 
Management 

API (RAN 

controller, 
MANO, VIM) 

Industrial 5G Core with 
network slice manager 

5G device 
management API 

WP2 This API aims to enable IoT devices to 
access the IoT-NGIN resources, 

providing connectivity, along with its 
native secure, tactile, low-latency 

and reliable connectivity facilities. 

5G Resources 
Management API  

IoT devices 
(outside world) 

5G resource 
management API, 5G 

Core Network 
Functions  

Device-to-Device 
communication 

(5G Coverage 
Extension) 

WP2 D2D API which allows enhanced 
connectivity of IoT devices in 5G 

networks, implementing an 
advanced relay selection strategy, 

based on experimental evaluation of 
D2D links, as well as information 

sharing with the underlying 
infrastructure. 

TSN Bridge, 
Network 

Controller API 

5G Core 
Network 

Functions, IoT 
devices 

(outside world) 

 TSN Bridge 

 
 

Privacy Preserving 

Federated 
Learning  

WP3 The Privacy-preserving Federated 

Learning framework allows the 
development of more efficient ML 

models, which are trained 
considering data from multiple 

sources with increased privacy 
guarantees, without disclosing the 
data and protecting the information 

communicated, which could lead to 
data disclosure. 

PPFL API PPFL API PPFL API 



H2020 -957246    -   IoT-NGIN  

 
D6.2 – Integrated IoT-NGIN platform & laboratory testing results 

 

128 of 137 

 

PPFL API WP3 API that exposes Privacy Preserving FL 
interfaces, facilitating the 
communication with IoT cybersecurity 

and data privacy components (MAD 
and GAN-based attack dataset 

generator). 

GAN-based 
attack dataset 

generator, 

Privacy preserving 
federated ML 

MAD, Privacy 
preserving 

federated ML, 

MLaaS 

MLaaS, Privacy 
preserving federated 

ML 

MLaaS WP3 MLaaS platform offering AI scientists 
and developers Data Management, 
ML training, Model Sharing and 

Prediction as a service, offering APIs 
and/or SDK to train and optimize AI 

models, supporting self-learning 
capabilities 

Reinforcement 
Learning 

framework, Online 

Learning 
framework, 

Malicious Attack 
Detector (MAD). 

PPFL API,  

Reinforcement 
Learning 

framework, 

Online Learning 
framework, 

Polyglot model 
sharing, IoT 

Device 

Discovery, 
Secure edge 

cloud 
execution 

framework 

kubeflow, Kserve, 
Kafka, Camel-k, MINIO, 

Flower, Mlflow, 

Mosquito MQTT, Nginx, 
ONNX, Rust 

Online Learning 
Framework 

WP3  Online Learning (OL) service is 
responsible for i) the dynamic training 

of ML models for IoT applications, 
such as those implemented for the 

different Living Lab apps, as data 
become available, and also ii) for 

providing inferences (i.e., 

predictions), from these models, 
when requested. 

MLaaS MLaaS MLaaS 
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Reinforcement 
Learning 
Framework 

WP3 Depending on the algorithm of 
choice, the service will handle the 
lifecycle of the necessary 

components for the algorithm 
development and implementation. 

MLaaS MLaaS MLaaS 

Polyglot Model 
Sharing 

WP3 Polyglot model sharing facilitates the 
communication of the ML models so 
that ML engineers, data scientists or 

AI developers who can use them as-is 
or for transfer learning. MLaaS uses a 

Polyglot Model Sharing 

MLaaS, IoT 
devices (outside 

world) 

IoT devices 
(outside world) 

ONNX is used as library  

Device Indexing WP4 The IoT Device Indexing component 

enables the creation of a repository 
of IoT devices, allowing quickly 
querying about their status, basic 

characteristics and associated 
monitoring or other regularly updated 

information, thus indexing both the 
physical and digital twin of IoT 

devices. 

IoT Devices 

access control, 
IoT/ML/AR service, 

IoT Vulnerability 

crawler, MTD 
network of 

honeypots 

IoT Devices 

access control, 
IoT/ML/AR 
service, IoT 

Device 
Discovery, IoT 

Vulnerability 
crawler, MTD 

network of 
honeypots, IoT 

devices 

(outside world)  

FIWARE Orion Context 

Broker, IoT agent, 
Historic Data Registry 

IoT Devices 

Access Control 

WP4 Security middleware between IoT 

devices and services, enabling 
pervasive security based IoT access 

control, extending static access rights 
by managing user rights by physical 
proximity or visibility as a flexible 

security and policy management API 
gateway 

SSI, MTD network 

of Honeypots, IoT 
VC, IoT Device 

Indexing, 
IoT/ML/AR 

serivces, IoT 

Device Discovery 

MTD network of 

Honeypots, IoT 
VC, IoT Device 

Indexing, 
IoT/ML/AR 

serivces 

Keycloak 
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IoT Device 
Discovery 
(Computer-vision) 

WP4 Discovery method based on 
computer vision implementing a 
function for object recognition.  

IoT/ML/AR 
Service, IoT 

Device Access 

control, MLaaS, 
IoT Device 

Indexing 

IoT/ML/AR 
Service and IoT 
Device Access 

control 

  

IoT Device 
Discovery 

(Computer-vision) 

WP4 Discovery method based on 
computer vision implementing a 

function for face recognition.  

IoT/ML/AR 
Service, IoT 

Device Access 
control, MLaaS, 

IoT Device 
Indexing 

IoT/ML/AR 
Service and IoT 

Device Access 
control 

  

IoT Device 
Discovery (Visual 
Light Positioning - 

VLP) 

WP4 Positioning based on frequency 
identification and clustering 

IoT/ML/AR 
Service, IoT 

Device Access 

control, MLaaS, 
IoT Device 

Indexing 

IoT/ML/AR 
Service and IoT 
Device Access 

control 

  

IoT Device 

Discovery (Ultra 
Wide Band - UWB) 

WP4 Ultra-Wide Band positioning which is 

non-visual but based on radio signals 
based on positioning algorithm in 
NLOS (Non Line-Of-Sight) situations or 

noisy scenarios. 

IoT/ML/AR 

Service, IoT 
Device Access 
control, MLaaS, 

IoT Device 
Indexing 

IoT/ML/AR 

Service and IoT 
Device Access 

control 

  

IoT Device 
Discovery (Code 

Scanning) 

WP4 The component is provided to cover 
the QR scanning needs of Uc 

IoT/ML/AR 
Service, IoT 

Device Access 
control, MLaaS, 

IoT Device 

Indexing 

IoT/ML/AR 
Service and IoT 

Device Access 
control 
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GAN-based Data 
Generator 

WP5 GAN-based dataset generator is 
used to create data poisoning 
attacks in FL. 

N/A MAD, PPFL API Malicious Attack 
Detector (MAD)  

Decentralized 
Interledger Bridge 

WP5 Interlinking different types of 
distributed ledgers with atomic 
transactions enables new types of 

services and helps overcome the 
limitations of individual ledgers. 

N/A SSI, Semantic 
Twin, Polyglot 
model sharing 

  

Privacy Preserving 
Self-Sovereign 
Identities (SSI) 

WP5 Proof-of-concept prototypes 
demonstrate how self-sovereign 
identities can be used to increase 

trust in IoT-applications while still 
effectively protecting the privacy of 

different parties. 

DIB IoT Devices 
Access control, 
Semantic Twin, 

Digital Twin 

  

Malicious Attack 

Detector (MAD) 

WP5 Malicious Attack Detection against 

model and data poisoning attacks in 
Federated Learning networks. The 
approach employs ML techniques via 

Generative Adversarial Networks to 
learn and detect poisoning attacks in 

malicious nodes. 

GAN-based 

attack dataset 
generator, PPFL 

API 

MLaaS   

IoT Vulnerability 

Crawler 

WP5 IoT Vulnerability Crawler able to 

identify vulnerable IoT nodes from 
network security perspective, 
leveraging on awareness of known 

vulnerabilities appearing in relevant 
well-known open repositories. 

IoT Devices 

Access control, 
IoT Device 
Indexing 

MTD network of 

Honeypots 
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Semantic Twins WP5 Semantic twin provides a semantic 
description of the digital twins and 
the related real-world entities, e.g., 

API endpoints, identity, relations to 
other twins, etc., incorporating digital 

Self-Sovereign Identities and SAREF 
ontologies 

DIB, SSI Digital Twin, IoT 
devices 

(outside world) 

  

Moving Target 

Defense (MTD) 
Honeypot 

Framework 

WP5 The Moving Target Defence (MTD) 

can be exploited as part of an 
integrated cybersecurity solution or 

as a stand-alone cyber-defence 
mechanism offered either as a 

product or as a service that also 
includes the IoT network analysis 
process for added value. The latter, 

enables the option for providing a 
domain specific service. 

IoT Devices 

Access control, 
IoT Device 

Indexing, IoT 
Vulnerability 

Crawler 

IoT Devices 

Access control, 
IoT Device 

Indexing 

  

Quorum Network WP6 Auxiliary Ethereum-based blockchain 
service (private) 

 N/A DIB  Auxiliary private 
blockchain network  

Smart Cities ML 
model(s) 

WP7 Vehicle recognition, Human 
recognition, Crowd management via 

social network  

N/A N/A To be integrated and 
available via the 

MLaaS 

Smart Industry ML 
model(s) 

WP7   N/A N/A To be integrated and 
available via the 

MLaaS 
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Smart Agriculture 
ML model - Crop 
disease detection 

T6.2 UC4.  Crop disease detection based 
on drone images 

N/A N/A To be integrated and 
available via the 

MLaaS 

Smart Agri ML 
model -Object 
detection 

T6.2 Object detection model N/A N/A To be integrated and 
available via the 

MLaaS 

Smart Agri 
application (UC5) 
- Collision 

Avoidance 

T6.2 Collision avoidance IoT Device Access 
Control, IoT 

Device Indexing  

IoT Device 
Access Control, 

IoT Device 

Indexing  

 MLaaS 

Smart Agri 

application (AGV 
management) 

T6.2 • AGV configuration and 

management 

  IoT Device 

Access Control, 
IoT Device 
Indexing 

 IoT Device 

Access Control, 
IoT Device 
Indexing 

  

Smart Agri web-

application 
(Precision 
agriculture) 

T6.2 • Including AI service for crop disease 

prediction 
• Will provide crop disease 
predictions to the user 

• Will provide SynField data to the 
user 

• Will allow the user to send actuation 
commands to the SynField devices 

IoT Device 

Discovery 
(computer 

vision) , 

IoT Device 
Discovery (QR), 

IoT Devices 
Access Control 

IoT Device 

Discovery 
(computer 

vision), Device 

Discovery (QR), 
IoT Devices 

Access Control 
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Smart Energy 
Web Application - 
DSO dashboard 

T6.2 Distribution System Operator (DSO) 
Dashboard  

MLaaS, IoT 
Devices Access 

Control, 

Smart Energy 
Marketplace API 

(DSO), 
Generation & 
Consumption 

Forecasting for 
DSO 

IoT Devices 
Access Control 

 

Smart Energy 
Web Application - 

CPO dashboard 

T6.2 Charging Point Operator (CPO) 
Dashboard  

IoT Devices 
Access Control, 

EV flexibility 
forecast, Demand 

Response 

Marketplace API 
(CPO), 

Generation & 
Consumption 

Forecasting 
(DSO)  

Demand 
Response 

Marketplace 
API (CPO), 

Generation & 

Consumption 
Forecasting 

(DSO), IoT 
Devices Access 

Control  

  

Smart Energy ML 

model DSO 

T6.2 Energy production & consumption 

forecasting system for DSO 

N/A  N/A  MLaaS  
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Smart Energy ML 
model (CPO) 

T6.2 EV potential flexibility provision 
forecasting system for CPO 

N/A   N/A MLaaS 

Smart Energy 
Marketplace API 
(DSO) 

T6.2 Demand Response blockchain-based 
marketplace for DSO 

 DSO Dashboard 
(web app), DIB 

 DSO 
Dashboard 

(web app), DIB 

  

Smart Energy 
Marketplace API 
(CPO) 

T6.2 Demand Response blockchain-based 
marketplace for CPO 

 DIB, CPO 
Dashboard (web 

app) 

 DIB  EMOTION server, 
CPO/EV users 

Smart Energy AR 
Tool  

T6.2 Device discovery & access control 
module for CPO 

EV user app 
(mobile app) 

IoT Device 
Access Control, 
IoT Device 

indexing 
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Annex 3 IoT-NGIN components’ HELM-charts 
 

 

Figure 74 – Device Indexing Helm-chart. 

 

Figure 75 – MTD Honeypot framework Helm-chart. 
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Figure 76 – IoT Vulnerability Crawler Helm-chart. 

 


	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended Audience
	1.2 Relations to other activities
	1.3 Document overview

	2 Integration of IoT-NGIN Components
	2.1 Continuous Integration – Continuous Deployment
	2.1.1 GitLab Agent
	2.1.2 Integration Steps
	2.1.2.1 Dockerfile
	2.1.2.2 Kubernetes Manifest
	2.1.2.2.1 Deployment
	2.1.2.2.2 Service
	2.1.2.2.3 Secret
	2.1.2.2.4 PersistentVolumeClaim
	2.1.2.2.5 Ingress

	2.1.2.3 GitLab CI/CD Pipeline


	2.2 The IoT-NGIN integrated framework
	2.2.1 IoT-Edge-Cloud computing integration
	2.2.2 Integration of ML services to MLaaS
	2.2.3 Configuration & Deployment of the IoT-NGIN platform
	2.2.3.1 IoT-NGIN platform integration considerations
	2.2.3.2 Integration phases and time-plan
	2.2.3.3 IoT-NGIN Integrated Platform (1st version)



	3 IoT-NGIN implementation for Living Lab Use Cases
	3.1 Human-Centred Twin Smart Cities Living Lab
	3.1.1 UC1 - Traffic Flow Prediction & Parking prediction
	3.1.1.1 Business-specific components
	3.1.1.1.1 Traffic simulation model
	3.1.1.1.2 Traffic controllers
	3.1.1.1.3 Drivers’ application
	3.1.1.1.4 Installers’ application


	3.1.2 UC2 - Crowd Management
	3.1.2.1 Business-specific components
	3.1.2.1.1 Crowd simulation solutions
	3.1.2.1.2 Crowd control model
	3.1.2.1.3 Pedestrians’ application
	3.1.2.1.4 Installers’ application


	3.1.3 UC3 - Co-commuting solutions based on social networks
	3.1.3.1 Business-specific components
	3.1.3.1.1 Co-commuting platform
	3.1.3.1.2 Driver and pedestrian mobile application (3rd part applications)



	3.2 Smart Agriculture Living Lab
	3.2.1 UC4 - Crop diseases prediction. Smart irrigation and precision aerial spraying
	3.2.1.1 Business-specific components
	3.2.1.1.1 Smart Agri application
	3.2.1.1.2 Crop disease prediction


	3.2.2 UC5 - Sensor aided crop harvesting
	3.2.2.1 Business-specific components
	3.2.2.1.1 Smart Agri robot application
	3.2.2.1.2 Collision avoidance



	3.3 Industry 4.0 Living Lab
	3.3.1 UC6 - Human-centred safety in a self-aware indoor factory environment
	3.3.1.1 Business-specific components
	3.3.1.1.1 Device application
	3.3.1.1.2 Collision detection


	3.3.2 UC7 - Human-centred augmented reality assisted build-to-order assembly
	3.3.2.1 Business-specific components
	3.3.2.1.1 Device application


	3.3.3 UC8 - Digital powertrain and condition monitoring
	3.3.3.1 Business-specific components
	3.3.3.1.1 Condition monitoring software



	3.4 Smart Energy Living Lab
	3.4.1 UC9 Move from reacting to acting in smart grid monitoring and control
	3.4.1.1 Business-specific components
	3.4.1.1.1 DSO dashboard
	3.4.1.1.2 Generation and consumption forecasting for DSO
	3.4.1.1.2.1 Grid Optimization

	3.4.1.1.3 Demand Response marketplace API (for DSO)


	3.4.2 UC10 Driver-friendly dispatchable EV charging
	3.4.2.1 Business-specific components
	3.4.2.1.1 CPO Dashboard
	3.4.2.1.2 EV user application
	3.4.2.1.3 Generation and consumption forecasting (for DSO)
	3.4.2.1.4 EV flexibility forecast
	3.4.2.1.5 Demand Response marketplace API (for CPO)




	4 Implementation and testing the performance of 5G as the communications network for IoT-NGIN use cases
	4.1 5G latency performance tests of project use cases
	4.1.1 Description of 5G laboratory infrastructure and the test methodology
	4.1.2 Results of 5G latency tests of IoT-NGIN use case synthetic data streams
	4.1.3 Results of 5G latency tests of a prototype service-adaptive prescheduling feature
	4.1.4 Conclusion of the 5G latency tests of project use cases and of the prototype prescheduling feature

	4.2 5G latency performance tests of edgePMU data streams
	4.2.1 Introduction to the edgePMU concept
	4.2.2 Description of 5G laboratory infrastructure and the test methodology for 5G edgePMU tests
	4.2.3 Results of 5G latency tests of edgePMU data streams
	4.2.4 Conclusion of the 5G latency tests edgePMU data streams

	4.3 Implementation and testing of TSN networks
	4.3.1 Description of the laboratory configuration and the test methodology
	4.3.2 Results of tests of TSN synchronization
	4.3.3 Conclusion of the test series of TSN synchronization


	5 Testing the IoT-NGIN components and evaluation of specific use cases
	5.1 D2D Communication
	5.1.1 Introduction
	5.1.2 Testing Scenario
	5.1.3 D2D Application
	5.1.4 Evaluation methodology

	5.2 edgePMU
	5.2.1 Test description
	5.2.2 Testing scenarios
	5.2.3 Tests for edgePMU Objective 1
	5.2.4 Tests for edgePMU Objective 2

	5.3 DSO Dashboard
	5.3.1 Test description
	5.3.2 Test outcomes

	5.4 Augmented Reality App
	5.5 Testing of the 5G Device Management API with IoT-NGIN use cases
	5.5.1 Introduction
	5.5.2 Defining a 5G-enabled advanced smart agriculture use case
	5.5.3 Defining a 5G-enabled advanced smart industry use case
	5.5.4 The demonstration of the 5G Device Management API with an IoT-NGIN smart industry use case
	5.5.5 Conclusion


	6 Conclusions
	7 References
	Annex 1 edgePMU parameters
	Annex 2 IoT-NGIN Integration RoadMap
	Annex 3 IoT-NGIN components’ HELM-charts

