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Executive Summary 
Machine Learning is the cornerstone for the evolution of our technological life, as it adds 

growing intelligence to entities and ecosystems in our surroundings. IoT-NGIN provides a set 
of tools aimed for enhancing IoT intelligence and thus closely relate to ML processes. 

Specifically, the main outcomes towards this goals reported in this deliverable include: 

• The technical specification of the IoT-NGIN MLaaS platform. The MLaaS platform 

architecture adopts a microservices’ based architecture, leveraging the state-of-the-
art open sources tools, and supporting the complete ML lifecycle from data collection 

to model serving. Moreover, its instantation for the purposes of the project is 
presented. 

• The technical specifications of the IoT-NGIN enhanced ML techniques, namely the 

Online Learning framework, as well as the Reinforcement Learning framework. For 
both techniques, the technical design is accompanied by implementations in the 
context of the Smart Energy Living Lab. 

• The technical design of the Privacy-Preserving Federated Learning framework. The 

report presents the high-level design for providing federated learning as a service and 
proceeds with the analysis of three state-of-the-art FL frameworks enhanced with 

privacy preservation techniques: 
o NVIDIA FLARE is experimented under an image classification task, investigating 

the model performance under 3 privacy preservation techniques. 

o Τhe IoT-NGIN FedPATE framework is presented, as a result of integrating Flower 
with PATE, supported by experimental investigation of the model performance 

against privacy preservation under image classification. 
o Tensorflow Federated is investigated under privacy preservation for intrusion 

detection in network logs’ datasets. 

• Open source implementation of the aforementioned platform and frameworks, 

followed by comprehensive guidance on their deployment, allowing their 
deployment and testing by third parties. The IoT-NGIN open source developments are 

available at the project’s public GitLab group at: https://gitlab.com/h2020-iot-ngin. 

The future work refers to enhancements towards the finaizaiton of the tools, as well as the 

integration of these developments within the IoT-NGIN framework. The updates towards 
these goals shall be reported in deliverable D3.4 “ML models sharing and Transfer learning 
implementation” due in the second quarter of 2022. 

 

 

https://gitlab.com/h2020-iot-ngin
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1 Introduction 
Machine Learning (ML) has been disruptive across industries during the past years and 

obviously there is still long way to unleash the full potential of ML in adding intelligence in tiny 
or larger things embracing our personal and professional lives. Nowadays, reliable ML models 

may be found to detect anomalies in health-related images, predict the energy 
consumption for the next days, detect flaws in industrial production lines and in many more 
use cases. Nevertheless, whatever the initial performance of an ML model might be, it could 

still be rendered ineffective, when remaining static, i.e. when it does not learn any more, or, 
e.g. it is difficult to be deployed in different or across devices. 

Putting ML models in production and managing them appropriatey is achieved via MLOps, 

which caters for covering requirements surrounding the whole ML lifecycle, from data 

collection and analysis to serving the model to the desired devices. IoT-NGIN delivers 
integrated MLOps functionality via its Machine Learning as a Service (MLaaS) platform, 
leveraging State-of-the-Art open source tools and extending them appropriately to serve 

computing concepts and paradigms, such as Digital Twins, edge and fog computing,  

Moreover, the way the machine learns affects both its efficiency and its “learning curve”, in 

the sense of how fast it learns. Indicatively, Deep Learning is inspired from human neural 
networks and allows the machine to learn from huge datasets. In Reinforcement Learning, 

the machine would learn out of a process similar to trial and error, while through online 
learning, the dynamic model training takes place on live data. In addition, collaborative 
distributed training can be performed through federated learning, exploiting the knowledge 

residing inside dispersed datasets without disclosing them outside their administrative 
domain. IoT-NGIN provides enhancements towards reinforcement, online and federated 

learning, integrating them into the MLaaS platform and considering privacy preservation in 
distributed schemes. 

The present document, entitled “Enhanced IoT federated deep learning/ reinforcement ML”, 

is the third deliverable of WP3 (D3.3) and reports the activities of Task 3.1 “Big Data and ML 
framework architecture”, Task 3.2 “Deep learning/reinforcement learning techniques to 

enhance training processes” and Task 3.3 “Confidentiality-preserving federated ML models”. 
Moreover, the activities reported in D3.3 align with the objectives of WP3: 

• Define, design and develop a big data management and privacy preserving 

federated ML layer, based on Big Data Value (BDV) Strategic Research and 
Innovation Agenda (SRIA)4.0 [1], to train and share ML models. 

• Implement innovative deep learning/reinforcement learning techniques to enhance 

training processes with inline adaptive self-learning that will improve the resulting 

machine learning models automatically.  

The present document is a technical report which provides technical specifications for the 

MLaaS platform of IoT-NGIN, the Deep and Reinforcement learning techniques developed, 
as well as the Privacy-Preserving Federated Learning framework of IoT-NGIN. 

1.1 Intended Audience 

The intended audience includes ML engineers and developers which may find this report 
inspiring for their research and development efforts as well as ML service providers who aim 

to adopt the IoT-NGIN MLOps paradigm and the enhancements towards reinforcement, 
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online and federated learning. The document provides technical specifications, as well as 
practical guidance allowing interested audience to test and adopt the IoT-NGIN 
developments. The MLaaS platform adopts cloud-native architecture and supports 

deployments towards edge computing. Moreover, the document describes the design and 
implementation of online learning and reinforcement learning techniques, as well as the 

experimental evaluation of federated learning techniques against privacy preservation 
techniques. 

Moreover, the document might be of interest to business users wishing to adopt machine 

learning into their processes. The document provides insights for exploiting the IoT-NGIN tools 
in the context of the Living Lab use cases, which could be indicative for other use cases as 

well. Also, the FL frameworks’ assessment and recommended use per LL use case can be 
helpful guidance for selecting appropriate privacy preserving FL framework in their cases. 

Finally, this report is useful internally, for the project partners which develop ML related 

solutions, perform integration and validation activities, as well as for the Living Labs. Useful 
feedback could be also received from the Advisory Board, including both technical and 

impact creation comments. 

1.2 Relations to other activities 

The activities of WP3 are strongly connected to the rest IoT-NGIN activities, as indicated in 
Figure 1. 

 

Figure 1: Work packages structure. 

 

Considering this, WP3 is related to the work packages and tasks described in Table 1. 
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Table 1: Relation of WP3 activities to other WPs and tasks 

WP Relation to WP3 and D3.3 

WP1 The definition of the Living Labs’ use cases (UCs) and elicitation of 

user/system requirements has served D3.3 for defining the design and 

implementation of the MLaaS platform, of the online and reinforcement 
learning services and the federated learning framework, and providing 

tailored implementations in the context of these use cases. Also, the role 
of the tools and platforms deployed in WP3 shall be represented in the 

meta-architecture resulting by the activities in WP1. 

WP2 The Secure Edge Cloud framework for IoT micro-services shall be 

integrated with MLaaS for secure execution of ML models. 

WP4 The IoT Device Discovery module incorporates ML models, which may 

be trained and served via the MLaaS platform and WP3 learning tools. 

WP5 WP5 develops cybersecurity tools for securing FL operation. These tools 

can work together with the FL modules of WP3 to ensure protection 
against data and model poisoning attacks. Moreover, the WP5 tools are 

based on ML functions, which may be trained and served via the MLaaS 
platform. 

WP6 WP3 components will be integrated with the rest of project’s 

technologies and frameworks within WP6, while the MLaaS platform and 

tools can be useful in the development of application logic for the use 
cases or the Open Calls. 

WP7 WP3 components will be implemented and used in several living labs 

and use cases. 

WP3 will support 3rd parties by offering ML models via MLaaS model 

training and sharing. 

WP8 WP3 will provide notable outcomes and results for supporting impact 

creation activities. Moreover, it will consider feedback (e.g. from the 
market analysis and business modelling tasks) which could be relevant 
for updating or enhancing the WP3 design and development. 

 

1.3 Document overview 

The rest of the document is organized as follows. 

Section 2 presents the technical specifications of the MLaaS platform. It outlines the MLaaS 

architecture, which aims to provide a complete ML system, as well as a consistent 

reproducible and easy-to-install implementation. 

Section 3 presents the IoT-NGIN techniques for online and reinforcement learning. Both the 

technical design and the implementation for the LL use cases are provided. 
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Section 4 is devoted to privacy-preserving Federated Learning. The IoT-NGIN Privacy-

Preserving Federated Learning as a Service (PPFLaaS) is presented, providing access to three 
FL frameworks, which are further experimentally investigated in the context of the LLs. 

Section 5 provides installation and user guidance, as the MLaaS platform and tools will be 

provided as open source. 

Finally, section 6 draws conclusions and next steps. 
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2 IoT-NGIN Machine Learning as a Service 
Framework 

2.1 Introduction 

Deliverable “D3.1” Enhancing deep learning / reinforcement learning” [2] gives an overview 
of the MLaaS state-of-the art, the concepts that applies in the context of IoT-NGIN project, 
and the various use cases. It also describes the expected functional and non-functional 

requirements and the high-level architecture of the MLaaS Platform Concept. This section 
introduces the technical architecture used for the actual implementation of the MLaaS 

framework. The components are discussed as well as the interactions between them. 

There are several MLaaS platforms commercially available either from the big Cloud Service 

Provider (AWS, Azure, GCP) or from specialized companies. However, there are little MLaaS 

frameworks built around open-source projects that cover the whole spectrum of the need 
for a complete end-to-end ML system. Building such a system is a challenge because: 

• Lot of different functions are required to build a complete MLaaS system 

• For the same function, there could be several open-source projects available, and it 

could be a long and complex exercise to choose the right product 

• Projects are usually created for a specific function with little or no consideration for 

integration in a larger system 

• Projects can be very complex to install, manage and use 

• Customizations and adaptations may be needed to the available open source to fit 

the functional and non-functional requirements expected from the MLaaS System 

One of the main goals of the IoT-NGIN MLaaS project is to provide an architecture which 

gives a holistic view on how to possibly create a system that provide a complete ML platform 
in line with the functional and non-functional requirements and the high-level architecture 

of the MLaaS Platform Concept.  This is realized by looking at the available projects in the 
open-source community, selecting components for specific functions and then exploring 

how these components could integrate together to form a comprehensive framework. 
Another goal is to be able to have a consistent reproductible implementation and simplify 

as much as possible the installation. 

As part of the IoT-NGIN project a Minimum Viable Product (MVP) of the MLaaS platform will 

be implemented in order to test some of the selected components and their integrations in 

the platform. This installation will also be used to support the Living Labs tests. 

2.2 Technical architecture overview 

The technical architecture is introduced in figure 2. From a high-level view, it is split into the 
infrastructure hosting environment and the MLaaS components as such. The goal is to have 
the MLaaS components not tied to a specific hosting environment so that MLaaS can be 

deployed in various environments: in a private cloud, in a public cloud, in a simple or more 
complex IT setup. This document gives an overview of these infrastructure components used 

for the MLaaS implementation in the IoT-NGIN project (provided by WP6). However, there 
are some requirements that will have to be fulfilled by the hosting platform to accommodate 

for the MLaaS platform installation.  The MLaaS platform does not mandate specific security, 
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monitoring and managements tools, so the infrastructure provider is free to use its usual tools 
for managing and maintening the infrastructure. For example, on Kubernetes Prometheus 
and Graphana are often used. 

The MLaaS platform implementation aims to provide the following main functions to the users: 

training, deployment of models and prediction. This translates to the need of the following 

technical components: 

• Data 

o Components for data acquisition 
o Components for data analysis 

o Components for data transformation 
o Components for data storage 

• Modelling 

o Components to support training ML model 
o Components for model evaluation 
o Components for continuous learning 

• Deployment 

o Components to deploy models 
o Components to share models 

• Prediction 

o Components for model serving 
o Components for batch prediction 
o Components for real-time prediction 

In the technical architecture these components are grouped in functional blocks as 

highlighted in Figure 2. 

 

Figure 2: MLaaS framework technical architecture. 

As previously highlighted the hosting infrastructure and monitoring/management tools are 

not part of the MLaaS Platform. However, in order to support the MLaaS platform, this 
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infrastructure must provide network access, compute resources, storage service, and 
preferably GPU. For IoT-NGIN, it has been decided to use containers and microservices, 
which means that the infrastructure must support containerization and microservices via a 

Kubernetes cluster. In addition, it is expected that the hosting environment will provide all the 
tools to manage and monitor the MLaaS services as well as some security services.  

 

The blocks of the MLaaS platform are: 

IoT gateway: this group includes components used to receive data from the IoT devices. 

Example of technology that can be used in that layer are: MQTT Broker, CoAP, HTTP/HTTPS, 
OPC-UA, REST proxy. The MLaaS for IoT-NGIN selected MQTT Broker and HTTP/HTTPS for this 

block. 

Messaging layer: this group includes components for a messaging system for event streaming 

that allows passing data between the IoT gateway and some upper layers where the data 
will be consumed. There are also components to interface with the messaging layer, tools 
such as Apache Camel. 

Database: this groups includes components that provides data storage capabilities. Possible 

technologies in this layer are: SQL database, NoSQL database and time series services. 

Big Data: this group includes the components of a Hadoop service. Given the complexity 

and the resources required to implement such a service it will not be included in the MLaaS 

platform from the IoT-NGIN project. Such an addition is left for future work. 

Pipeline/workflow: this group allows the building and deployment of portable, scalable 

machine learning (ML) workflows. For example, the workflow can perform data pre-

processing, data transformation, model training, and so on. 

ML Framework: this group aims to provide the ML framework and libraries that a developer 

can use to train a model. Example of well-known frameworks are Tensorflow, Keras, PyTorch, 
TinyML, scikit-learn and XGBoost. In addition, components for Federated Machine Learning 

are implemented. 

SDK: the SDK provides the necessary environment to develop and test programs. The intent 

of the MLaaS platform is not to provide state-of-the-art IDE so the platform will be limited to 

a simple development environment with Python and possibly the Rust compiler. 

Model Serving: components in this block allow to expose ML model via API so that an 

application can request a prediction from this model. Example of technologies are KFServe, 
TensorFlow serving, TorchServe and Seldon Core. 

Model Sharing: components in this block are used to share the ML models so that ML 

engineers, data scientists or AI developers can use them as-is or for transfer learning. MLaaS 
uses a Polyglot Model Sharing. MLaaS aims to support open format built to represent machine 

learning models and to allow for translating models between the format from popular ML 
framework. An external DLT system can be used to verify model integrity via blockchain 

technology. 

Model Deployment; components that are used for placing a ML model in a live environment 

or in IOT devices and where it can then be used to perform predictions. At the time of this 

writing this part is still for future work. 

Dev tools: this group includes components which intent is to help AI developers. The intent of 

the MLaaS platform is not to provide an state-of-the-art IDE, so the platform will be limited to 
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mainly providing notebook capabilities, some monitoring tools for the training of the ML 
model such as TensorBoard. 

Dev Ops: components in this group are CI/CD tools used to deploy new apps and ML models. 

Examples of technologies are: GitLab runner, Jenkins, Spinnaker, Argo. At the time of this 
writing this part is still for future work. 

Infrastructure as Code (IaC): this block contains the possible YAML files that are used to 

configure the platform. 

2.3 MLaaS platform architectural approach 

One of the constraints for implementing the IoT-NGIN MLaaS platform is that it must be based 
on open-source software in order to make it vendor independent. 

From an architectural point of view, several choices have been done for the implementation 

of the platform. 

The first structural choice has been to rely on containers and microservices, with Kubernetes 

as the managing platform for running and managing containers. Using this microservice 
approach offers the flexibility to select the blocks and components that are deployed in the 

MLaaS platform, depending on the business needs and the hosting environment. Indeed, the 
MLaaS platform can be installed from a relatively lightweight infrastructure like a simple two 

nodes cluster, to a medium size environment like in a private cloud or up to a large 
infrastructure like in a public cloud setup. 

The other main structural choice has been to select between integrating lot of “small” 

components or a single product incorporating the core functions the required in MLaaS 
platform. The first choice,  the Lego approach, tries to integrate  disparate components such 

as, for example,  the Apache Beam, Airflow, TensorFlow, Apache Spark, etc. This approach 
is illustrated in Figure 3. 

 

 

Figure 3: The Lego approach. 

 

In this approach products for each step of the creation of the AI application are 

independently selected from each other. For example, one product is selected for training, 

another for auto-ML, another for creating pipeline and finally one for model serving. It allows 
a careful and ad-hoc choice, possibly tuned for a specific use case, in the selection of the 

components. However, it presents major integration and operating challenges both in term 
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of initial setup, interconnection and evolution as each product has its own logic, console, 
lifecycle and development team.  

The second choice is to use a “all-in-one” approach, where all components are integrated 

and maintain as part of a single product by a single development team. Functions are well 
integrated together allowing for a coordinated lifecycle, simple installation and 

management via a single dashboard. This approach is illustrated in Figure 4. 

 

 

Figure 4: “all-in-one” approach. 

The latter “all-in-one” choice as been chosen and Kubeflow [1] has been selected as the 
integrated platform. The Kubeflow project is dedicated to make deployments of machine 

learning (ML) workflows on Kubernetes simple, portable and scalable. The goal is to provide 
a straightforward way to deploy best-of-breed open-source systems for ML into diverse 
infrastructures running Kubernetes. 

Another choice has been to use a GitOps approach for installation of the platform – see 

https://www.gitops.tech/ for reference describing the GitOps concept. The core idea of 

GitOps is having a Git repository that always contains declarative descriptions of the 
infrastructure currently desired in the production environment and an automated process to 

make the production environment match the described state in the repository which for the 
MLaaS MVP is https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/ml-framework-
architecture.git. In the case of the MLaaS platform, the goal is to be able to easily implement 

the platform in a consistent and reproductive way and also to allow for tracking the changes 
over the time. 

Finally, a number of components have then been selected to create the blocks needed to 

complete the framework and to fulfil the functional requirements.  

2.4 MLaaS platform components 

There are two categories of MLaaS platform software components: 

1. ML Components that are used to develop and run the ML applications. These 

components part of in the blocks shown in the MLaaS Platform in Figure 2. 
2. Infrastructure components that are used to support the implementation of the MLaaS 

components. 

The following sections list the various components used in the IoT-NGIN MLaaS platform. Not 

all the components are mandatory and have to be installed. The users can select only what 

they need. 
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ML Serving
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Note that given the extensive number of components and complexity, not all of the 

components will be tested as part of the IoT-NGIN MLaaS MVP. Installation and test of the 
components not included into the MVP may be tested in the future as the platform develops 

over time. 

2.4.1 ML Components 

Table 2 gives a summary of the ML components selected for the IoT-NGIN MLaaS platform. 

Table 2: IoT-NGIN MLaaS platform ML components. 

Product Usage Description 

Kubeflow 

 

ML framework 

Pipeline/workflow 

Dev tools 

From https://www.kubeflow.org/: 

“Kubeflow is a platform for data scientists who want to 

build and experiment with ML pipelines. Kubeflow is 

also for ML engineers and operational teams who 
want to deploy ML systems to various environments for 

development, testing, and production-level serving”. 

Kubeflow is the central components of the In the 

MLaaS platform providing the following functions: 

Notebooks, model training, Pipelines, Multi-framework 
(PyTorch, Apache MXNet, MPI, XGBoost). 

 

Kserve 

 

ML serving From https://kserve.github.io/website/: 

“KServe is a standard Model Inference Platform on 

Kubernetes, built for highly scalable use cases”. 

In the MLaaS platform, KServe is used for model serving 

allowing users and applications to request predictions 
from a model. 

 

Kafka 

 

Messaging From https://kafka.apache.org/ : “Apache Kafka is an 

open-source distributed streaming system used for 
stream processing, real-time data pipelines, and data 
integration at scale”. 

 

In the MLaaS platform Kafka to exchange messages 

between an IoT gateway and Kubeflow. 

Camel-k 

 

Messaging From https://camel.apache.org/: “Apache Camel K is 

a lightweight integration framework built from Apache 

Camel that runs natively on Kubernetes and is 
specifically designed for serverless and microservice 

architectures. Users of Camel K can instantly run 
integration code written in Camel DSL”. Camel 

https://www.kubeflow.org/
https://kserve.github.io/website/
https://kafka.apache.org/
https://camel.apache.org/
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implements the Enterprise Integration Patterns (EIP) 
which are based on messaging principles. 

In the MLaaS platform Camel-k can be used for 

integration code between Kafka and Kubeflow or 
KServe. 

Minio 

 

Storage From https://min.io/: “MinIO [4] is high-performance 

Kubernetes-native object storage that is compatible 
with the S3 API. MinIO provides a single global 

namespace and a consistent object storage interface 
across multiple cloud providers, on premise and at the 

edge”. 

 

In the MLaaS platform MinIO is used to store models 

and artifacts. 

Flower 

 

FL framework From https://flower.dev/: “Flower is a Friendly 

Federated Learning Framework. It provides a unified 
approach to federated learning. Federate any 

workload, any ML framework, and any programming 
language”. 

 

In the MLaaS platform Flower is planned to bring FL 

capabilities. 

MLFlow 

 

ML framework From https://mlflow.org/: “MLflow is an open-source 

platform to manage the ML lifecycle, including 

experimentation, reproducibility, deployment, and a 
central model registry”. 

 

In the MLaaS platform MLFlow is planned to 

complement Kubeflow for training and parameter 

tuning. 

PostgreSQL 

 

Database From https://www.postgresql.org/: “PostgreSQL is a 

powerful, open-source object-relational database 
system that uses and extends the SQL language 
combined with many features that safely store and 

scale the most complicated data workloads”. 

 

In the MLaaS platform PostgreSQL is planned to store 

and extract structured data for model training for 

example. 

InfluxDB 

 

Database From https://www.influxdata.com/: “InfluxDB is an 

open-source time series platform. This includes APIs for 

storing and querying data, processing it in the 

https://min.io/
https://flower.dev/
https://mlflow.org/
https://www.postgresql.org/
https://www.influxdata.com/
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background for ETL or monitoring and alerting 
purposes, user dashboards, and visualizing and 
exploring the data and more”. 

 

In the MLaaS platform InfluxDB is planned to store and 

extract time series data for model training for example. 

Cassandra 

 

Database From https://cassandra.apache.org/: “Apache 

Cassandra is an open-source NoSQL distributed 

database”. 

 

In the MLaaS platform Cassandra is planned to store 

and extract structured data for model training for 

example. 

Mosquito 

MQTT 

 

IoT Gateway From https://mosquitto.org/: “Eclipse Mosquitto is an 

open source (EPL/EDL licensed) message broker that 

implements the MQTT protocol versions 5.0, 3.1.1 and 
3.1. Mosquitto is lightweight and is suitable for use on 

all devices from low power single board computers to 
full servers”. 

 

In the MLaaS platform MQTT is planned to ingest data 

from IoT Devices or Digital Twins. 

Nginx 

 

IoT Gateway From https://www.nginx.com/: “Nginx (pronounced 

“engine-ex”), is an open-source web server that, is 

now also used as a reverse proxy and ingress 
gateway”. 

 

In the MLaaS platform Nginx is planned to ingest data 

from IoT Devices or Digital Twins. 

ONNX 

 

Model Sharing From https://onnx.ai/ : “ONNX is an open format built 

to represent machine learning models. ONNX defines 

a common set of operators - the building blocks of 
machine learning and deep learning models - and a 
common file format to enable AI developers to use 

models with a variety of frameworks, tools, runtimes, 
and compilers”. 

 

In the MLaaS platform ONNX is used as library by Model 

Sharing service. 

Hadoop 

 

Big Data From https://hadoop.apache.org/ : “The Apache 

Hadoop software library is a framework that allows for 

the distributed processing of large data sets across 

https://cassandra.apache.org/
https://mosquitto.org/
https://www.nginx.com/
https://onnx.ai/
https://hadoop.apache.org/
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clusters of computers using simple programming 
models”. 

 

GitLab 

Runner 

 

Dev Ops From https://docs.gitlab.com/runner/ : “GitLab Runner 

is an application that works with GitLab CI/CD to run 

jobs in a pipeline.” 

 

In the MLaaS platform GitLab Runner is planned for 

setting up CI/CD pipeline which is used for example to 
upload new model into an IoT device. 

Rust 

 

SDK Rust is a language a choice for development targeting 

low-resource devices. 

https://www.rust-lang.org/ 

In the MLaaS platform Rust is planned for development 

of application to be uploaded into IoT device. 

2.4.2 Infrastructure Components 

The infrastructure components can be classified into three categories: 

1. Components which are required for Kubeflow installation. They are the Common 

Services maintained by the Kubeflow Manifests WG [5]. 

2. The components used by the underlying infrastructure provided by WP6 to test the 
MLaaS platform. Other components may be used as long as they provide a similar 

service.  
3. The components that have been selected to help administrator install and support 

the MLaaS platform 

The components for Common Services are listed in Table 3. 

Table 3: Common Services components. 

Product Usage Description 

Istio 

 

Ingress Istio is an open-source service mesh. It is used by several 

components of Kubeflow as well as by the ingress 
gateway. 

https://istio.io/latest/ 

Cert-

manager 
Security From https://cert-manager.io/ : “Cert-manager adds 

certificates and certificate issuers, as resource types, in 

the Kubernetes clusters, and simplifies the process of 
obtaining, renewing and using those certificates. It can 

issue certificates from a variety of supported sources, 

https://docs.gitlab.com/runner/
https://www.rust-lang.org/
https://istio.io/latest/
https://cert-manager.io/
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including Let's Encrypt, HashiCorp Vault, and Venafi as 
well as private PKI”. 

 

In the MLaaS platform Cert-manager is used to generate 

certificates for the Istio and NGINX ingress gateway. It 

used the Let’s Encrypt issuer. 

Knative 

 

Serverless From https://knative.dev/docs/ : “Knative is an Open-

Source Enterprise-level solution to build Serverless and 

Event Driven Applications”. 

 

In the MLaaS platform Knative is used by some 

components of Kubeflow and by KServe. 

Dex 

 

IAM From https://dexidp.io/: “Dex is an identity service that 

uses OpenID Connect to drive authentication for other 
apps”. 

 

In the MLaaS platform Dex is used the default 

authentication service used by Kubeflow and is planned 
to be replaced by Keycloak. 

 

The components used for the underlying IoT-NGIN test infrastructure are listed in Table 4. 

Table 4: Underlying IoT-NGIN  test infrastructure components. 

Product Usage Description 

Nginx 

 

Ingress From https://www.nginx.com/: “Nginx (pronounced 

“engine-ex”), is an open-source web server that, is now also 
used as a reverse proxy and ingress gateway”. 

In the MLaaS platform Nginx is used as an Ingress gateway 

for several services. 

https://www.nginx.com/ 

Ceph 

 

Storage From https://ceph.com/en/ :“Ceph provides a unified 

storage service with object, block, and file interfaces from 

a single cluster built from commodity hardware 
components”. 

 

In the MLaaS platform, Ceph provide the underlying 

storage for the services with the Block storage being the 
default storage class. 

Rook 

 

Storage From https://rook.io/ : “Rook is an open-source cloud-native 

storage orchestrator for Kubernetes, providing the platform, 
framework, and support for a diverse set of storage solutions 

https://knative.dev/docs/
https://dexidp.io/
https://www.nginx.com/
https://www.nginx.com/
https://ceph.com/en/
https://rook.io/
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to natively integrate with cloud-native environments. Rook 
turns storage software into self-managing, self-scaling, and 
self-healing storage services”. 

 

In the MLaaS platform, Rook is used to manage Ceph 

storage. 

Rook Toolbox 

 

Storage From 

https://rook.io/docs/rook/v1.9/Troubleshooting/ceph-

toolbox/ : “The Rook toolbox is a container with common 
tools used for rook debugging and testing”. 

In the MLaaS platform, Rook is used to verify and diagnose 

Ceph storage. 

Kubernetes 

Metrics Server 
Metrics API From https://github.com/kubernetes-sigs/metrics-server : 

“Metrics Server is a scalable, efficient source of container 
resource metrics for Kubernetes built-in autoscaling 

pipelines. It is required for Horizontal Autoscaling”. 

 

In the MLaaS platform, metric server is used to collect data 

required for Horizontal Pod Autoscaling (HAP)used by some 

of the Kubeflow components. In a production environment 
this component would likely be replaced with Prometheus. 

Metallb 

 

Ingress From https://metallb.universe.tf/ : “MetalLB is a load-

balancer implementation for bare metal Kubernetes 
clusters, using standard routing protocols”. 

 

In the MLaaS platform, Metallb is used to allocate external 

load-balancer ip address to the Istio gateway and to the 
Nginx gateway. 

 

The components for installation and support of the MLaaS Platform are presented in Table 5. 

Table 5: installation and support components. 

Product Usage Description 

ArgoCD 

 

Dev Ops From https://argo-cd.readthedocs.io/en/stable/ : “ArgoCD 

is a declarative, GitOps continuous delivery tool for 
Kubernetes.” 

 

In the MLaaS platform, ArgoCD is used to deploy and 

maintain the platform from a Git repository. 

Keycloak IAM From https://www.keycloak.org/: “Keycloak adds 

authentication to applications and secure services. 

https://github.com/kubernetes-sigs/metrics-server
https://metallb.universe.tf/
https://argo-cd.readthedocs.io/en/stable/
https://www.keycloak.org/
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Keycloak provides user federation, strong authentication, 
user management, fine-grained authorization, and more”. 

 

In the MLaaS platform, keyclock is planned to replace Dex 

for the authentication of the Kubeflow users. 

GitLab 

 

 From https://about.gitlab.com/, GitLab is the “The One 

DevOps Platform”. 

In the IoT-NGIN MLaaS testing, GitLab is used to store the 

configuration files for installing the platform with ArgoCD. 

 

2.5 MLaaS reference architecture 

2.5.1 Overall architecture 

Figure 5 gives a view of the reference architecture for the IoT-NGIN  MLaaS platform. 

 

Figure 5: MLaaS framework technical architecture. 

Figure 6 gives an indication of the main organization and interoperability of the different 
components of the MLaaS platform with Kubeflow and Kserve highlighted as the central 

services. 

 

https://about.gitlab.com/
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Figure 6: MLaaS components interoperability. 

Note that the in the diagram this is the IoT Device that send data to the platform. However it 

could be also done by the Digital Twin. 

Similarly, Figure 7 gives a high-level view of the interactions between the various infrastructure 

components. 
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Figure 7: Infrastructure components interactions. 

 

2.5.2 Access to the MLaaS platform 

Access to the platform is via either a Istio Ingress gateway for some components such as the 
Kubeflow dashboard and Kserve or via the Nginx ingress gateway for other components such 

as MinIO.  

For Kubeflow, the Istio Ingress gateway is responsible for checking authentication and 

authorization before granting access to the upstream services. Authentication is performed 
using an OpenID Connect (OIDC) provider. Dex is used in the Kubeflow standard installation. 

Keycloak is planned to be used for the IoT-NGIN MLaaS platform. 

For Kserve refer to section 2.7 for explanation how to the inference services are exposed to 

the Internet. 

Figure 8 illustrates the access to the platform from the Internet. 
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Figure 8: Access to the MLaaS platform. 

2.5.3 End-to-end services examples 

Figure 9 shows an example of end-to-end inference pipeline that could be implemented with the 

platform. 

 

 

Figure 9: End-to-end inference pipeline example. 
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1. An IoT device is sending data to an IoT gateway. It could be for example a drone 

sending images to a MQTT gateway via a 5G connectivity. 
2. The IoT Gateway send the data to a Kafka system on a specific topic. 

3. The Kafka system relays the message which triggers a ML workflow. The workflow 
performs the required processing and transformation of the data. 

4. A previously trained model is used for by the ML Workflow to perform prediction. 
5. The data are saved in MinIO for example for possible continous learning (re-train 

model). 

6. Metadata are saved to keep track of the incoming data, for example as a time series 
in InfluxDB, for reference and possible future use 

7. The ML workflow output a prediction inferred from the received data 
8. The prediction is sent to the kafka messaging system 

9. The prediction is then relay to an end user application 

Figure 10 from [6] shows another example of end-to-end inference pipeline which processes 

a Kafka event and invoke the inference service to get the prediction with provided pre/post 

processing code. 

 

Figure 10: End-to-end inference pipeline example with Kafka. 

2.6 Kubeflow 

2.6.1 Kubeflow overview 

Kubeflow is the central component of the IoT-NGIN MLaaS framework. It provides a Central 
Dashboard, Kubeflow Notebooks, Kubeflow Pipelines, Katib and Training Operators. 

Kubeflow support add-ons such as KServe for Model serving. Kubeflow support multi-tenancy 
allowing different users to use the platform in isolation. and be part of a group. Kubeflow is 

said to be “the ML toolkit for Kubernetes”. 

Figure 11 from [7] shows a conceptual overview of Kubeflow. 
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Figure 11: Kubeflow conceptual overview. 

 

Figure 12 from [7] shows which Kubeflow components are useful at each stage. 
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Figure 12: Kubeflow components. 

2.6.2 IoT-NGIN MLaaS Kubeflow test environment 

A Minimal Viable Product (MVP) version of the MLaaS platform is deployed to test the 
functionalities of the platform, the integration with the other IoT-NGIN tasks and the 

installation methodology. At the time of this writing the following components have been 
deployed: 

• For the infrastructure part: Istio, Knative, Nginx, Cert-manager, Rook, Ceph, ArgoCD, 

Dex 

• For the ML part: Kubeflow, KServe, MinIO, Camel-K 

 

In the IoT-NGIN MLaaS test installation, the Kubeflow is accessible via the Istio Ingress 

gateway. The certificate is generated by the cert-manager component by using the Let's 
Encrypt issuer. 

Figure 13 shows the Kubeflow User Interface from the MLaaS IoT-NGIN installation. 

 

Figure 13: Kubeflow User Interface. 

For M30, it is planned to have Keycloak implemented for the authentication of the Kubeflow 
users. Other components may be added depending on the needs of the Living Labs and 

Open Calls partners. Also it is planned to improve the installation of the MLaaS platform by 
using configuration files listing the personalized parameters (like domain names) and by 

adding more automation. 
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2.7 KServe 

2.7.1 KServe overview 

With Kubeflow, KServe plays a critical role in the MLaaS platform as it is the component that 
allows applications to request ML predictions via API. 

Figure 14 from [8] shows the KServe architecture. 

 

Figure 14: KServe architecture. 

 

As explained in KServe documentation [9] “KServe enables serverless inferencing on 

Kubernetes and provides performant, high abstraction interfaces for common machine 

learning (ML) frameworks like TensorFlow, XGBoost, scikit-learn, PyTorch, and ONNX to solve 
production model serving use cases”. Conceptually, KServe has two planes: a control plane 

and a data plane.  

The Control plane is responsible for reconciling the InferenceService custom resources. It 

creates the Knative serverless deployment for predictor, transformer, explainer. Figure 15 from 
[9] shows the architecture of the control plane. 
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Figure 15: KServe Control Plane. 

 

The InferenceService Data Plane architecture consists of a static graph of components 

which coordinate requests for a single model. This is illustrated in Figure 16. 
 

 

Figure 16: KServe InferenceService. 

 

As explained in [9], the data plane uses the following concepts: 

• Component: Each endpoint is composed of multiple components: "predictor", 

"explainer", and "transformer". The only required component is the predictor, which is 

the core of the system. 

• Predictor: The predictor is the workhorse of the InferenceService. It is simply a model 

and a model server that makes it available at a network endpoint. 

• Explainer: The explainer enables an optional alternate data plane that provides 

model explanations in addition to predictions. Users may define their own explanation 
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container, which configures relevant environment variables such as the prediction 
endpoint. For common use cases, KServe provides out-of-the-box explainers like Alibi. 

• Transformer: The transformer enables users to define a pre and post processing step 

before the prediction and explanation workflows. Like the explainer, it is configured 

with relevant environment variables too. For common use cases, KServe provides out-
of-the-box transformers like Feast. 

2.7.2 IoT-NGIN MLaaS KServe installation 

In IoT-NGIN MLaaS platform, KServe is configured to be access from the outside either via the 

kserve.kf.iot-ngin.onelab.eu domain or via the apps.kf.iot-ngin.onelab.eu domain. 

In the first case, access is through the Istio Ingress gateway, via the domain name 

kserve.kf.iot-ngin.onelab.eu and by using the hostname created by Knative, in the form 
<isvc-name>.<namespace>.kserve. kf.iot-ngin.onelab.eu.  

In the second case, access is through the Nginx ingress via the hostname apps.kf.iot-

ngin.onelab.eu. As the name of the interference service and of the namespace are not in 
the hostname, they have to be specified in the URI. The hostname is the of the form 

apps.kf.iot-ngin.onelab.eu/v1/models/<isvc-name>.<namespace>. For example, to access 
inference “sklearn-iris” created in the “kserve-test” namespace the URL is https://apps.kf.iot-

ngin.onelab.eu/v1/models/sklearn-iris/kserve-test:predict. From there the request is 
redirected to the Istio Ingress gateway and the same service flow as with Istio ingress is then 
executed. 

The two possible service flows are shown in Figure 17. Note that it means that at least two IP 

addresses are available for the ingress gateway. 

 

Figure 17: KServe InferenceService. 

 

The benefit of using the Nginx ingress is that, as a fixed hostname is used, a single certificate 

and DNS entry can be used for all inference services. With the Istio ingress, from a DNS 

perspective, a wildcard DNS entry can be used that will direct all hostnames *.kserve.kf.iot-
ngin.onelab.eu to the Istio ingress IP address. However, each inference service would need 
its own certificate, unless using a wildcard *. kserve.kf.iot-ngin.onelab.eu certificate which 

could be more complex to generate and required careful review as it creates significant 
security risks as highlighted in [10].  

The Istio ingress gateway always asks for authentication before redirecting to the KServe 

service. So, when https is used, a token must be passed in the prediction request, for example 

in the form of the -H "Cookie:authservice_session=.... option in curl. 
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Listing 1 shows a prediction request via the kserve.kf.iot-ngin.onelab.eu hostname. 

kserve-test>curl -v -k -H 

"Cookie:authservice_session=MTY1ODMyMTMyOHxOd3dBTkZOWFUxRlNSMVExTWtGWVdrSkRWelpZTWt0SlJEVk5RbFkxU1VsS

VFVSk9SMDlYVmxnelEwOURXbGczUkZaRFZqWTNTa0U9fNi0W2y5D3SwCswvHUz2zn_UeZZsxs1iJ2vxBmdTDMwK" 

https://sklearn-iris.kserve-testb.kserve.kf.iot-ngin.onelab.eu/v1/models/sklearn-iris:predict -d 

@./iris-input.json 

*   Trying 132.227.122.44:443... 

* Connected to sklearn-iris.kserve-testb.kserve.kf.iot-ngin.onelab.eu (132.227.122.44) port 443 (#0) 

* schannel: disabled automatic use of client certificate 

* ALPN: offers http/1.1 

* ALPN: server accepted http/1.1 

> POST /v1/models/sklearn-iris:predict HTTP/1.1 

> Host: sklearn-iris.kserve-testb.kserve.kf.iot-ngin.onelab.eu 

> User-Agent: curl/7.83.1 

> Accept: */* 

> 

Cookie:authservice_session=MTY1ODMyMTMyOHxOd3dBTkZOWFUxRlNSMVExTWtGWVdrSkRWelpZTWt0SlJEVk5RbFkxU1VsSV

FVSk9SMDlYVmxnelEwOURXbGczUkZaRFZqWTNTa0U9fNi0W2y5D3SwCswvHUz2zn_UeZZsxs1iJ2vxBmdTDMwK 

> Content-Length: 76 

> Content-Type: application/x-www-form-urlencoded 

> 

* Mark bundle as not supporting multiuse 

< HTTP/1.1 200 OK 

< content-length: 23 

< content-type: application/json; charset=UTF-8 

< date: Wed, 20 Jul 2022 13:48:42 GMT 

< server: istio-envoy 

< x-envoy-upstream-service-time: 38 

< 

{"predictions": [1, 1]}* Connection #0 to host sklearn-iris.kserve-testb.kserve.kf.iot-ngin.onelab.eu 

left intact 

Listing 1: KServe prediction request with kserve hostname. 

Listing 2 shows a prediction request via the apps.kf.iot-ngin.onelab.eu hostname. 

kserve-test>curl -v -k -H 

"Cookie:authservice_session=MTY1ODMyMTMyOHxOd3dBTkZOWFUxRlNSMVExTWtGWVdrSkRWelpZTWt0SlJEVk5RbFkxU1VsS

VFVSk9SMDlYVmxnelEwOURXbGczUkZaRFZqWTNTa0U9fNi0W2y5D3SwCswvHUz2zn_UeZZsxs1iJ2vxBmdTDMwK" 

https://apps.kf.iot-ngin.onelab.eu/v1/models/sklearn-iris/kserve-testb:predict -d @./iris-input.json 

*   Trying 132.227.122.43:443... 

* Connected to apps.kf.iot-ngin.onelab.eu (132.227.122.43) port 443 (#0) 

* schannel: disabled automatic use of client certificate 

* ALPN: offers http/1.1 

* ALPN: server accepted http/1.1 

> POST /v1/models/sklearn-iris/kserve-testb:predict HTTP/1.1 

> Host: apps.kf.iot-ngin.onelab.eu 

> User-Agent: curl/7.83.1 

> Accept: */* 

> 

Cookie:authservice_session=MTY1ODMyMTMyOHxOd3dBTkZOWFUxRlNSMVExTWtGWVdrSkRWelpZTWt0SlJEVk5RbFkxU1VsSV

FVSk9SMDlYVmxnelEwOURXbGczUkZaRFZqWTNTa0U9fNi0W2y5D3SwCswvHUz2zn_UeZZsxs1iJ2vxBmdTDMwK 

> Content-Length: 76 

> Content-Type: application/x-www-form-urlencoded 

> 

* Mark bundle as not supporting multiuse 

< HTTP/1.1 200 OK 

< Date: Wed, 20 Jul 2022 13:51:29 GMT 

< Content-Type: application/json; charset=UTF-8 

< Content-Length: 23 

< Connection: keep-alive 

< x-envoy-upstream-service-time: 17 

< Strict-Transport-Security: max-age=15724800; includeSubDomains 

< 

{"predictions": [1, 1]}* Connection #0 to host apps.kf.iot-ngin.onelab.eu left intact 

Listing 2: KServe prediction request with apps hostname. 
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3 IoT-NGIN Machine Learning Techniques 

3.1 Online Learning Framework 

3.1.1 Description 

The Online Learning (OL) service is responsible for i) the dynamic training of ML models for IoT 

applications, such as those implemented for the different Living Lab apps, as data become 
available, and also ii) for providing inferences (i.e., predictions), from these models, when 

requested. It is designed to support both features on demand (i.e., through REST API) and 
real time (e.g., through MQTT and/or Kafka) interactions (see Figure 18). 

Since most Living Labs generate data in real time, the OL service needs to be able to receive 

streaming data so that it processes and prepares it for machine learning models.  

As discussed above, the OL service works in 2 different scenarios, depending on the request 

focus: streaming and REST API. However, the process only differs in receiving data and 
returning results. When data comes from a broker, the OL service must be subscribed to the 

topic where the data is being published by IoT devices and to return the result, the OL service 
dumps the output in another broker topic. When data comes from discrete requests, the OL 
service presents a REST API endpoint that is waiting for incoming requests with enclosed data 

in JSON format, as a common request/response HTTP service. 

 

 

Figure 18: Online Learning Concept. 

 

Once the data is received, the pre-processing stage begins so that the incoming data is 

prepared for the requested action. Depending on the needs, the pre-processed data is used 
for updating the model or performing a prediction. When the model has been updated, the 
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OL service returns a confirming ACK (acknowledgement) message. In the case of having 
received an inference request, the service returns its prediction. 

Moreover, the updated model is saved in the cloud model storage and integrated with the 

Model Sharing service (see [2]) so that the trained model can be reused. 

3.1.2 Technical Design 

The OL service is deployed using the Kserve1 framework through Kubeflow2. Kubeflow is 
utilized to deploy and execute ML workflows and Kserve allows to serve machine learning 

models on arbitrary frameworks. The ML workflow that is used to deploy the OL service 
through KServe is declared within a Kubeflow pipeline. After executing this pipeline, an OL 

service instance is created and exposed through a HTTP REST API endpoint. Each OL service 
instance contains a specific machine learning model implementation, and it is waiting for 

receiving incoming requests, containing data in JSON format, in order to either update the 
model or perform predictions. IoT devices can send data to the OL service through this HTTP 
endpoint.  

However, the data is often sent through streaming flows from IoT devices. For this reason, it is 

necessary to implement a binding that allows the OL service to receive and send data 

from/to the Kafka/MQTT broker. The binding is implemented using Camel-K3. Whenever new 
data is available from the broker, the Camel-K binding receives it and redirects it to the OL 
service REST API endpoint. 

When the model is updated after a training process, the OL service may eventually decide 

to store it, if its performance is improved, in the cloud model storage (e.g.  based on MinIO4). 

As a planned feature for M30 release, other strategies will be designed and implemented to 
store models based on the features they present.  The OL service technical architecture 

design is shown in Figure 19.   

 
1 https://kserve.github.io/website/0.7/ 
2 https://www.kubeflow.org/ 
3 https://camel.apache.org/camel-k/1.8.x/index.html 
4 https://min.io/ 

https://kserve.github.io/website/0.7/
https://www.kubeflow.org/
https://camel.apache.org/camel-k/1.8.x/index.html
https://min.io/
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Figure 19: Online learning architecture.
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As aforementioned, two main actions are supported by the OL service: i) online model 
training, ii) model inference or prediction. Figure 20 shows the model training process. 

 

 

Figure 20: Model training process. 

Online model training, or update model, is triggered on demand, by IoT devices or 

applications, either by directly accessing the OL REST API endpoint or by streaming through 
an MQTT topic broadcasting. In the former case, a dataset is provided in batches, while in 

the latter case, dataset is provided in streaming, so that the dataset batch is created by the 
OL service, once enough data is received. Once the dataset is available, it is pre-processed. 

Data pre-processing process depends on the ML model architecture to be trained and the 
structure of the training dataset, and it is use case specific. See section 3.1.3 for further details 
on dataset pre-processing for the Smart Energy LL UCs. After data pre-processing, the model 

is trained (i.e., fit) with the dataset, and the model performance computed. Eventually, if the 
gain in the model performance is over a given threshold, a trained model snapshot is stored 

in the shared model repository (e.g., MinIO) by using the Model Sharing service.  

Model inference or prediction process is shown in Figure 21. In this case, the IoT device, 

application or streaming topic requests the predict API in the OL endpoint. Request can 
include a dataset containing the X array or being empty. If X array is given, this API will return 
the predicted Y array for given X. If empty, this API returns the next predicted point (in case 

of regression for time series). OL service uses the trained model to compute the prediction. 
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Figure 21: Model prediction process. 

OL service is implemented by using the Python language since it offers a large ecosystem of 

libraries for artificial intelligence. OL service is composed of the following modules (see Figure 
22): 

• Create Kserve Service. It is responsible for deploying the REST API service with the OL 

service. It creates an HTTP endpoint which is waiting for new data in JSON format in 

order to update the model or perform a prediction. Moreover, in the first version of 
the OL framework, this module also contains the data pre-processing stage. Next M30 

version will present an additional module which will be responsible for data pre-
processing. The main library used in this module is Kserve. 

• Online Learning Module. This API links the previous module to the Backend module. It 

is responsible for choosing the correct backend and transmitting the model update 

or prediction requests. 

• Streaming connector. This module aims to provide tools to support real-time protocols. 

This module is not being used because Kserve only supports HTTP connections, but it 

is implemented in case future versions of Kserve start working with streaming data. 
The main libraries that have been used are Kafka5 and Paho-MQTT6. 

• MinIO Connector. Provides the required tools to download and upload the ML 

models. This version stores the ML model in MinIO storage each time it is updated by 

the OL service. Future versions will incorporate strategies to update the model in MinIO 
only when evaluation metrics improve. This module is based on the MinIO7 library.  

• Backend. Modules responsible for including required functions to perform ML model 

updates or predictions in each framework. The first version includes the following 
frameworks: Sklearn, Vowpal Wabbit, TensorFlow and Pytorch. 
 

 
5 https://kafka-python.readthedocs.io/en/master/  
6 https://pypi.org/project/paho-mqtt/  
7 https://github.com/minio/minio-py   

https://kafka-python.readthedocs.io/en/master/
https://pypi.org/project/paho-mqtt/
https://github.com/minio/minio-py
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The OL implementation is available at https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_2/online_learning. 

 

 

Figure 22: OL service modules. 

 

Apart from the main OL service implementation, additional developments are also required 

for having the service deployed. They are listed below along with a brief description.  

1- OL Service Adaptation: This is the initial step and consists of configuring the OL service 

to set different parameters such as the MinIO host and the buckets where the ML 
models are stored, the backend (framework which was used to implement the model) 

to use in order to perform the model update or the prediction. 
2- Create the Docker image: Once the OL service is configured, it is required to wrap it 

within a Docker image that will be uploaded in a Docker registry so that Kubeflow can 
include it into the pipeline. The Dockerfile is available at https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_2/online_learning/-
/blob/main/Dockerfile_Kubeflow. 

3- Define Kserve YAML manifest: This manifest defines the configuration of the OL service 

when deployed. It defines the name of the inference service, the number of replicas, 
the CPU limits or the Docker image to use, among others. An example can be found 

at: 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/Dockerfile_Kubeflow
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/Dockerfile_Kubeflow
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/Dockerfile_Kubeflow
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https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-
/blob/main/kubeflow/kserve_isvc.yaml.  

4- Create Kubeflow pipeline: At this point, we have the Docker image ready to use and 

the Kserve YAML manifest that defines the OL service. The next step is to create a 
Kubeflow pipeline to incorporate the Kserve YAML manifest and thus be able to run it. 

This pipeline is developed in a Jupyter Notebook8 available at 
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-
/blob/main/kubeflow/pipeline.ipynb.   

5- Run Kubeflow pipeline: This step deploys the OL service as an HTTP inference service. 

Instructions to run the pipeline in Kubeflow are summarized in section 5.2. 

6- Define Camel-k binding (if needed): This step is required only when data comes from 

real time protocols (e.g., MQTT or Kafka). Camel-K binding consists of a YAML file that 
defines the broker and topics in which data is being dumped and the prediction 

service deployed in the previous step in order to resend the data. 

 

Next M30 release of OL service will include a number of planned features: 

• Interoperability with the Polyglot Model Sharing (MS) service: the OL service will 

leverage the MS service REST API to store models into the MLaaS model repository 
(e.g., MinIO) 

• KServe based multi-model serving. The OL Service architecture and its implementation 

will be refactored for enabling multi-model serving, by leveraging the KServe pipeline: 
transformer, predictor, explainer (see section 2.7.1). This pipeline enables a flexible 

combination of pre-post processing (with the transformer), model training and 
inference (with the predictor) and the generation of Explanatory AI (XAI) metadata 
(with the explainer) as a way to learn multiple ML models applied to multiple use case 

datasets. 

• Prototype implementation of transfer learning, leveraging on the OL process to learn 

existing trained models on different learning scenarios (i.e., datasets and learning 

objectives). This feature could be applied to the Smart Energy LL use cases, to learn 
models predicting other metrics of the Electric Grid, from models predicting the 
generated power.  

• Model saving strategies based on performance gains. Model snapshots will be stored 

in the MLaaS model storage when performance gains over a given threshold are 
achieved through the OL process. Different criteria for automatic model storage will 

be investigated and implemented. 

3.1.3 Implementation for IoT-NGIN LLs 

As described in D3.1, several use cases conducted in the IoT-NGIN Living Labs (LLs) have 
expressed the need for creating ML models for different forecasting purposes. Some of them 

require OL-based model training as their training datasets are fed online on streaming, like 
those in the Smart Energy LL. The first application of OL, described in this section, focused on 

the Smart Energy LL use cases, but other applications to other use cases from Smart Cities, 

 
8 https://jupyter.org/  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/kubeflow/kserve_isvc.yaml
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/kubeflow/kserve_isvc.yaml
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/kubeflow/pipeline.ipynb
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/kubeflow/pipeline.ipynb
https://jupyter.org/
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Smart Agriculture and Smart Industry LLs will come in next M30 release for those cases where 
OL model training is required. 

Smart Energy LL owns UC9 and UC10, namely “Move from Reacting to Acting in Smart Grid 

Monitoring” and “Control, and Driver-friendly dispatchable EV charging”, respectively, as 
described in [2]. These use cases present services that require online learning, namely the 

Power Generation Forecasting, the Power Consumption Forecasting and the Energy 
Demand Forecasting. They forecast the behavior of certain aspects of the electric grid. For 
such purposes, the grid includes metering devices that are measuring several parameters 

such as the power, voltage or current, among others, in distinct places of the electric grid 
and publishing all the collected information in a MQTT broker.  

Figure 23 depicts a simplified description of the Smart Energy LL scenario. 

 

Figure 23: Smart Energy LL concept for UC9 and UC10. 

The first implemented prototype of each forecasting service consumes information from one 
single topic, as shown in Table 6. Next M30 planned version will process more information to 

perform improved forecasting, such as the date/time frame or weather conditions if 
available, for example.  
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Table 6: Smart Energy LL MQTT topics for forecasting services. 

Service Description 
MQTT Meter/Topic 

UC9 UC10 

Power 

Consumption 

Forecasting  

Use power data over the time to 

predict the consumption in next 24-36 

hours. 
 

Smart Meter/ 

BBB60XX 

Power Quality 

Analyzer/ 

W4 

Power 

Generation 

Forecasting 

Use power data over the time to 

predict the generation in next 24-36 
hours. 

PMU/ 

3640f24ba43a

423188979372
bae6277a 

Power Quality 

Analyzer/ 

W6 

 

 

Once the OL service receives new data within a request, it conducts data-acquisition and 

pre-processing steps to prepare the data, before it is being used either for ML model training 
or prediction. The following procedures, applied to power consumption/generation 

forecasting, can be included within this stage: 

• Extraction of power value: power time series are collected by subscribing to specific 

MQTT topics. 

• Resampling of the power data: Since the sampling rate is too low, around 1 second, is 

needed to resample the power data by aggregating all the values received within 1 

hour and computing its average power. For this purpose, the Pandas9 library is used. 

• Data scalation: ML and DL present higher performance and stability when all values 

are scaled between 0 and 1. Therefore, the power data is scaled using the max-min 
scale strategy by using preprocessing functions from the scikit-learn10 library. 

• Time series windowing: The univariate time series forecasting algorithms take vectors 

as input. This step creates an input vector that contains the scaled averaged power 
per hour that is used to update the model or perform a prediction. The vectors are 

created by using different tools from Pandas and Numpy11. 

 

Figure 24 summarizes the data preparation stage. 

 
9 https://pandas.pydata.org/docs/  
10 https://scikit-learn.org/stable/  
11 https://numpy.org/  

https://pandas.pydata.org/docs/
https://scikit-learn.org/stable/
https://numpy.org/
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Figure 24: Pre-processing stage for Smart Energy LL OL service. 

 

After the pre-processing stage, the data is ready to train a machine learning model. Model 

architectures adopted for these power forecasting services consist of recurrent neural 
networks (RNNs) [11]. RNNs have demonstrated to work well when facing a time series 

forecasting problem, although they present some disadvantages such as the vanishing 
gradient problem [12]. For this reason, different layers and architectures are being analyzed 

to reach the best possible inferences. The type of RNN used for power forecasting services is 
Gated Recurrent Unit (GRU) [13], since it solves the vanishing gradient problem suffered by 

the original RNN and converges faster than other types of RNN (e.g., Long-Short Term Memory 
variant). After the recurrent layers, fully connected layers [14] are added for applying linear 
transformations to the outputs of the GRU layer. Figure 25 depicts the layers of the two 

implemented architectures. 

 

Figure 25: DL architectures’ scheme for the Smart Energy LL. 

These models are trained with the goal of minimizing the mean squared error12 (MSE) 
between real values and model outputs. 

The neural networks and the training procedure have been implemented with Pytorch13 

library since it provides an easy-to-use framework with a large number of tools for DL. 

 
12 Mean Squared Error (MSE) measures the average of the squared errors between the actual data 

and the predictions performed by the DL model. 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1 , where n is the number of data 

points, and 𝑌𝑖 and �̂�𝑖 correspond to the actual values and inferences, respectively. 
13 https://pytorch.org/  

https://pytorch.org/
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On the one hand, when new data is available to update the model, the OL service gets 

notified by the broker, processes the model training with the received data, returns an 
acknowledgement message to confirm that the model has been updated and eventually, 

if a noticeable (over a give threshold) performance gain is achieved, stores the new model 
in the model storage deployed with MinIO. 

On the other hand, the prediction of the generated/consumed power in the next 24/36 hours 

is requested. As mentioned above, a resampling is performed during the data preparation 
stage to compute the averaged generated power in 1 hour. Therefore, the service can 

perform a new prediction each hour. 

As commented in a previous section, Kserve tool is used to deploy the OL service exposed 

through a HTTP endpoint. However, the service described in this section needs to receive and 
transmit data using the MQTT protocol. To solve this situation, Camel-K based bindings are 

developed to permit OL services to work with MQTT. 

To verify that the selected architectures are valid solutions for this power forecasting scenario, 

and to set up the service with a pre-trained baseline model, generated power datasets for 

20 days have been collected. A data analysis has been carried out in order to find trends 
seasonality and correlation between the power samples. After the analysis, it has been found 

out a daily seasonal component, so the power time series presents a period of 24 hours. Data 
analysis, models implementation and model performance evaluation have been developed 

in a Jupyter Notebook available at https://gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/3-create-smart-energy-ml-
models. 

In this M24 version of OL, the training hyper-parameters present same values for all services. 

Table 7 shows the most significant training hyper-parameters. 

Table 7: Smart Energy LL training hyper-parameters. 

Hyper-parameter Value 

Epochs 50 

Learning rate 0.005 

Optimizer Adam [15] 

Loss function Mean Squared Error 

Batch size 128 

 

Figure 26 and Figure 27 show the actual power data (orange line), inferences performed by 

the ML model (blue points) and the forecasting intervals with a 90% of confidence (blue 
area). It is important to note that the forecasting intervals can be computed since the errors 

between the actual data and the model predictions present a distribution that can be 
considered as Gaussian. To assume errors that come from the gaussian distribution, they have 

been subjected to normality tests: Shapiro-Wilk [16], Anderson-Darling [17], and D'Agostino-
Pearson [18]. These tests consist of statistical hypothesis tests and allow checking whether the 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/3-create-smart-energy-ml-models
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/3-create-smart-energy-ml-models
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/3-create-smart-energy-ml-models
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data contains certain property. Thus, 2 hypotheses are defined: the null hypothesis and the 
alternative hypothesis. The null hypothesis supports that de data probably comes from a 
normal distribution while the alternative hypothesis defends that the data present a different 

distribution. The statistical test returns a probability known as p-value. If this result presents a 
value lower than the defined significance level (0,05 in this case), the null hypothesis must be 

rejected, so the data distribution cannot be assumed as normal. Table 8 shows the p-values 
obtained. These normality tests have been implemented by using the Statsmodels14 and 
Scipy15 libraries. 

Table 8: Normality test results (p-values) for Smart Energy LL use cases. 

Normality Test UC9 UC10 

Shapiro-Wilk 0.47 0.52 

Anderson-Darling 0.76 0.61 

Agostino-Pearson 0.10 0.16 

 

For both use cases, the model can learn the seasonal variations that the generated power 

seems to have. Moreover, the inferences performed using the validation subset (data not 
included during training) are promising since the MSE obtained for the UC9 and UC10 are 

0.009 and 0.021, respectively (see Figure 26 and Figure 27). 

 

 

Figure 26: Training results for power generation forecasting of UC9. 

 
14 https://www.statsmodels.org/stable/index.html  
15 https://docs.scipy.org/doc/scipy/index.html  

https://www.statsmodels.org/stable/index.html
https://docs.scipy.org/doc/scipy/index.html
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Figure 27: Training results for power generation forecasting of UC10. 

These models are stored in MinIO so that the OL services can load them and perform an 
update when new data is being received. 

The deployment of the OL service for this LL works in the same way described in section 3.1.2. 

OL service implementation is configured so that the service loads and saves the models in 

the specific MinIO buckets and uses the Pytorch backend to train or predict, since the models 
have been defined by using this library, as mentioned above. Then the OL service is wrapped 

in a Docker image which is uploaded to a Docker registry. Later, the Kserve YAML file is 
created for the service. Next the Kubeflow pipeline is created and executed; and the OL 
service is deployed. Finally, the Camel-K binding is created by indicating the MQTT broker 

host of this LL with the topics shown in Table 6. 

 

3.2 Reinforcement Learning 

3.2.1 Description 

Reinforcement learning is a machine learning discipline centered on the learning of optimal 
behavioral policies for decision making of a group of agents interacting in a common 

environment, leading to a maximization of a cumulative reward (i.e., expert-defined 
performance metric). In the context of control systems, the learned policy allows for the 
deployment of deterministic or stochastic control logic / instructions for agents interacting in 

the end system, such as, e.g., optimizing the grid power generation, by allowing EV charging 
stations to autonomously adjust their charging rate depending on the current state of the 

grid and the attached vehicle’s battery. 
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This discipline has been widely adopted in the automation industry, most notoriously in the 

field of robotics, but also in other fields such as in the energy, finance, advertising or 
healthcare sectors. 

The main advantage of reinforcement learning is that it offers a set of algorithms that can 

learn independently, from their interactions with the environment, with a great deal of 

flexibility, in terms of the acquisition and usage of their experience, thus allowing its 
implementation in a wide range of environments, in both physical and simulated systems. 

Some of the main concepts of reinforcement learning involve the environment, agents, 

states, actions, rewards, observations, and policies (see Figure 28): 

- The environment refers to the physical or simulated space which the agents interact 

with. 
- Agents are the entities which are affected by, and are in position of interacting with 

the environment by taking actions. 
- Agents take a state (e.g., vector) that represents their status at every point of time. 

States are defined as a discrete or a continuous, closed set. 

- A set of actions is defined for the agents to take. This group is defined as a discrete or 
a continuous, closed set. 

- Rewards are given by the environment after the undertaking of actions by the 
autonomous agents. 

- Observations are pre-processed snapshots (e.g., in the form of vectors) collected after 
each transition, that gather relevant variables of the environment, as well as the 
previous state and the actions taken, resulting on the state and the observed reward. 

- Policies, in broad terms, are the learned (deterministic or stochastic) mapping 
between the set of states and the set of actions 

 

Figure 28: Reinforcement Learning concept. 

The reinforcement learning service oversees the collection, generation and deployment of 

policies based on the observations of an environment and the interactions of its agents. 

The main goal of the reinforcement learning service is to develop an optimal policy for a set 

of agents which interact in an environment by means of an end-to-end solution, which 

gathers, and processes experience obtained from interactions of agents in the environment, 
as well as develops and deploys the learned policy to the agents [19]. 
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Reinforcement learning algorithms model systems in terms of the interactions of agents in an 

environment. The possible interactions are limited by the actions available for agents to take, 
which are defined on a problem-specific basis. 

Depending on the problem to be tackled, experience is gathered by means of interactions 

in either a simulated or in a real (either digital, or physical) environment. Depending on the 

knowledge of the environment, we can distinguish between model-free and model-based 
approaches [19]. 

For the reinforcement algorithm to learn / approximate an optimal policy, it needs to buffer 

enough experience from the environment. The experience collected by the service is made 
up of transitions, which are made up from observations, including relevant variables from the 

environment, the agent previous status, the action taken, the next status and the observed 
reward. 

In order to be able to use the accumulated experience for the training of a reinforcement 

learning algorithm, it needs to be pre-processed. This pre-processing step is highly dependent 
on the choice of the reinforcement algorithm to be implemented.  

With this buffer of experience, the system can proceed with the training phase of the 

reinforcement algorithm of choice. Depending on the algorithm’s approach, we have 

several categories of reinforcement learning algorithms – starting with the already mentions 
model-free and model-based approaches. Our service is focused on the delivery of model-

free algorithms, in which we can further categorize them in policy-based and q-learning 
approaches [19]. Depending on the algorithm of choice, the service will handle the lifecycle 
of the necessary components for the algorithm development and implementation. 

3.2.2 Technical Design 

The implementation concept of the Reinforcement Learning (RL) service is depicted in Figure 
29. 
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Figure 29: Reinforcement Learning architecture. 

 

The service is deployed using Kserve through Kubeflow, like for the OL service described in 

the previous section. The procedure to perform the deployment is the same, the ML workflow 
used to deploy the RL service is declared in a Kubeflow pipeline. After executing the pipeline, 

an RL service instance is created and exposed through a HTTP REST API endpoint. Each 
instance presents a specific ML model that is trained using a determined RL algorithm (e.g., 

Deep Q Learning [20], Advantage Actor-Critic [21]). 

The environment must send a set of parameters that monitor the agent state. These 

parameters are pre-processed so that the ML can generate the corresponding output and 
be trained. The pre-process step depends on the ML model architecture and the structure 
of the data, so it is subject to the use case characteristics. The model output is the action 

that must be performed to maximize the reward.  

It is possible that environment observations come through streaming flows, so a Camel-K 

binding is needed to support Kafka/MQTT communications, as for the OL service. 

The RL service aims to support different families of RL algorithms. A distinction of these 

algorithms can be made based on whether the ML model needs to interact with the 
environment in the training phase such as On-Policy or Off-policy RL. There may be times 
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when interaction with the environment is required but the environment is not available. In 
these situations, a simulator that mimics the environment behaviour is needed.  

On the contrary, if the ML model does not interact with the environment and just uses a 

dataset with observations this is Offline RL. The RL service needs to store all the observations 
in a buffer so that the ML model can be trained later. 

In addition, the RL service offers RL algorithms regardless of the framework used to implement 

the ML model. Thus, a ML model can be trained with all the RL algorithms present in the 
platform. In order to provide this benefit, the ML model must be stored on MinIO so that it can 

be loaded by the service.  

The implementation of RL service, alike the OL service, is carried out with Python since this 

programming language presents good ML and data handling libraries. The most relevant 
libraries are listed below for different tasks: 

• Pre-processing: This task needs to manipulate the data and perform transformations 

such as data scalation. The most relevant libraries are Pandas and Sklearn. 

• ML Train/Inference: This task depends on the framework that have been used to 

implement the ML model. The RL service must support Sklearn, Tensorflow and Pytorch 
among others. 

• Model deployment: As mentioned above, the service is deployed through Kserve, so 

Kserve SDK is needed. 

• Model storing: MinIO offers a Python SDK to create a MinIO client so that the ML model 

can be uploaded and downloaded. 

As for the OL service, apart from the RL service implementation, other developments are 

required for having the service deployed. The additional developments are similar to the 
ones needed to deploy the OL service (see section 3.1.2).  

The implementation of the RL service integrated in the MLaaS platform will be released in 

M30 version. A concrete instantiation will be customized to the Smart Energy LL UC9/UC10 

described in next section. 

3.2.3 Implementation for IoT-NGIN LLs 

Like for OL based model training, several use cases conducted in the IoT-NGIN Living Labs 
(LLs) have expressed the need for creating RL models for different optimization and control 

purposes. The first application of RL-based optimization, described in this section, focused on 
the Smart Energy LL use cases, but other applications to other use cases from Smart Cities, 
Smart Agriculture and Smart Industry LLs will come in next M30 release for those cases where 

RL-based optimization is required. 

Smart Energy LL owns UC9 and UC10, namely “Move from Reacting to Acting in Smart Grid 

Monitoring” and “Control, and Driver-friendly dispatchable EV charging”, respectively, as 
shown in [2]. These use cases present an AI-based service that requires reinforcement 

learning (RL) based optimization control, namely the Grid Operation Optimization, which is 
relevant for both UC9 and UC10. 

The application of RL-based optimization requires a pre-analysis of these Smart Energy LL use 

cases to specify their environment, agents, states, actions and rewards (see section 3.2.1). 
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In the following, we conduct the analysis of the RL-based optimization scenario for the UC10, 

which is the one better understood at the time of writing. Analysis of the optimization scenario 
for UC9 will be provided in the next WP3 deliverable, D3.4. 

Environment 

Figure 30 shows the environment for the UC10 optimization scenario.  

 

 

Figure 30: UC10 Environment: EMOT Network Topology. 

 

In this representation is not included the Electric Grid (UC9) which the EV Charging Stations 

are connected to. In the scenario three main entities which are relevant for the RL-based 

optimization control are identified, as identified in Figure 31, namely: 

• Electric Grid (EG), provides electric power to the Electric Charging Stations (ECSs) for 

charging Electric Vehicles (EVs). There is only one EG in this scenario, 

• Electric Vehicles (EVs), acting as consumers of the EG. There are multiple EVs in this 

scenario, 

• Electric Charging Stations (ECSs), provide electric power to the EVs, taken from the 

EG, acting as mediators. There are multiple ECSs in this scenario. 
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Figure 31: RL-based optimization entities in UC10. 

 

Agents 

Among the entities in the environment, we need to identify those acting as agents. These are 

the ECSs. ECSs can be actioned through the EMOT VPS REST API, to instruct the charging 

process for EVs connected to them.  

States 

EVs connected to ECSs can transition through the following states: 

• Not charged: for simplicity this state merges into two situations: the EV’s battery is not 

fully-charged and it is not being charged in this state, 

• Charging: the EV’s battery is being charged, 

• Fully-charged: the EV’s battery is fully charged. 

The EG can transition through the following states: 

• EG shows disturbances, 

• EG does not show disturbances 

The main disturbances EG can show are: 

• Overloads: the power flowing in the transformers is greater than the rated power, 

• Over-voltages: the voltage at a node is more than 1.1 times the nominal voltage, 
• Under-voltage: the voltage at a node is less than 0.9 times the rated voltage. 

Under these conditions the network can face serious consequences such as the damage of 

certain components, so circuit breakers must be opened to prevent this situation. UC10 

considers over-voltages and under-voltages only, as there are no sensors to monitor the 

transformers or lines. 

Actions 

The possible actions the RL-based optimization control can issue to the EGC agent are those 

supported by the EMOT VPS REST API. For an EGC managed by the EMOT VPS and identifiable 

by an ID, the following actions can be issued: 

• Start charging the connected EV, 

• Stop charging the connected EV, 



H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

59 of 125 

 

 

• Change the charging rate, in percentage, in the range [0, 100]. This continuous action 

set can be partitioned in steps of a given delta in order to obtain a discrete action 

set. 

Figure 32 shows the states of EV and the ECS actions that transition from one state to another. 

 

Figure 32: States and Actions for ECSs. 

 

Rewards 

Rewards are identified for different entities in the UC10 optimization scenario.  

For the EV the optimization the objective is to maximize the battery level in the lowest time. 

Associated rewards can be defined as: 

• Positive reward +𝑅0 if the EV battery level increases as a result of applying a given 

action. R0 could be computed as proportional to the battery level increase. 

• Negative reward −𝑅0 if the EV battery level remains unchanged. 

For the EG, there are different optimization objectives, with associated rewards: 

• Self-consumption ratio (SCR), defined as the ratio of the portion of the photovoltaic 

power-voltage (PV) production consumed by the loads over the produced energy 
(Ep) of the PV plant. It ranges between 0 % and 100 %. The optimization objective is to 

maximize self-consumption. 
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o Positive reward +𝑅1 if the self-consumption increases. 𝑅1 could be computed 

as proportional to the increment.  
o Negative reward −𝑅1 if the self-consumption decreases. 𝑅1 could be 

computed as proportional to the decrement. 

• Self-sufficiency ration (SSR), defined as the portion of energy produced that has been 

consumed, out of the total energy consumed by the utility, i.e., the absorbed energy 

(Ea) and the self-consumed energy. It ranges between 0 % and 100 %. The 
optimization objective is to maximize self-sufficiency. 

o Positive reward +𝑅2 if the self-sufficiency increases. 𝑅2 could be computed as 

proportional to the increment.  
o Negative reward −𝑅2 if the self-sufficiency decreases. 𝑅2 could be computed 

as proportional to the decrement. 

• Power losses, defined as the dissipated energy across the EG. It is computed by 

summing over the segments of the EG of the dissipated energy by Joule effect. The 

optimization objective is to minimize power losses.  
o Positive reward +𝑅3 if the power losses decrease. 𝑅3 could be computed as 

proportional to the decrement.  
o Negative reward −𝑅3 if the power losses increase. 𝑅3 could be computed as 

proportional to the increment. 

• Disturbances: EG should not show disturbances. High negative reward is expected if 

EG shows them. A better analysis of the EG disturbances is required to include this 
factor in the RL-based optimization control. 

 

The total reward 𝑅𝑇 in a single optimization step, starting from state 𝑠 ∈ 𝑆 , selecting an action 
𝑎 ∈ 𝐴  , and transitioning to a new state 𝑠′ ∈ 𝑆 can be computed as a linear function of 

previously mentioned individual rewards: 

𝑅𝑇   =  𝑤1𝑅1 + 𝑤2𝑅2 + 𝑤3𝑅3 + 𝑓(𝑑𝑖𝑠𝑡) 

where 𝑤𝑖are normalized weights defined as hyperparameters of the RL model, and the 

function 𝑓(𝑑𝑖𝑠𝑡) will compute the reward associated with the EG disturbances. 
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4 IoT-NGIN Privacy-Preserving Federated 
Learning Framework 

Federated Learning (FL) has been identified as a reliable technique for distributed training of 

ML models [22]. Specifically, a set of dispersed nodes may collaborate through a federation 
in producing a jointly trained ML model without disclosing their data to each other. Instead 
of this, each node performs model training locally and then shares its model with a ‘server’ 

node, usually called “Aggregator” in FL. State of the art FL frameworks are in place to support 
federated training in real or simulated settings, as described in D3.2 [23]. 

Although in FL the participant nodes would not share any data, which by design protects 

privacy to some extent, a malicious actor could still be able to extract private information 

from the models or even compromise the communication during the model parameters 
exchange, allowing several attacks in FL, such as data or model poisoning attacks. More 
details about potential attacks in FL can be found in D3.2 and D5.1 [24]. 

Privacy preservation in FL is mainly pursued via three techniques, namely differential privacy, 

homomorphic encryption, and secure multiparty computation, which are analyzed in D3.2. 

The IoT-NGIN Privacy-Preserving Federated Learning (PPFL) Framework is not aimed to re-

invent the wheel by suggesting just one more FL framework, but rather it is aimed to facilitate 

access to existing frameworks, enhanced with privacy preserving techniques, allowing the 
AI developer to select their preferred framework with privacy guarantees. 

4.1 Description 

IoT-NGIN PPFL envisions to enable model training under Federated Learning ideally via any 
FL framework. In this regard, IoT-NGIN would be able to provide PPFL as a service (PPFLaaS), 

allowing the instantiation of FL frameworks on demand. The high-level architecture of the 
PPFLaaS is depicted in Figure 33. As shown in the figure, the FL API plays a crucial role in 
accessing desired FL frameworks, as it is consumed by external entities wishing to access FL 

services, such as another IoT-NGIN service, a third party-service or an external user, exposing 
services such as the instantiation and management of an FL framework. Assuming common 

specifications for the description of the FL frameworks, the API could allow the deployment 
of the network of FL nodes and collaborative training among them. 

Without loss of generality, IoT-NGIN currently supports three state-of-the-art FL frameworks, 

namely NVIDIA FLARE [25], Flower [26], which for the sake of privacy preservation has been 
integrated with PATE (Private Aggregation of Teacher Ensembles) technique, and Tensorflow 

Federated [27]. 

In the next subsections, the three frameworks are analyzed, identifying the supported privacy 

preservation techniques, while in section 4.3 experimental evaluation of the frameworks 
under those techniques is presented in the scope of the Living Lab use cases. 
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Figure 33: High-level architecture of PPFLaaS. 

 

4.2 Technical Design 

This section is devoted to technical details of the three different FL frameworks that are 
integrated and supported by the IoT-NGIN privacy-preserving federated learning framework. 

Details about the Federated Learning API, which describes their homogenization under a 
common API, will be included in deliverable D3.4 “ML models sharing and Transfer learning 

implementation”, due in the first quarter of 2023. 

With regards to the FL frameworks, in the previous version of this deliverable, D3.2, a 

comparative analysis of different FL frameworks has been conducted. The analysis comprises 

the identification of main advantages and disadvantages for eight FL frameworks, as well as 
their analysis under criteria related to their FL features and privacy preservation options. 

Based on the outcomes of D3.2 and continuous analysis of new frameworks, the most 
prominent candidates for supporting the Living Lab use cases have been identified as: 

• NVIDIA FLARE, which was unveiled as open source in late November 2021 and 

constitutes a remarkable FL framework under the support and community of NVIDIA 
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• Flower, which is a good candidate for real FL settings and is integrated with PATE by 

IoT-NGIN to support privacy-preserving FL, named after “FedPATE” by the IoT-NGIN 

team. 

• Tensorflow Federated, which is a popular SoTA FL framework, appropriate for 

extensive FL simulations, which could support a variety of research tasks. 

Although already existing -except for FedPATE, these framewοrks deserve comprehensive 

analysis of their operation in the context of the use cases of IoT-NGIN interest and the 
application of privacy preserving mechanisms. This is due to the high diversity of potential ML 

applications, which requires further investigation of the effects of the elements that are 
involved in the FL model training on the performance under the applications of interest. 

Moreover, NVIDIA FLARE is rather new and FedPATE is suggested by IoT-NGIN, so our analysis 
provides further insights on their application and behavior under the use cases of interest. 

In the following subsections 4.2.x, a technical introduction to each of these FL frameworks is 

presented, followed by the privacy preservation enhancements considered in IoT-NGIN.  

4.2.1 NVIDIA FLARE 

NV FLARE (NVIDIA Federated Learning Application Runtime Environment) [25] is an open-

source FL framework that allows researchers and data scientists to adjust their workflows 
implemented in PyTorch, TensorFlow, or even just NumPy, and apply them in a federated 
setting. The main purpose of NV FLARE is to provide the opportunity to developers to build a 

secure, privacy-preserving federated system where the nodes can share model information 
and avoid potential malicious attacks. All participants can join the FL process across different 

locations and train the model with their own data. 

NV FLARE mainly consists of the main node (server) and the federated nodes (clients). There 

is consecutive communication between them; specifically, the server is responsible for 
broadcasting tasks to clients (e.g., train, validation). After the clients have executed their 
tasks, they return the results to the server, where they are aggregated. All tasks can be 

implemented with filters related to privacy and security mechanisms. As shown in Figure 34, 
two basic entities manage the federated learning. On one hand, Figure 34 the Controller 

runs on the FL server and controls or coordinates the FL clients to get a job done. On the 
other hand, the Worker runs on FL clients and can perform tasks. 



H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

64 of 125 

 

 

 

Figure 34: NVIDIA Flare Controller/Worker interactions. 

In more technical detail, two configuration JSON files should be created. The first file 

corresponds to the server (config_fed_server.json) and contains details about the 
implementation of the whole process. Particularly, it can specify the model architecture, the 
way that the weights will be aggregated, or even the number of rounds. The second 

configuration file corresponds to the clients (config_fed_clientr.json). This file defines the 
paths of the execution files for deploying the tasks. 

The message between the server and the clients is a Shareable object. Technically a 

Shareable object is implemented as a python dictionary. This dictionary carries meta-

information about the peer identity name, the task name that the client must execute, ML 
model weights, etc. Responsible for executing the tasks on the clients is the class Executor. 
The Executor retrieves the task name, (e.g., train, submit model) and all the necessary 

information from the Shareable object and carries out the task. 
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Figure 35: FL Training Workflow. 

Figure 35 provides a better understanding of the FL process performed by NVIDIA FLARE. 
Initially, the server creates the training model architecture and sends it to the clients. Once 

the clients have retrieved the model, they wait for the server to inform them about the 
executing task. If the initial task is “training”, then every client begins the training with their 

own data. After completing the training process, each client sends the model weights to the 
server. The server aggregates the weights of the clients and sends the new aggregated 

weights back to all clients. This process is repeated for every round. The final round follows a 
validation process where the server and the clients validate the final model on their data. 
NV FLARE provides to lead scientists/administrators 'admin’ packages, that allow controlling 

the whole federated process, e.g., submit jobs to deploy applications, check statuses, abort 
/ shutdown training. Specifically, the admin packages contain key and certificate files to 

connect and authenticate with the server, and the administration can be done through an 
included command prompt or through a programmatic API, namely FLAdminAPI16.  

4.2.1.1 Privacy Preserving Mechanisms 

NV FLARE provides different types of privacy-preserving mechanisms, such as percentile 
privacy, homomorphic encryption, etc. The supported privacy-preserving mechanisms can 

 
16 https://nvflare.readthedocs.io/en/main/user_guide/operation.html?highlight=prompt#admin-

command-prompt  

https://nvflare.readthedocs.io/en/main/user_guide/operation.html?highlight=prompt#admin-command-prompt
https://nvflare.readthedocs.io/en/main/user_guide/operation.html?highlight=prompt#admin-command-prompt
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be applied as filters when the information is sent or received between peers. These 
mechanisms are described in detail below. 

• Exclude Vars 

The “Exclude Vars” filter can be applied to the client’s configuration file. The behavior of the 

filter depends on the input. If the input is a list of variable/layer names, only specified variables 
will be excluded. In the case that the input is a string, it will be converted into a regular 

expression, and only matched variables will be excluded. Figure 36 shows how the filter is 
applied in the client’s configuration file; in this paradigm, the input is a string.  

 

 

Figure 36: NVIDIA FLARE filter for exclude/remove variables. 

 

• Percentile Privacy 

Another filter supported by NV FLARE is the one referring to “Percentile Privacy”. This filter is 

based on the "largest percentile to share" privacy preserving policy which is presented by 

Shokri and Shmatikov [28]. The main idea is that participants train independently on their own 
datasets and share small subsets of their models’ parameters during training. The number of 

shared models’ parameters depends on the percentile variable of the filter, which acts as a 
threshold. Using the “Percentile Privacy” filter, the client can control the percentile of 
parameters desired to be shared. Figure 37 represents the use of the filter with 20% shared 

model parameters. 
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Figure 37: NVIDIA FLARE filter for Percentile Privacy. 

 

• SVT Privacy 

A differential privacy method provided by NV FLARE is the Sparse Vector Technique (SVT) 

[29]. This filter applies a fundamental method for satisfying differential privacy by adding 
noise to ML model weights. SVT takes a sequence of queries and a certain threshold Τ and 
outputs a vector {⊥,⊤}ℓ, where ℓ is the number of queries answered, T specifies that the 

corresponding query answer is above the threshold, conversely ⊥ indicates it is below Τ [30]. 

This algorithm, after identifying the meaningful queries, adds standard differentially private 
noise from the Laplace distribution. The SVT privacy filter of NV FLARE provides gradient 

clipping, which is a method that acts as model regularization to prevent overfitting. SVT filter 
takes five parameters, namely fraction, epsilon, noise_var, gamma, and tau, where fraction 

determines the fraction of the model to upload, noise_var the additive noise and gamma is 
the upper bound of sensitivity of method. In the client’s configuration file SVT Privacy filter 
can be defined with all the necessary parameters. Figure 38 shows how the filter can be 

used. 

 

 

Figure 38: NVIDIA FLARE filter for SVT Privacy. 

• Homomorphic encryption 

Homomorphic encryption (HE) is also available on NV FLARE as a privacy-preserving choice. 

In HE, the clients receive keys to homomorphically encrypt their model updates before 
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sending them to the server. The server does not own a key, it only sees the encrypted model 
updates and can aggregate these encrypted weights. As soon as the weights are 
aggregated, the server sends the updated model back to the clients, where they can 

decrypt the model weights because they have the keys. The implementation of HE in NV 
FLARE has been performed using the TenSEAL library [31]. The way that HE can be used is 

shown in Figure 39.  

 

Figure 39: NVIDIA FLARE filter for Homomorphic Encryption. 

 

4.2.1.2 NVIDIA FLARE Secure FL Infrastructure 

NV FLARE performs FL with a trusted setup between remote clients through a provisioning 
tool, which helps the developer to accomplish this setup, by creating a startup kit for each 

site in an encrypted package. When FL starts the communication channels, it uses shared 
Secure Sockets Layer (SSL) certificates to create the identities and accomplish the secure 
communication between the participants. The provisioning tool is developed based on the 

Open Provision API, while NV Flare provides all the builder modules. The NVIDIA Flare provision 
tool creates mutual-trusted system-wide configurations for all participants. Specifically, these 

configurations contain the following information: 

• Network discovery: domain names, IP addresses. The name of the servers should be 

in the format of fully qualified domain names. It is possible to use a unique hostname 

rather than Fully-Qualified Domain Name (FQDN), with the IP mapped to the 
hostname. 
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• Credentials for authentication: certification of participants, root authority. Creates 

server, client and admin certificates, and having them signed by the root Certificate 

Authority (CA) for secure communication. 

• Authorization policy: roles, rules. It defines the role of each client e.g., admin, training-

participant role. Also, it defines the rights of every participant, and how relaxed or 

restricted they should be. 

• Tamper-proof mechanism: signatures. It creates signatures for all the files signed with 

the root CA for the startup kits so that they can be cryptographically verified to ensure 
any tampering is detected. 

• Convenient commands: shell script with command line options to help participants. 

Each participant can easily join the FL process by executing the shell script provided 
by the coordinator. 

The developers have in their possession an Open Provision API, as shown in Figure 40 to control 

the process and perform all provision tasks using their own requirements. With the API they 
can freely add/ modify or even remove the aforementioned configurations. 

 

Figure 40: NVIDIA FLARE provisioning Tool Workflow. 

Figure 40 describes the architecture of the Open Provision API. In the file project.yml 
developers can describe the participants and builders and store information about the 
implementation of the whole process. For example, the developer can define the version of 

the API s/he wants to use, s/he can name the project, determine the participants and the 
builder classes. An example of the project.yml file is shown in Figure 41. 
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Figure 41: Provisioning in NVIDIA FLARE by project.yml. 

The python file provision.py [32] is a sample application to interact with the Open Provision 

API. The file also loads all the information from project.yml and instantiates classes/subclasses 
defined by Open Provision API. Provisioner is the container class that carries all instances of 
Project, Workspace, Provision Context, Builders, and Participants. 

For reasons of brevity, the basic classes of the Open Provision API are briefly described in the 

following. The Project class keeps the information about participants, while the Participant 

class has detailed information for participants such as the name and the organization. Builder 
performs a key role in the whole process and consists of eight different classes. The main 

purpose of the Builder is to take the information from the project and the provisioner, and 
generate data commonly used zip files for a typical NVIDIA FLARE system, such as tenseal 
context files for server and client. For example, StaticFileBuilder uses the information from 

project.yml to go through participants and write the contents of each file and replace them 
with the appropriate values. HEBuilder builds Homomorphic related content.  

It should also be noted that NV FLARE, to simplify the user’s interaction with the project.yml 

file, includes a UI-based provisioning tool. In this UI, as shown in Figure 42, the user can specify 

information about the entire provisioning process such as the rights of each participant, their 
names as well as the server IP, and the ports to which they communicate. After the user 
specifies all needed information, s/he can generate the project.yml file. 
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Figure 42: UI of provisioning tool helper in NV FLARE. 

4.2.2 IoT-NGIN FedPATE: Flower & PATE 

Flower [33] is an open-source FL framework which supports heterogeneous environments 
ranging from few IoT devices and mobile phones up to thousands of clients. The Flower 

framework assists engineers to integrate workflows from existing ML applications, regardless 
of the ML/DL framework (PyTorch, TensorFlow, etc.). Flower is developed to meet some 

design goals such as the compatibility with most state-of-the-art ML framework (PyTorch, 
TensorFlow, Keras, etc.), the interoperability with different operating systems, the 

programming languages and hardware characteristics (IoT devices, mobile phones, server, 
etc.) among the FL system’s clients and the capability of scaling to a large number of clients. 
However, Flower does not officially provide any privacy preserving mechanisms. In the 

following sections, IoT-NGIN FedPATE is proposed as a Federated Learning framework which 
uses Private Aggregation of Teacher Ensembles (PATE) [34] for privacy preservation, 

integrated with the Flower FL framework. 

4.2.2.1 PATE as Privacy Preserving Mechanism  

PATE aims at providing differential privacy to machine learning, on the premise that if two 

independently trained classifiers agree on a classification decision, then the decision does 
not reveal information about any single training example [34]. This approach consists of a 

Student-Teachers model architecture in order to ensure the privacy of each entity’s data. 
Multiple Teacher models are trained with disjoint data, potentially private such as medical 
records, while the Student model is trained with public data, in which a portion of labels 

comes from a noisy (Laplacian) voting among all teachers. Then, an aggregated Teacher 
takes the predictions (votes) of every trained Teacher on the Student’s unlabeled data for 



H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

72 of 125 

 

 

each sample and adds random noise, as shown in Figure 43. Then, the most voted predictions 
are used as labels to train the student model. 

 

Figure 43: Overview of the noisy aggregation mechanism in PATE [35]. 

Thus, the Student model, which may later be publicly available, incorporates aggregated 

knowledge out of teachers’ private data, based on their votes, while it preserves their 
privacy. The entire approach of PATE is illustrated in Figure 44. 

 

Figure 44: Approach diagram: an ensemble of teachers is trained on disjoint subsets of the private 

data and a student model is trained on public data labelled using the ensemble. 

However, the PATE framework, orginally relying on the LNMax (max-of-Laplacian 
mechanism) aggregator, has been evaluated only on simple benchmark classification tasks 

like MNIST, while its performance when applied to larger-scale learning tasks and real-world 
datasets was not clear. Papernot et al. [34] introduce new noisy aggregation mechanisms 

(e.g., Confident-GNMax, GNMax) that are more selective and add less noise (Gaussian 
noise) resulting in the improvement of the original PATE on all measures. For a sample x and 
classes 1 to 𝑚, let 𝑓𝑗(𝑥) ∈ [𝑚] denote the 𝑗-th teacher model’s prediction on x and 𝑛𝑖(𝑥) 

denote the vote count for the 𝑖-th class such as 𝑛𝑖(𝑥) = |{𝑗: 𝑓𝑗(𝑥) = 𝑖}|. The new aggregation 

mechanism called GNMax (Gaussian-NoisyMax) is defined as [34]: 

 𝑀𝜎(𝑥) ≜ 𝑎𝑟𝑔 max
𝑖

{𝑛𝑖(𝑥) + 𝑁(0, 𝜎2)} (1) 

 where 𝑁(0, 𝜎2) is the Gaussian distribution with mean 0 and variance 𝜎2. 
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As an extension to the GNMax aggregator, Papernot e al. [34] also propose the Confident-

GNMax aggregator that enables the filtering of the labels that teachers predict. In other 
words, the most voted label, will be the final training label for the student if and only if the 

teachers have a sufficiently strong consensus. Figure 45 shows the improvement of the 
proposed method in contrast with the original LNMax method. 

 

Figure 45: Accuracy is higher throughout training, despite greatly improved privacy [34]. 

That said, PATE constitutes a transfer learning framework, but does not consider the scenario 

of federated learning, which would require privacy protection against malicious participants. 
Yanghe Pan et al. [36]  proposed a new FL framework called “FL-PATE”, which combines the 

PATE transfer learning technique in the form of Federated Learning.  

 

Figure 46: Overview of FL-PATE framework [36]. 
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FL-PATE can be divided into two stages, as shown in Figure 46. In the first stage, Teacher 
models are trained via Federated Learning applied on groups of participants and then 
applying differential privacy by adding Gaussian noise on a special layer of the Teacher 

models (e.g., the last fully connected layer in ResNet18). In this way, the influence of the noise 
on the model’s accuracy is significantly reduced. Then in the second stage, the student 

model is trained over the public datasets labeled by the aggregation of teacher models’ 
outputs. 

  

(a)Impact of noise addition mechanism (b)Student’s accuracy 

Figure 47: Teacher’s and Student’s accuracy [36]. 

Figure 47(a) shows the impact that different noise addition mechanisms have in Teacher’s 
accuracy, while Figure 47(b) depicts the comparison between the baseline model trained 
via centralized training, the FL-PATE student model and the model trained by a randomly 

labeled public dataset in terms of accuracy. 

Nevertheless, Papernot originally introduces PATE as a privacy preserving technique but the 

proposed FL-PATE [36] is using PATE only as a transfer learning method and not as a privacy 
preserving framework since it uses gaussian noise addition on the aggregated model’s 

weights during the FL training while on the other hand PATE uses Laplacian noise addition on 
the most voted teachers’ predictions.  In the scope of IoT-NGIN, we create an FL framework 
by exploiting PATE as the main architecture in both transfer learning and privacy preserving 

technique. 

4.2.2.2 IoT-NGIN FedPATE 

As mentioned above, FL-PATE  [36] considers the federated learning scenario, in which it uses 

a client-level differential privacy mechanism for teacher model training. However, PATE   
proposes a vote-level differential privacy mechanism. We introduce FedPATE as a federated 

learning framework based on PATE for knowledge transfer, which also applies differential 
privacy. FedPATE, like PATE [37], has a teachers-student scheme. The teachers are trained 

under a federated learning setup. When the FL process finishes, the model of each teacher 
performs inference on public data of the student. These predictions on public data are 
aggregated, adding noise, to train the final FL Learning framework. 
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Our system consists of a Flower Server and multiple Flower Clients with local, private datasets. 

The teachers and the student behave as clients in an FL training process [38]. The Flower 
server trains the teacher models and then it is responsible for the noisy aggregation of the 

teachers’ outputs, in order to label the student’s public, unlabeled dataset. 

4.2.2.2.1 Model Overview 

 

Figure 48: Overview of proposed FedPATE framework. 

An overview of the design of FedPATE is illustrated in Figure 48. The goal is to train a model in 
a privacy-preserving way, which can be also used for complex and real-world tasks. Each 

teacher’s model is trained at its own sensitive data, which are kept private. The final output 
of the whole procedure is the student model, which can be released to the public. The server 

trains the teachers under a federated learning setup, while the student is waiting for the 
teachers to finish their training process. At each round of FL, the teachers download the 

global model from the Flower Server and train it on their local private-sensitive training set by 
the SGD (Stochastic Gradient Descent) [39] training algorithm. Then, the teachers upload 
the weights ∆𝑤 to the Flower Server and the global model is updated by the average of ∆𝑤. 

We use 𝐹𝑒𝑑𝐴𝑣𝑔 [38] as the aggregation strategy.  
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At the final round of FL training, the teachers do not upload their model to the server. These 

models are rather utilized to perform predictions on student’s public data. Then, the server 
uses unlabeled public student’s data to query the teachers and performs noisy aggregation 

to the corresponding predictions of the teachers. Finally, the server uses these predictions to 
label the student’s training set and train the student in the form of supervised learning. By 

labeling the student’s training dataset, teachers’ knowledge is transferred to the student. 
During the whole process, only the student’s model is public, and the teachers are 
inaccessible to users. The final trained student’s model is more resistant to membership 

inference attacks and model inversion attacks [24] [23] since the final training is done at 
public data and therefore does not disclose directly information about the private data of 

Teachers. However, it contains knowledge gained out of the private data of each teacher 
since the labels that participate in its training procedure arise from the predictions of 

teachers’ models on the unlabeled data.  

4.2.2.2.2  Student Training 

The student’s training dataset comes from public unlabeled data and the server labels them 
by the noisy aggregation on the outputs of the teacher models on that data. FedPATE uses 

the same noisy aggregation mechanism as PATE [37] and it is described as follows. 

Let 𝑐 be the number of classes in our task. For a given class 𝑗 ∈ [𝑐] and an input 𝑥, the label 

count is the number of teachers that assign class 𝑗 to input 𝑥: 𝑛𝑗( 𝑥 ) = |{𝑖: 𝑖 ∈ [𝑛], 𝑓𝑖( 𝑥 ) = 𝑗}|, 

where [𝑛] illustrates the indices of the teacher model set. The final output of the aggregated 

teacher is: 

where 𝑛𝑗( 𝑥 ) is the label count, 𝜀 is a privacy parameter and 𝐿𝑎𝑝( 𝑏 )the Laplacian distribution 

with location 0 and scale b. The parameter 𝜀 influences the privacy guarantee we can 
prove. Intuitively, a large 𝜀 leads to strong privacy guarantee but can degrade the accuracy 

of the labels. 

4.2.3 TensorFlow Federated 

TensorFlow federated (TFF) [27] is an open-source framework that supports federated 
computations and methods introduced by Google. It is designed to work only in simulation 
mode (i.e., it cannot be deployed on real world applications) and thus cannot be used to 

perform FL on real nodes, but it is only suitable for research and experimentation purposes. 
Since it only works in simulation mode, this framework is significantly faster and lighter 

compared to other popular choices. The architecture of this framework is depicted in Figure 
49 [40].  

𝑛𝑜𝑖𝑠𝑦_𝑎𝑔𝑔(𝑥) = 𝑎𝑟𝑔 max
𝑗

{ 𝑛𝑗( 𝑥 ) + 𝐿𝑎𝑝 ( 
1

𝜀
 ) } (2) 
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Figure 49: TensorFlow federated architecture [40]. 

The TFF framework is architecture agnostic since it can compile all code into an abstract 

representation. With that in mind, the model can be compiled in diverse environments. 
Moreover, it provides a series of extensions that range from privacy preserving (differential 
privacy) to compression of ML model variables with large values. It should be mentioned that 

the implementation of a federated process becomes very easy and fast.  

The main components which define TensorFlow Federated are [27]: 

• Federated Learning (FL) API: This offers a high-level set of functionalities and interfaces 

which enable the researchers to experiment with federated procedures without 
detailed knowledge of how things are working under the hood. Examples of such 
functionalities are differential privacy and aggregation algorithms. 

 

• Federated Core (FC) API: This provides a set of lower lever interfaces which enable the 

ML researcher and ML engineer to express novel federated learning algorithms and 

methods. 

Regarding the aggregation process, TFF provides many built-in aggregation algorithms, 

which come as functions and accept parameters as inputs. These parameters can be client 
or server optimizers, privacy-preserving techniques, client weighting, etc. Examples of 
algorithms available within TFF are FedProx algorithm, federated average and Mime lite [41]. 

However, using the module tff.aggregators custom aggregation of values can be 
implemented. It is also noted that for all aggregation algorithms, the weighted and 

unweighted alternatives are both implemented. 

TensorFlow federated simulates the federated process with a special type of dataset of type 

tff.simulations.dataset.ClientData. This type is essentially a collection of tf.data.datasets each 

assigned to a different client. A specific number could be simply assigned to a record from 
the original dataset and distribute it to clients. TFF hosts multiple real-world datasets that are 

frequently seen in literature. Examples of such datasets are celeba [42], Federated MNIST 
[43], Federated Cifar [44] etc. Moreover, TFF datasets can be created from a tf.data.dataset. 

Even though datasets are distributed in a federated scenario, this is a very convenient way, 
since, in many experiments, being able to process data in a centralized manner can have 
many benefits. 



H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

78 of 125 

 

 

4.2.3.1 Privacy Preserving mechanisms 

Regarding privacy preserving, TensorFlow Federated has many options related to differential 
privacy. Some of the options are: 

• dp_aggregator: Zeroes out extremely large values for the robustness of data 

corruption on clients and performs adaptive clipping and addition of Gaussian noise 
for differentially private learning. 

• ddp_secure_aggregator: Zeroes out extremely large values for the robustness of data 

corruption on clients, and performs distributed DP (compression, discrete noising, and 

SecAgg) with adaptive clipping for differentially private learning. 

• Custom: A custom differential privacy algorithm could be implemented as a subclass 

of tensorflow_privacy.DPQuery. 

4.3 Implementation for IoT-NGIN LLs 

Considering the diversity of the ML applications that may be supported through the selected 
FL frameworks and the diversity of their performance and privacy requirements, as well as 

the fact that NVIDIA FLARE is at a nascent age, the FL framework performance is still not clear 
for every application. Therefore, the three selected frameworks are investigated in the 

context of representative cases, which could provide insights on the use of the FL frameworks 
of interest, at least for the -but not limited to- the IoT-NGIN LL UCs, as tabulated in Table 9. This 
section presents the implementation details of integrating relevant ML models in the FL 

frameworks and the results of their experimental evaluation. 

Table 9: Summary of AI services and features experimented for the 3 FL frameworks. 

FL Frameworks NVIDIA FLARE IoT-NGIN FedPATE 
TensorFlow 

Federated 

AI service Object detection Image classification Tabular data 

classification 

Privacy 

Preservation 
technique 

Percentile Privacy, 

Homomorphic 
Encryption, both 

Differential Privacy 

(PATE) 
Differential Privacy 

Data 

heterogeneity 
yes yes yes 

4.3.1 NVIDIA FLARE 

NVIDIA FLARE ecosystem is used to train and evaluate a ML-based object detector under 

different scenarios. Specifically, in the context of IoT-NGIN, an object detection system, 
capable of recognizing obstacles, is implemented. For the experiments reported in  this 

deliverable, the YOLO v5 (You Only Look Once) [45] is used as the ML model for object 
detection, which it is trained to detect objects of the class person of the COCO dataset [46].  

The main goal is to create a federated learning system, in which the training process is 

implemented by clients. Every client trains the object detection algorithm with its own data 
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and sends the training results to the server, which concatenates the training weights and 
creates the final trained model. Moreover, experiments are conducted on various scenarios, 
and the performance of the federated ML model analyze on different cases.  A detailed 

description is given in the following. 

4.3.1.1 Experimental Setup 

YOLO [47] is one of the most famous object detection algorithms that divide images into a 

grid system. Each cell in the grid is responsible for detecting objects within itself. YOLO is 
renowned for speed and accuracy. There have been many versions of YOLO, and in every 

version the performance is improved. The experiments of this deliverable are conducted with 
YOLOv5 [45], which is a robust version of YOLO series released as open-source code. 

This version provides various YOLOv5 models, that are compound-scaled variants of the same 

architecture. Specifically, very small models can give real-time FPS on edge devices, while 
very large models are more accurate and meant for cloud GPU deployments. The following 

is a short description of each variation: 

• YOLOv5n: The nano model is the smallest of all models, and the model’s capacity is 

around 4 MB. It is ideal for mobile solutions. 

• YOLOv5s: The small model with around 7.2 million parameters. This model is more 

accurate than the nano model and it’s ideal for IoT devices. 

• YOLOv5m: This is the medium-sized model with 21.2 million parameters. It’s a good 

choice for many applications since it provides a good balance between speed and 

accuracy. 

• YOLOv5l: The large model of the YOLOv5 family with 46.5 million parameters. 

• YOLOv5x: It is the largest model among the 5 with 86.7 million parameters. This model 

can accomplish the highest mAP (Mean Average Precision) among the 5 but is much 
slower. 

All the models mentioned above are trained on the COCO dataset with 80 different classes 

for 300 epochs. Moreover, all the trained models are available and can be used as pre-

trained modes to speed up the training procedure.  

The purpose of our object detection algorithm at an early stage was to detect humans. So, 

the next step was to find the appropriate dataset. The available open-source object 
detection datasets that include person class are Pascal Visual Object Class (VOC) and 
COCO. 

 

PASCAL VOC 

PASCAL VOC [48] is a reference dataset in object detection task, consisting of approximately 

12 thousand images annotated with object bounding boxes. Specifically, it contains more 
than 28 thousand annotations for 20 basic classes, including the class “Person”. The first 

version of this dataset was introduced in 2005, containing only 4 categories. The fixed final 
number of 20 classes was established in 2007, while the last and complete version of this 

dataset was presented in 2012.  It should be mentioned that the PASCAL VOC dataset does 
not exhibit to systematic bias, such as images with centered objects, good illumination, non-

occluded objects, etc.  
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This dataset provides challenging images and high-quality annotations for all classes. 

Regarding the class “Person”, PASCAL VOC dataset contains images that person is involved 
in a wide range of activities, such as walking, riding bikes, sitting on buses, etc. Figure 50 

illustrates images with the bounding boxes of objects belonging to class person. 

 

 

Figure 50: Annotations of PASCAL VOC dataset 

COCO 

COCO is a large-scale object detection dataset that approaches core analysis problems 

such as detecting non-iconic scenes of objects, contextual reasoning within objects, and 

accurate 2D localization of objects. The dataset consists of 1.5 million object instances, 80 
object classes, object segmentation, and more. Additionally, it should be mentioned that 

YOLOv5 is already trained on this dataset with satisfactory performance. 

The annotation of people is done in detail.  Specifically, bounding boxes are annotated for 

each individual person of the image, even in the case of many people. Figure 51 shows 

images with the bounding boxes of objects belonging to class person. The left image is the 
annotation of a single person, while the right one is the annotation of a group of people. 
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Figure 51: Annotations of the MS Coco dataset. 

In the scope of IoT-NGIN, the YOLOv5s model is selected from the YOLOv5 series since it has 

a small architecture, that can easily be trained on IoT devices. This model is based on pre-

trained model on the COCO dataset and further FL training and evaluation on appropriate 

test and evaluation datasets based on the VOC dataset. To achieve this, VOC images 
containing people should be selected, while their corresponding files should be converted 
to the suitable format. 

 

Figure 52: YOLOv5 annotation format. 

YOLOv5 has a specific ground-truth annotation format, which is visualized at Figure 52. 

Particularly, YOLOv5 requires for every image one txt file, which includes one row for each 
object. The object is described with the format of class [x_center y_center width height], 

where the fields are space-delimited, and the coordinates are normalized from 0 to 1. 

However, the annotations of the VOC dataset are described in different format. The objects 

of each image have four coordinates [x_min, y_min, x_max, y_max], describing the two 
edges of bounding box. Thus, the annotations of VOC are converted to YOLOv5 format. The 
open-source tool, introduced at [49], is used to download images containing the object of 
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the class person, as well as the corresponding ground truth files with the format that YOLOv5 
requires. 

The most popular metric to evaluate the performance of the object detection models, such 

as YOLOv5, is the mean Average Precision (mAP). The mAP is calculated by the combination 
of the Intersection over Union (IoU) and Precision-Recall curve. Initially, the IoU is used to 

determine the deviation of the predicted bounding boxes with the ground truth and the 
calculation of the Precision and Recall. Then, it follows the plotting of the Precision-Recall 
curve, where the Average Precision (AP) is calculated by taking the area under the curve 

by segmenting the recalls. So, the mAP is the average of the AP calculated for all the classes 
and is defined: 

Where Q is the number of queries in the set and the AveP(q) is the average precision (AP) for 

a given query, q.  

The training of YOLOv5s model is performed at the NVIDIA FLARE framework. Each client has 

its own data from the VOC dataset. The pre-trained weights that YOLOv5s provides are used 
to accomplish better results in fewer epochs. NVIDIA Flare provides two modes for ML model 

training, which are the POC (Proof Of Concept) and Secure FL workspace using the 
provisioning tool. Initially, part of experiments done in POC mode. POC is a FL Simulator, 
coupled to a set of tools used to deploy and manage production workflows. The benefit that 

this mode provides is that the developers can test the FL locally and evaluate the 
performance of the process. All the experiments were performed with 3 clients in total to test 

how each one reacts to the FL process. Also, a part of the experiment was implemented with 
Provisioning. Provisioning provides a secure FL infrastructure which generates mutual-trusted 
system-wide configurations for all participants so all can join the NVIDIA FLARE system across 

different locations as described in Section 4.2.1.2. At Secure FL workspace mode, we tested 
a combination of privacy-preserving mechanisms in order to analyze their integrity. 

4.3.1.2 Experimental Results 

The purpose of the performance evaluation is, firstly, to ensure that the integration of the 
YOLO v5 model with the federated learning framework run properly and, secondly, to 

evaluate the performance of the FL trained model (i.e., the mAP) under different scenarios, 
such as various privacy preserving mechanisms and data heterogeneity. Regarding the 

privacy preserving techniques, the main purpose of experimenting these scenarios is to 
explore the possibilities of each technique as well as the trade-off between privacy level and 

model performance. Additionally, the best parameters for every privacy-preserving 
technique are determined in order to minimize the trade-off between the performance of 
the model and privacy. Concerning the data heterogeneity, three different splitting 

schemes, such as mild, moderate and intense, are examined to define the effect of unequal 
data splitting among clients. 

Centralized Learning 

Initially, in the first scenario, the YOLOv5s model is trained and evaluated, simulating a 

centralized training baseline. To accomplish this, only one node is used, in which all the 

training samples are located. The training is done for one federated round and 20 epochs. 

𝑀𝐴𝑃 =  
∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄

𝑞

𝑄
 (3) 
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The performance of the centralized model is used as a comparison measure and the 
performance of each subsequent experiment is compared with it.  

The second scenario regards the training of the ML model in a federated setup. Specifically, 

3 clients are established to train the YOLOv5s model based on private data. The training is 
performed at 4 federated rounds of 5 epochs each. Table 10 lists information about those 

experiments. 

Table 10: Scenarios of centralized and FL training. 

Run ID Description 
Number of 

clients 
Rounds Epochs 

Centralized Without FL 1 1 20 

FL With FL 3 4 5 

 

Table 11 shows information about the size of the dataset and batch size in centralized and 

FL training. The batch size is decreased from 64 to 16 in FL training, as it was not possible to 
train 3 clients with more batch size due to limitations in processing resources. In the 

centralized mode, the client contains the whole dataset, while in the FL setup, the dataset is 
split equally among each client. 

Table 11: Information about batch size and split of dataset. 

Epochs Batch size Total size Training dataset Testing dataset 

Centralized 64 3900 3.500 450 

FL 16 1166 1000 166 

 

In Figure 53 visualizes the performance of the centralized model (left image) as well as the 

performance of FL training with 3 clients (right image). It is observed that the performance 
from the first epoch is high enough because of pre-trained weights. The final mAP reached 

86.0% in both cases, and it is deduced that the FL training does not affect the performance 
of the ML model. 
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(a) 

 
(b) 

Figure 53: (a)Centralized Learning performance (b)FL training performance. 

 

Data Heterogeneity 

Another scenario concerns the training of the object detection model with heterogeneous 

data splits. Specifically, the performance of the model is evaluated using different numbers 

of training samples for each client.  

Figure 54 shows the 3 different data splits. In the first case, we tested a data split with no big 

heterogeneity between the clients. Client 1 owned 50% of the dataset while the other two 
owned 50% (25% for each client). In the second case, the data is split 60%-10%-30% for each 

client respectively. The third and the last case has the larger heterogeneity among the clients 
since the first client owns the 85% of the whole dataset while the other 2 clients the 15% and 
the 5%, respectively. 
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Figure 54: Number of samples with different data Heterogeneity cases. 

Based on Figure 55, it is concluded that the performance of the model decreases when the 

heterogeneity is bigger among all the clients. In case 1, the mAP decreased by 6%, while for 
the second by 14% and for the last one by 36%, compared to the original model. This 
behavior is reasonable because the clients with fewer data achieve lower mAP and, 

therefore, influence the aggregated model in a negative way. 

 

Figure 55: Performance of the model with data heterogeneity. 

 

FL experiments with Percentile Privacy mechanism 

The effect of the Percentile Privacy, as a privacy preserving mechanism, on the model 

performance is evaluated in different experimental scenarios, as described in Table 12.  
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Table 12: Scenarios of FL training with Percentile privacy. 

Run ID Parameters Number of clients Rounds Epochs 

Percentile_10 Percentile: 10 

Gamma: 0.1 

3 4 5 

Percentile_50 Percentile: 50 

Gamma: 0.1 

3 4 5 

Percentile_70 Percentile: 70 

Gamma: 0.1 

3 4 5 

Percentile_70_0.01 Percentile: 70 

Gamma: 0.05 

3 4 5 

 

A high value of percentile indicates that a large fraction of parameters will be shared, while 

a low percentile value means that few parameters will be sent to the server. Figure 56 shows 
the performance of the model trained on FL setup without any privacy as well as the 

performance of each model trained with Percentile Privacy. It is observed that in the first two 
cases the performance of the model is not affected. However, it must be reported that the 
model with percentile privacy needs more federated rounds to reach the performance of 

the federated model without privacy. When the value of percentile is equal to 70, a large 
decrease in the model’s performance is noticed. At this point, we decreased the gamma 

value to check how this affect the performance of the model, but we did not notice α 
remarkable difference.  

 

Figure 56: FL with Percentile privacy, the comparison of mAP with various protection levels. 
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FL experiments with SVT 

The following privacy-preserving mechanism that was tested at different privacy levels is the 

SVT privacy method. All the experimental scenarios that were examined to evaluate the 

performance are shown in Table 13.  

Table 13: Scenarios of FL training with SVT privacy 

Run ID Parameters Number of clients Rounds Epochs 

Noise Var: 1 Fraction: 0.9 

Epsilon: 0.1 

Noise Var: 1 

3 4 5 

Noise Var: 0.7 Fraction: 0.9 

Epsilon: 0.1 

Noise Var: 0.7 

3 4 5 

Noise Var: 0.5 Fraction: 0.9 

Epsilon: 0.1 

Noise Var: 0.5 

3 4 5 

Noise Var: 0.5_0.01 Fraction: 0.9 

Epsilon: 0.01 

Noise Var: 0.5 

3 4 5 

At this point, it should be mentioned that the implementation of SVT from NV FLARE is based 

on the [50], which presents a privacy-preserving federated method in the case of brain tumor 
segmentation on images. In this work, except for the Laplace noise inserted to weights, also,  

gradient clipping is applied and is treated as a regularization method to avoid over-fitting. 
However, in the original paper [30], which introduced the method, gradient clipping was not 
applied. Initially, some experiments were carried out with the original source code of the SVT 

that NV Flare provides. In those experiments, the performance of the model was unstable 
and inadequate. Maybe, the gradient clipping in cases that the model overfits will be 

appropriate but in our case decreases the performance largely. Therefore, we decided not 
to apply gradient clipping. 

Figure 57 demonstrates the performance of the aggregated model. The main goal of the 

experiments is to observe the behavior of the model by adding noise gradually. As we can 
see by adding noise to the model parameters the global mAP decreases. For the two first 

scenarios with value noise 1 and 0.7, the performance of the model decreases only by 5 
percent compared with the baseline model without SVT. For value noise 0.5 (stronger 

differential privacy) noticed that the mAP reached 76%. Additionally, to check if the 
performance of the model with strong differential privacy can get better, the e variable 
increased to 0.1 but the performance was impaired. At the SVT privacy observed α instability 

to the model, specifically, the performance of the aggregated model going upside-down. 
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Figure 57: FL with SVT privacy, the comparison of mAP with various noise insertion levels. 

 

FL experiments with HE 

As mentioned in section 4.2.1.1, the HE algorithm allows participants to encrypt the 

information transferred to the aggregator server. When the server receives the encrypted 
information, it can operate on encrypted data by using HE and after the aggregation 

process returns them to the clients. It should be mentioned that HE can be applied only with 
the provisioning tool, which is described in section 4.2.1.2. Therefore, the HE mechanism is 
applied in a FL setup with 3 remote clients. Figure 58 presents the global mAP of aggregated 

model for each federated round with and without HE. As expected, HE is a mechanism that 
does not decline FL model performance, as both the encrypted and non-encrypted models 

have the same results. 

 

Figure 58: FL with and without HE. 

FL experiments with Percentile Privacy and HE 

The last experiment with the NV Flare framework combines privacy-preserving mechanisms 

to achieve the best possible privacy in the system. For this reason, first, we applied Percentile 
Privacy to our data, and then we added HE. Figure 59 illustrates the global mAP of the 

federated model with and without privacy-preserving techniques trained in a server with 3 
actual nodes as clients. Our experiments compute the performance of the model trained in 
an FL with HE, Percentile Privacy as well as a combination of HE and Percentile Privacy. As 

we expected the combination of these two privacies preserving techniques does not decline 
the FL model’s performance. 
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Figure 59: FL with Percentile Privacy with HE. 

4.3.2 IoT-NGIN FedPATE 

4.3.2.1 Experimental Setup 

For the experiments we used the CIFAR-10 dataset [51], which is a collection of images that 

are commonly used to train machine learning and computer vision algorithms. It is one of 
the most widely used datasets for machine learning research. CIFAR-10 consists of 60000 
32x32 color (RGB) images in 10 different classes. Table 14 shows the total size of dataset as 

well as the training and testing sets.  The 10 different classes represent airplanes, cars, birds, 
cats, deer, dogs, frogs, horses, ships and trucks. There are 6000 images of each class. 

Table 14: Number of images in the CIFAR-10 dataset. 

Dataset Total Images Training set size Test set size 

CIFAR-10  60000 50000 10000 

To train a ML model in a Federated Learning setup among clients, partitions of the dataset 

are required to ensure that each Teacher of the FL System is trained with different data. We 
partition the CIFAR-10 training dataset in 𝑛 disjoint sets and train a Teacher model separately 

on each set, where 𝑛 is the number of Teachers. The CIFAR-10 test dataset represents the 

public unlabeled data for the student training, for which a portion of labels are extracted 
from the most voted predictions of the Teachers on that data. Particularly, the 90% of the 

CIFAR-10 test dataset is used for the training procedure of the Student and the rest is used to 
evaluate the whole training procedure as shown in Table 15.  

Table 15: CIFAR10 dataset partitions for student’s training. 

Dataset 
Total 

Images 

Teachers’ training set 

size 

Student’s training set 

size 

Student’s test set 

size 

CIFAR-10  60000 50000 9000 1000 
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The Deep Learning model, that is trained in FedPATE, is a Convolutional Neural Network 

(CNN), which has 3 convolutional layers, each consisting of two 3x3 layers, one Max-Pooling 
layer and one Batch Normalization layer, followed by 3 fully connected layers. The 

performance of the ML model is described by the accuracy metric, which is equal to the 
correct number of predictions divided by the total number of predictions. 

4.3.2.2 Experimental results  

The baseline model is trained in a Federated Learning scenario, without any privacy 
preserving mechanisms, with 1 client (centralized case) for 20 epochs on the same train and 

test dataset with the student and achieves 79% accuracy. This performance is the upper 
bound of the FL algorithms and works as a baseline for the next experiments. Figure 60 shows 

the accuracy of the baseline model for each epoch, which is trained in a centralized 
manner. 

 

Figure 60: Performance of the student baseline model of FedPATE. 

As mentioned in section 4.2.2.2, at the first stage of FedPATE, the Flower server trains the 

teachers in the form of federated learning while the student is waiting for the teachers to 
finish their training process. We consider two ensembles of 10 and 14 teachers and therefore 

we split the dataset into 10 and 14 equally-length, disjoint partitions, each containing 5000 
and 3571 images respectively. Each teacher is trained for 10 federated rounds and 10 

epochs each round. Figure 61 illustrates the test accuracy of the aggregated model after 
each federated round during the teachers’ training for the two ensembles. At the final round, 
it performs 89.5% and 89.2% in accuracy for 10 and 14 clients respectively. 
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Figure 61: Performance of the aggregated model for each federated round. 

At the second stage of FedPATE, the flower server queries the predictions of teachers’ model 

on student’s training data and performs a noisy aggregation of their votes (predictions) to 
label a portion of that data and trains the student. As mentioned above, we perturb the vote 
counts with Laplacian noise of inversed scale 𝜀 ranging with the values 1, 0.2, 0.1, 0.001. As 
the value of 𝜀 is decreased the more random noise is injected to each query. The student 

has access to 9000 samples of the CIFAR10 dataset, which a subset of either 2000 or 9000 is 
labeled by using the noisy aggregation mechanism for each value of 𝜀. Figure 62 illustrates 

the baseline model’s accuracy compared with the student model, trained with 10 and 14 

teachers without noise injection. We observe that each model performs almost the same 
with accuracy ~79%. This is to be expected as the average test accuracy of individual 

teachers is ~86% and ~84% for 10 and 14 teachers respectively, resulting in accurate 
predictions to the student’s public, unlabeled data. 

 

Figure 62: Student's test accuracy for 9000 queries, without noise injection. 

 Figure 63 shows the student’s test accuracy when the flower server performs 2000 and 9000 

queries from the 2 different ensembles of teachers with several values of the noise parameter 
𝜀. As expected, in both ensembles, the student’s accuracy decreases while the parameter 
𝜀 is decreased too. In the case of 9000 queries is meaningless to experiment with values lower 

than 0.1 for 𝜀 as it adds too much noise to the student’s labels resulting in pointless training. 
We found that when Laplacian noise with 𝜀 = 0.2 is added to the teachers’ queries, we 

achieve a significant performance of 70.1% accuracy on the student model (~7% lower 
compared to the baseline) while we preserve high privacy concerning each teacher’s 
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sensitive data. In addition, we observe that the more the number of teachers is increased 
(i.e., the clients of the FL system), the less impact has the noise injection on the model’s 
accuracy. Particularly, as Figure 63(b) and Figure 63(d) show, the student model achieves 
50% accuracy with 𝜀 = 0.1 and 10 teachers, while it achieves almost 60% accuracy with 14 

clients and noise parameter  𝜀 = 0.1. 

 

a) Test accuracy for 2000 queries, 10 clients. 

 

b) Test accuracy for 9000 queries, 10 clients. 

 

c) Test accuracy for 2000 queries, 14 clients. 
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d) Test accuracy for 9000 queries, 14 clients. 

Figure 63: Student's test accuracy. 

Data Heterogeneity 

To examine how our model performs in real-world scenarios, we investigate the scenario of 

data heterogeneity. In real life applications, clients of a Federated Learning system may own 
a dissimilar amount of data compared to each other, resulting in effecting the entire model’s 

performance. We examine the impact that data heterogeneity has in our FL system model’s 
accuracy in 2 different scenarios. Figure 64 illustrates the number of samples that each client 

contains in the scenario of Soft Heterogeneity, where the difference of each client’s data 
size is small (~150 samples in average), and the scenario of Hard Heterogeneity, where the 
difference of each client’s data size is higher (~4000 samples in average). 

 

Figure 64: Data heterogeneity scenarios. 

That said, Figure 65 shows the accuracy of the FL system when applied the 2 scenarios of 
data heterogeneity discussed above. We observe that in the cases of No Heterogeneity and 

Soft Heterogeneity the accuracy has almost the same value and the scenario of Hard 
Heterogeneity performs slightly better. This is to be expected, since the CIFAR10 dataset is an 
easy to learn dataset. The images contained in the dataset are 32x32 pixels and our model 

can successfully be trained on them even with a small number of images. However, as Figure 
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64 shows, some clients have a large number of images, and they manage to achieve high 
results in the image classification. This results in better quality of knowledge transfer when the 
FedAvg algorithm is applied to the client model’s trained weights during the FL training and 

therefore the aggregated model after each round performs better. 

 

Figure 65: Accuracy of the FL system when applied data heterogeneity. 

4.3.3 TensorFlow Federated 

In this section, experiments of federated learning scenarios using TensorFlow Federated are 
described. More specifically, we implemented a network Intrusion Detection System (IDS) 

which is trained and deployed in a federated manner. For training and testing purposes we 
use the NSL-KDD dataset [52] which consists of packet logs with 6 different types of attacks 
and normal records. Results show that the approach is robust and can detect malicious 

packages in advance thus enhancing cybersecurity in IoT Systems.  

4.3.3.1 Experimental setup  

For the training of the federated model, we use the NSL-KDD dataset for our experiments. For 

its features, it is widely used for the testing and evaluation of intrusion detection systems. The 
dataset is composed of 257673 cyber-attacks labeled in 5 different classes as Dos, Probe, 

U2R, R2L (attack types) and Normal (no attack). We modify the dataset in a way that we 
have 2 classes, converting our problem to binary classification problem, where the labels are 

“No DoS” and “DoS”. That said, “No DoS” encapsulates normal and other kinds of attack 
samples. Consequently, our goal is only to detect Denial of Service attacks. 

In the scope of IoT-NGIN, we introduce an FL-based, privacy preserving intrusion detection 

system (IDS) for the detection of DoS attacks in IoT networks. The developed model consists 
of 2 fully connected Dense layers, an input layer and an output layer. The output layer is 

responsible for the binary classification task and is selected to be activated with the SoftMax 
activation function. In addition, we use the Stochastic Gradient Descent (SGD) as our 

optimizer with 0.001 learning rate and the loss function is the Binary Cross-Entropy (BCE) since 
our goal is binary classification (“DoS” or “Not DoS” attacks). Moreover, the metric accuracy 
describes the model’s performance for the various experiments similar to the case of IoT-

NGIN FedPATE. 
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The proposed model architecture follows the standard Federated Learning training process 

using the TFF framework. A central Server loads the initial, generic global model. For each 
federated round, the Server sends the model to its clients and each individual client trains 

the model in their corresponding local, sensitive dataset. After the training procedure of all 
clients is finished, each client transforms its model’s weights with the Local Differential Privacy 

mechanism by adding Gaussian noise. Finally, the clients send back to the central Server the 
noisy-aggregated model updates, where the Server updates the global model by averaging 
the updated weights using the FedAvg method. After the model’s training process is finished, 

the model can successfully classify if there is a “DoS” attack or not and can be applied to 
IoT systems to detect anomaly attacks in networks as shown in Figure 66. 

 

Figure 66: Proposed architecture of FL in an intrusion detection system. 

4.3.3.2 Experimental Results 

We implement a variety of experiments to test the robustness of the FL intrusion detection 
model regarding many real-world scenarios. The main parameters that are being tested are 

imbalance ratio, number of clients and application of differential privacy. These scenarios 
are first tested separately and subsequently jointly in an attempt to model realistic conditions. 

Number of clients 

In this scenario the effect of the number of clients on the model’s performance is examined. 

As the total number of clients in our IoT system increases, the security of each individual IoT 
device (client) is enhanced because each client transfers its knowledge to the others while 
they are training in the form of federated learning. 

Regarding this scenario, we experimented with the values 1 (baseline model), 10, 25 and 50 

for the number of clients. Figure 67 illustrates the impact that this number has on the model’s 
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accuracy.  The total accuracy achieved for the testing phase is 79.06%, 78.95%, 77.88% and 
75.54% respectively. We observe that a higher number of clients results in accuracy 
degradation. This is to be expected since splitting the dataset in smaller sets eliminates 

certain relationships that define the data. The difference can be as high as 3.52%. 

 

Figure 67: Testing accuracy for different number of clients. 

Differential privacy 

The main component of our proposed architecture is the Differential Privacy (DP). Adding 

noise to our model can lead to higher data privacy resulting in keeping the data of each IoT 

device secure. Therefore, there is a trade-off between applying differential privacy and 
achieving a high level of model accuracy. In this scenario, the effect of the noise addition 

on model’s accuracy is investigated. 

In the second scenario, we experiment with the differential privacy that our model preserves. 

The parameter which controls the quantity of noise addition is called noise multiplier: the ratio 
of the noise standard deviation to the clipping norm. We experiment with the values 0, 0.5, 
1, 1.5 and 2 where the value 0 refers to a model trained with no DP, a classical federated 

learning model as introduced to its original paper [1]. As the value of noise multiplier is 
increased, the more Gaussian noise is added to the model and so more privacy is preserved. 

In Figure 68, we observe that adding more noise has a negative impact on the model’s 
accuracy and adding too much may cause the model to collapse. In particular, our model 

achieves 79.06%, 75.85%, 73.49%, 63.33% and 50.58% test accuracy with respect to the values 
of the noise multiplier mentioned above. There is a trade-off between privacy preservation 
and accuracy, and this is something that must be fine-tuned for each specific situation. For 

small portions of noise, the difference in accuracy is between 3.21-15.73 % bounds, whereas 
for bigger ones can be as high as 28.48%. 
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Figure 68: Impact of noise on model’s accuracy using 25 clients. 

Imbalance ratio 

In real-world scenarios, the local dataset size of each IoT device may differ from each other 

affecting the entire IoT systems’ performance. To define the imbalance level of each client’s 

dataset we introduce a new parameter 𝑎, a factor that defines how imbalanced each 

client’s dataset will be. A value of 1 means no imbalance, whereas higher values than 1 
assign datasets to clients with higher imbalance. 

For this scenario, we experiment with the values of 1 (no imbalance), 1.2, 1.5 and 2 for the 

parameter 𝑎. The quantity and quality of samples that each client has for these values of the 

parameter 𝑎 during their training procedure are shown in Figure 69, while Figure 70 reflects 

the impact of the parameter 𝑎 (imbalanced level) on model’s accuracy. In particular, our 

model achieves 79.06%, 77.42%, 76.98% and 75.11% with respect to the values for the 

parameter 𝑎 mentioned above. As expected, while 𝑎 is being increased, the model’s 

accuracy becomes worse. It can be seen that higher imbalance (higher a) leads to worse 

results. Specifically, the range of accuracy degradation is 1.42-3.95%. 
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Figure 69: Number of samples per client for different values of a. 

 

Figure 70:  Impact of the component a on model’s accuracy. 

Realistic scenario 

Considering all the scenarios mentioned above, we display an FL-based IDS which performs 

accurately under real world settings. We assume that the scenario of 𝑎 = 2 (imbalance ratio 

~ 2.5:1) represents the real-world circumstances since malicious packets appear less 
frequently in network traffic logs. Furthermore, a value of noise multiplier = 1.5 is sufficient to 

provide both security guaranties and viable performance since experiments show that 
higher values cause model failure. This combination achieves high privacy concerning data 

as well as minimizes the risk of sacrificing model’s performance. Thus, the experiment 
described below reflects realistic applications of IDS in IoT Systems. Figure 71 plots the 
proposed model and the baseline model. Our introduced model consists of 25 clients. In such 

a case, we can see that the model performs decently compared to the baseline and is a 
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viable solution for real world applications. The resulting model after 25 rounds achieves 
accuracy that is only 7% lower compared to the baseline. 

 

Figure 71: Testing accuracy for the realistic scenario with 25 clients. 

4.4 Discussion 

In section 4.3 experimental analysis of the three FL frameworks considered in IoT-NGIN has 

been conducted, exploring the impact of each FL framework or privacy preservation 
parameters on the accuracy of the investigated applications’ model.   

Considering the outcomes of this analysis, Table 16 highlights the basic lessons learnt through 

the hands-on experience with the three FL frameworks, complementing the desk research 
and comparison of existing FL frameworks included in D3.2, thus assessing the main benefits 

for each framework. 

 

Table 16: Lessons learnt from FL frameworks’ experimental assessment. 

 FL 

Framework 
Main Benefits  

NVIDIA FLARE • It can be used to train an ML model in real life scenarios between 

one server and many remote clients. Each remote client has its own 

private data, while the server is used for model aggregation and 
does not possess data. 

• Provides privacy reserving methods, such as Percentile Privacy, 

Homomorphic Encryption and MPC, which can also be combined. 

• It is customizable, supporting the integration of ML models 

implemented via state-of-the-art ML frameworks, such as TensorFlow 
and PyTorch.  

 

IoT-NGIN 

FedPATE 
• It can be used to train an ML model in real life scenarios between 

one server and many remote clients. Each remote client (Teacher) 
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has its own private data, while one of them (Student) desires to 
perform predictions on public data.  

• The public data of the student can be partially or completely 

unlabeled. 

• It provides increased privacy levels, since the final trained model 

(Student’s model) is not directly trained on the sensitive data of 
each client (Teacher). 

• The final trained model is resistant to membership inference attacks 

and model inversion attacks. 

• ML algorithms implemented with PyTorch can be directly integrated. 

 

TensorFlow 

Federated 
• It is primarily opted for research purposes. ML researchers can use 

this FL Framework to perform experiments to investigate the 

performance of the FL process under various scenarios (such as 
different number of clients, privacy level, heterogeneity of data). 

• Differential privacy is supported as privacy preserving mechanism. 

• ML models implemented at TensorFlow can be directly integrated. 

 

Next, Table 17 elaborates on how FL could be applied in the IoT-NGIN use cases and provides 

recommendations on the use of each of the three frameworks analyzed within those use 
cases. The table is not exhaustive but is meant to identify potential FL applications in real-life 

use cases. The cases in which Living Lab validation is foreseen within the IoT-NGIN timeline 
are indicated in bold. 

 

Table 17: Recommended uses of FL in the LL use cases. 

LL Use Case  NVIDIA FLARE IoT-NGIN FedPATE 
TensorFlow 

Federated 

Smart City  

  

Traffic Flow & 

Parking 
Prediction 
 

train the visual 

recognition of 

vehicles across a 

set of edge nodes 

within a smart city 

train the visual 

recognition of 
vehicles over 

data shareable 
within an 

administrative 

domain (e.g., 
smart city) 

research on 

vehicles’ 

recognition across 
hundreds of 

nodes 

Crowd 

Management train the visual 

recognition of 

people across a 

set of edge nodes 

within a smart city 

train the visual 

recognition of 
people over data 

shareable within 
an administrative 

domain (e.g., 
smart city) 

research on 

people’s 

recognition across 
hundreds of 

nodes 
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Co-

commuting 
solutions 

based on 
social networks 

train ML model to 

help better match 
and organize the 

co-commuters 
with available 

shared rides over 
social networks’ 

data across users’ 

devices 

train this model 

over public data 
collected by 

smart city 
platform 

research in large 

scale scenarios 

Smart 

Agriculture 

Crop diseases 

prediction & 
irrigation 

precision 
train the crop 

disease 

predictions, using 

private smart farm 

data 

train the crop 

disease 
predictions, using 

private smart farm 
data and use 

them to train over 

public datasets 
e.g., 

collected/shared 
at 

district/national/ 
regional level  

research on crop 

disease prediction 
across hundreds 

of nodes; 

research on the 

effect of model 

and data 
poisoning attacks 

on FL system 
based on GAN-

based data 
generator 

Sensor aided 

crop 
harvesting 

train the object 

detection model 

across edge 
nodes 

train the object 

detection model 
across edge 

nodes and then 
train over public 

unlabeled data 
e.g., 

collected/shared 

at 
district/national/ 

regional level 

research in large 

scale scenarios 

Industry 4.0 Human–

centered 

safety in a self-
aware indoor 

factory train the model 

for object 
detection among 

edge nodes 

train the object 

detection model 

among edge 
nodes and then 

train over public 
unlabeled data 

(e.g., across 
factories of the 

same 

administrative 
domain) 

research in large 

scale scenarios 
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Industry 4.0 Digital 

powertrain 
and condition 

monitoring to train pattern 

recognition in 
sensor data 

among edge 
nodes 

train the model 

among edge 
nodes and then 

train over public 
unlabeled data 

(e.g., across 
factories of the 

same 

administrative 
domain) 

research in large 

scale scenarios 

Smart 

Energy 

Move from 

reacting to 

acting in smart 
grid 
monitoring 

and control 

train pattern 

recognition in 
sensor data 

among edge 
nodes 

to train pattern 

recognition in 

sensor data 
among edge 

nodes and then 

train over public 
unlabeled data 

(e.g., in smart city 
context)  

research in large 

scale scenarios 

Driver-friendly 

dispatchable 
EV charging train pattern 

recognition in EV 
chargers’ data 

among edge 
nodes 

train pattern 

recognition in EV 
chargers’ data 

among edge 
nodes and then 

train over public 
unlabeled data 

(e.g., in smart city 
context) 

research in large 

scale scenarios 
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5 Installation and User Guide 

5.1 MLaaS Framework 

5.1.1 Installation principles 

This section describes the principles used for the installation of the MLaaS platform. One of 

the goals is to have a consistent and reproductible installation, thereby a GitOps and 
Infrastructure as Code (IaC) approach is used. The IaC is used to fully describe the platform 

using IaC files. This is the single source of truth and ensure that any installation will have the 
same setup. Then a GitOps approach is used to synchronize the Kubernetes resources with a 

Git repository. The principles for the installation are: 

• IaC manifests are centralized in a Git repository 

• ArgoCD application manifests referencing the Git repository are used to trigger 

installation of the applications 

• The GitOps tool reads the IaC manifests from the Git repository, creates and 

synchronize the associated Kubernetes resources 

In order to avoid exposing sensitive data, some resources such as Kubernetes secrets used 

by some components or certain apps are kept outside the Git repository and are deployed 
manually via kubectl. Possible future work will look for a more automated approach for that 

part. Figure 72 illustrates the principles for the installation of the Framework. 

 

Figure 72: MLaaS installation principles. 
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The GitOps approach is used: 

1. To keep all configuration files in a single repository.  

2. To ensure that the platform is always synchronized with a single source of truth. If a 
change is made on the IaC manifests of a resource in the Git repository, the 

corresponding Kubernetes resource in the cluster is synchronized by being 
automatically modified. Similarly, if a Kubernetes resource is changed directly on the 
cluster (via kubectl for example), it is automatically changed back to the IaC 

manifests version on the Git repository. 
3. To easily deploy changes to the platform by simply committing the changes in the Git 

repository 
4. Allow to easily check status of and application and view its associated components 

with their health in a user-friendly graphical interface. 

Yaml and Helm files are used for the IaC part. For the IoT-NGIN installation, GitLab is used for 

the repository of the IaC files. The Git structure is based on: 

1. A “base” folder that contains the standard IaC files. For Kubeflow, for example, these 

are the files from the Kubeflow Manifest repository. 

2. A “mlaas” folder that contains the IaC files specific to the IoT-NGIN MLaaS platform. 
This can be files replacing components from the Kubeflow manifest or installation of 

other components for other applications. 

 

The structure is illustrated in Listing 3. 
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+---base 

|   \---kubeflow 

|       +---apps 

|       |   +---admission-webhook 

|       |   +---centraldashboard 

|       |   +---jupyter 

|       |   +---katib 

|       |   +---pipeline 

|       |   +---profiles 

|       |   +---tensorboard 

|       |   +---training-operator 

|       |   \---volumes-web-app 

|       +---common 

|       |   +---cert-manager 

|       |   +---dex 

|       |   +---istio-1-14 

|       |   +---knative 

|       |   +---kubeflow-namespace 

|       |   +---kubeflow-roles 

|       |   +---oidc-authservice 

|       |   \---user-namespace 

|       \---contrib 

|           \---kserve 

\---mlaas 

    +---apps 

    |   +---argocd-apps 

    |   \---kserve-test 

    +---kubeflow 

    |   +---argocd-apps 

    |   +---istio-install-mlaas 

    |   +---knative-eventing-mlaas 

    |   +---knative-serving-mlaas 

    |   +---kserve 

    |   +---kubeflow-istio-resources-mlaas 

    |   \---nginx-ingress-mlaas 

    \---tools 

        +---argocd 

        +---argocd-apps 

        \---metrics-server 

Listing 3: MLaaS GitOps structure. 

 

ArgoCD [53] tool is used for the GitOps part. ArgoCD is a declarative, GitOps continuous 

delivery tool for Kubernetes. It pulls updated code from Git repositories and deploys the 
associated resources directly to the Kubernetes cluster. At the time of this writing, the platform 

is organized around three ArgoCD projects. One is for the Kubeflow components, another 
one for the monitoring and managing tools and the last one for the other apps. Figure 73 
shows the projects in the ArgoCD console. 
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Figure 73: ArgoCD projects. 

 

The components for the deployment are groups into ArgoCD applications. For Kubeflow the 

grouping follows the structure of the Kubeflow manifest repository. This choice has been 

made to simplify synchronization with the official Kubeflow Manifest repository [5] and easily 
identify the possible failing part of Kubeflow. The “mlaas” folder contains the ArgoCD 

application files in folders called “argocd-apps”. 

The installation includes first a manual bootstrap phase to install the tools required for GitOps, 

which is used for the rest of the installation and then, in a second phase, the installation of 
the various components by ArgoCD. 

For the bootstrap phase: 

1. Install ArgoCD. This component is used to deploy the various Kubernetes components. 

Optionally, the ArgoCD CLI can be installed on a management station. 

2. Copy the IaC files to the GitOps repository 
3. Change the address of the GitOps repository in the files 
4. Add GitOps directory to ArgoCD configuration 

5. Create projects in ArgoCD 
6. Copy the files or sensitive apps with the secrets to a local machine 

7. Copy the ArgoCD application files to a local machine 

Once the bootstrap is complete, the installation of the platform is executed by creating the 

ArgoCD applications from the various application files. ArgoCD then fetches the GitOps 
repository corresponding to the application and creates all the Kubernetes resources 
defined in the associated yaml files. The installation relies heavily on Kustomize [54] to simplify 

creation of the yaml files. For applications relaying on secrets outside the GitOps mechanism, 
these secrets must be created manually. 
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Note that at the time of this writing, work is still on-going on the installation process, especially 

to make it as simple as possible. 

5.1.2 Application installation 

To install the platform, all the ArgoCD applications must be created. This is done by launching 

the yaml files located into the “argocd-apps” directories. 

For example, the following command in Listing 4 is used to install the Kubeflow central 

dashboard: 

\mlaas\kubeflow\argocd-apps>kubectl create -n argocd -f centraldashboard.yaml 

application.argoproj.io/centraldashboard created 

Listing 4: ArgoCD application installation. 

 
After a few seconds the application appears into the ArgoCD dashboard as shown in Figure 

74. 
 

 

Figure 74: ArgoCD application example. 
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As shown in Figure 75, details about the Kubernetes resource linked to the application can 
be seen by clicking on the application. 
 

 

 

Figure 75: ArgoCD application example. 

 

 

Figure 76 shows the ArgoCD console with all the applications from the IoT-NGIN MLaaS test 
system installed. We can easily check that all applications are synchronized and healthy. 
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Figure 76: IoT-NGIN MLaaS test applications. 

Note that ArgoCD is added as an ArgoCD application after the bootstrap as shown in Figure 

77. It allows ArgoCD to also benefit from the GitOps mechanisms by monitoring its own 
installation repository. 

 

Figure 77: ArgoCD application for ArgoCD. 
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5.2 Online Learning Framework  

This section describes the process to create an Online Learning service. The following figure 
shows the workflow.  

 

Before starting to deploy the Online Learning service, it is required to have a ML/DL model 

implemented. The model creation is out of the scope of OL framework and must be provided 

by the ML engineers that request its training with the Online Learning service. It is important 
to specify the Python library used to implement the model because it will be important in 
further steps. Once the model is defined, it must be saved in MinIO (see Figure 78), or on 

another cloud object storage such as S3 or GCP are also supported. 

 

Figure 78: Baseline OL model in MinIO storage. 

The initial step consists of configuring the OL service in order to stablish different parameters 
that are specific to each service such as the ML model location in MinIO (host and bucket), 

the name of the model, the framework used to implement the model (backend), the OL 
service name, etc.   

Once all the configuration parameters are defined and the OL service is adapted to the use 

case, the next step is to encapsulate it in a Docker image and upload the Docker image into 
a Docker Registry. Thus, Kubeflow can include the image into the pipeline. An example of 
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the Dockerfile that is used to generate the Docker image of the OL service is shown in Listing 
5. The configuration parameters defined in previous steps are included in this file. The Docker 
image creation can be done with the docker CLI17 tool by means of docker build command. 

Once the Docker image is created, it is possible to upload the image by using docker push 
command. It is important to note that the name of the Docker image must be 

<Registry_Name>/<Image_Name>:Version so that the image can be uploaded to the 
Docker registry. The Dockerfile can be reached at GitLab https://gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/Dockerfile_Kubeflow. 

 

Listing 5: Dockerfile for OL service container. 

At this point, the OL service is containerized and its image available in a Docker repository. 
Before deploying it, by using Kubeflow and Kserve, it is required to define a YAML manifest. 
An example of manifest is available in GitLab at https://gitlab.com/h2020-iot-

ngin/enhancing_iot_intelligence/t3_2/online_learning/-
/blob/main/kubeflow/kserve_isvc.yaml. This file specifies aspects of the service such as the 

Docker image location, the inference service name, the number of replicas, etc. Listing 6 
code snippet shows this configuration.  

 
17 https://docs.docker.com/engine/reference/commandline/cli/  

 

# For more information, please refer to https://aka.ms/vscode-docker-python 

FROM python:3.8 

 

# Keeps Python from generating .pyc files in the container 

ENV PYTHONDONTWRITEBYTECODE=1 

 

# Turns off buffering for easier container logging 

ENV PYTHONUNBUFFERED=1 

 

WORKDIR /online_learning 

 

# Install pip requirements 

COPY requirements.txt . 

RUN python -m pip install -r requirements.txt 

 

# Copy project folders 

COPY . /online_learning 

 

ENTRYPOINT ["python", "create_onlinelearning_kubeflow.py", “--arg”, “value”] 
 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/Dockerfile_Kubeflow
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/Dockerfile_Kubeflow
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/kubeflow/kserve_isvc.yaml
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/kubeflow/kserve_isvc.yaml
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/blob/main/kubeflow/kserve_isvc.yaml
https://docs.docker.com/engine/reference/commandline/cli/
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Listing 6: YAML manifest for OL Service in Kubeflow/KServe. 

Kubeflow allows the creation of Jupyter notebooks for defining a pipeline to deploy an 

inference service like the Online Learning service. Figure 79 and Figure 80 show the steps to 
take in Kubeflow to create a Jupyter notebook. 

Kubeflow offers an SDK API to deal with Kubeflow pipelines named KFP18. The pipeline is a 

description of an ML workflow, including all the components the workflow consists of and the 
interactions between them. Figure 81 shows the notebook that declares the Kubeflow 

pipeline for the deployment of the Online Learning service, consisting of 2 different code 
cells. The first cell imports all required Python libraries whereas the second cell defines a 

function. This function creates a Kubernetes resource from previous the previously created 
Kserve YAML manifest. Then, the function is executed, and a pipeline descriptor is created. 
Next, this pipeline descriptor is uploaded into Kubeflow. An example of Jupyter notebook for 

pipeline creation is available at: https://gitlab.com/h2020-iot-
ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/kubeflow. 

 
18 https://kubeflow-pipelines.readthedocs.io/en/stable/index.html  

 

apiVersion: serving.kserve.io/v1beta1 

kind: InferenceService 

metadata: 

    labels: 

        controller-tools.k8s.io: "1.0" 

    name: <Inference_Service_Name> 

    namespace: <Namespace> 

    annotations:  

        sidecar.istio.io/inject: "false" 

spec: 

    predictor: 

        containers: 

            - name: kserve-container 

              image: <OL_Service_Image> 

              command: ["<Arguments>"] 

 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/kubeflow
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/t3_2/online_learning/-/tree/main/kubeflow
https://kubeflow-pipelines.readthedocs.io/en/stable/index.html
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Figure 79: Kubeflow dashboard. 

 

 

Figure 80: Creation of Jupyter’s notebooks in Kubeflow interface. 
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Figure 81: Jupyter notebook defining a Kubeflow pipeline for deploying the OL service. 

 

The execution of the pipeline will deploy the Online Learning service in Kserve as an inference 

service and expose it to an HTTP endpoint. To execute the pipeline, an experiment must be 
created first (if it is not created yet) and then a run. These steps are performed by using the 

Kubeflow user interface. Figure 82 shows the results of executing the pipeline.  

 

Figure 82: Kubeflow pipeline execution for deploying the OL service. 
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Once the execution has finished, the inference service is deployed. The deployment presents 
an HTTP endpoint which is waiting for new data to train the ML model. Usually the endpoint 
looks like:  

https://<InferenceServiceName>.<Domain>.<Extension>/v1/models/<ModelName>:predict  

The power generation forecasting OL service is deployed on the Kubernetes cluster of the 

project. All the services require an access token to ask for model update or inferences. This 
service presents the following endpoint: 

http://ol-smart-grid-power-consumption.jmira.kserve.kf.iot-

ngin.onelab.eu/v1/models/<ModelName>:predict  

There is an additional step which is only required when data comes from real time protocols 

(e.g., Kafka and MQTT) since the inference service created through Kserve only supports HTTP 
communications. To solve this situation, a Camel-K binding that acts as message forwarding 

is required. This binding is created from a YAML manifest, where data source (I.e., the 
MQTT/Kafka broker and the specific topic) is indicated along with the destination (in this case 
the deployed inference service). Thus, the inference service receives the new data and can 

either update the model or perform a prediction. Kubernetes cluster is needed to apply the 
YAML file and create the Camel-k binding. Listing 7 shows an example of the YAML manifest. 

 

Listing 7: YAML manifest for Camel-k binding.  

apiVersion: camel.apache.org/v1alpha1 

kind: KameletBinding 

metadata: 

  name: <BindingName> 

  namespace: <Namespace> 

spec: 

  source: 

    ref: 

      kind: Kamelet 

      apiVersion: camel.apache.org/v1alpha1 

      name: <SourceName> 

    properties: 

      brokerUrl: <BrokerURL> 

      topic: <Topic>  

      clientId: <ClientID> 

      password: <Pass> 

      username: <User> 

  sink: 

   uri:  <ISVC_URL> 

 
 

http://ol-smart-grid-power-consumption.jmira.kserve.kf.iot-ngin.onelab.eu/v1/models/%3cModelName%3e:predict
http://ol-smart-grid-power-consumption.jmira.kserve.kf.iot-ngin.onelab.eu/v1/models/%3cModelName%3e:predict
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5.3 Privacy-preserving Federated Learning 

Framework 

5.3.1 NVIDIA FLARE 

This section contains the necessary steps to run the integration of Yolov5, with NV FLARE. 

Installation 

1. git clone https://github.com/NVIDIA/NVFlare.git 
2. cd NVFlare/examples 
3. git clone https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-

federated-learning/privacy-preserving-fl-frameworks/nvflare-for-object-detection/nvidia-flare-
yolov5-integration.git 

4. cd nvidia-flare-yolov5-integration 
5. conda create --name <flare-yolo> python=3.8 
6. conda activate <flare-yolo> 
7. pip install -r requirements.txt 

Change basic parameters 

1. Edit the NVFlare/examples/nvidia-flare-yolov5-

integration/yolov5/custom/data/myfilename.yaml file by adding your dataset 
directory path, number, and names of training classes. 

path: home/user/datasets/mydataset  # dataset root dir 

train: images/train  # train images (relative to 'path') 128 images 

val: images/val  # val images (relative to 'path') 128 images 

test:  images/test 

 

# Classes 

nc: 2  # number of classes 

names: [ 'person', 'car']  # class names` 

2. Go back to the NVFlare/examples/nvidia-flare-yolov5-integration/yolov5/config/ and 

edit the config_fed_client.json and config_fed_server.json files. On the client's json file 
you can insert: 
 

• "imgsz": image size of your data 

• "epochs": number of epochs to train for every round 

• "batch_size": batch size 

• "num_clients": the number of clients 

• "pretrained": use pretrained weights (Yes or No) 
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On the server's json file you can insert: 

• "min_clients": minimum number of clients 

• "num_round": the number of rounds 

 

Also, on server's json file you can choose if you want a pretrained model with pretrained 

weights or a model with randomized weights (begin the whole training process from 
scratch). In the json file insert: 

• For pretrained network: 

 "path": yolonetwork.YoloPretrainedNetwork 

• For no-pretrained network: 

"path": yolonetwork.YoloNetwork 

How to run 

Go back to the root folder and begin the federating learning process in POC (Proof of 

Concept) mode. The example below is for 2 clients. 

1. poc -n 2 
2. mkdir -p poc/admin/transfer 
3. cp -rf NVFlare/examples/* poc/admin/transfer 

Once you are ready to start the FL system, you can run the following commands to start the 
server and client systems. 

• The first step is starting the FL server:  
./poc/server/startup/start.sh  

• Once the server is running, open a new terminal and start the first client: 
./poc/site-1/startup/start.sh  

• Open another terminal and start the second client: 
./poc/site-2/startup/start.sh  

• In one last terminal, start the admin client: 
./poc/admin/startup/fl_admin.sh localhost 

With the admin client that started from fl_admin.sh file, you can control the whole process. 

You can check the status of the clients and server, you can start the process, stop the process 

etc. With the admin client command prompt successfully connected and logged in 
automatically, enter the command. 

1. submit_job nvidia_flare-yolov5-integration/yolov5 

In case you want to abort the process enter the command. 

1. abort_job job_id 

Where job_id is the id that the admin gave you when you started the process. When the 
whole process ends enter the commands below to shut down the clients and the server. The 
password is admin. For further information about the federated learning process you can 

read NV FLARE documentation [25]. 
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1. shutdown client 
2. shutdown server 

5.3.2 IoT-NGIN FedPATE 

The code and the installation procedures are available on the project Gitlab repository, 
accessible at: 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-

federated-learning/privacy-preserving-fl-frameworks/fedpate  

We provide two ways to run the FedPATE: 

1. With Conda environment, version >= 4.11.0. 

2. With Docker, version >= 19.03.8. 

A description of both ways is given in the following. 

5.3.2.1 Conda Environments 

a) First, install the project’s dependencies: 

1. git clone https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-
federated-learning/privacy-preserving-fl-frameworks/fedpate.git  

2. conda create –name fedpate_env --file requirements.txt 
3. conda activate fedpate_env 
4. ./dev/bootstrap.sh 

b) Install PyTorch from https://pytorch.org/ depending on your system’s requirements. 
c) Run the server of the FL system: 

1. python3 src/py/server.py --net_name=test_net --num_rounds=10 --num_teachers=14 --epochs=10 --
epsilon=0.2 --num_queries=9000 –-noise_data=9000 

d) Open as many terminals as the number of teachers + 1 are (Teachers + Student),and 
run the teachers and the student with the command: 

1. python3 src/py/PATE_pytorch_client_2.py --teacher_id=0 --net_name=test_net --num_rounds=10 --
num_teachers=14 --teacher_epochs=10 --student_epochs=20 --epsilon=0.2 --num_queries=9000 –-
noise_data=9000 

where: 

• --net_name: str, name of your model. 

• --num_rounds: int, number of rounds for FL. 

• --num_teachers: int, the number of teachers/clients. 

• --noise: str, type of noise for the aggregation mechanism ('laplacian' or 'gaussian', 

default='laplacian'). 

• --teacher_epochs: int, number of epochs to train the teachers. 

• --student_epochs: int, number of epochs to train the student. 

• --epsilon: float, epsilon for laplacian distribution (if --noise='laplacian'). 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/fedpate
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/fedpate
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/fedpate.git
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/fedpate.git
https://pytorch.org/
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• --sigma: float, standard deviation for gaussian-normal distribution (if --

noise='gaussian'). 

• --num_queries: int, number of queries to the student. 

• --noise_data: int, the number of data to add noise (must be less or equal than 

num_queries). 

--teacher_id: int, the ID of the current teacher (must be in range 0 - num_teachers, where 

teacher_id = num_teachers is the Student) 

5.3.2.2 Docker 

a) Set up the docker container. 

1. git clone https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-
federated-learning/privacy-preserving-fl-frameworks/fedpate.git  

2. docker run -p 8888:8888 -v ~/your_path_to_flower-pate-integration/src/py:/flower -it 
synelixis/flower-pate:v1.8 

b) Open your browser and go to the 127.0.0.1:8888 address and enter the token that the 
terminal gave you. You should see a JupyterLab running. 

c) Run the flwr server of the FL system by opening a new terminal inside the JupyterLab 

and running: 

1. python3 /flower/server.py --net_name=test_net --num_rounds=10 --num_teachers=14 --epochs=10 --
epsilon=0.2 --num_queries=9000 –-noise_data=9000 

d) Open as many terminals as the number of teachers + 1 are (Teachers + Student), inside 
the JupyterLab and run the teachers and the student with the command: 

1. python3 /flower/PATE_pytorch_client_2.py --teacher_id=0 --net_name=test_net --num_rounds=10 --
num_teachers=14 --teacher_epochs=10 --student_epochs=20 --epsilon=0.2 --num_queries=9000 –-
noise_data=9000 

 

5.3.3 TensorFlow Federated  

The code and instructions for replicating the results we demonstrated can be found at: 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-

federated-learning/privacy-preserving-fl-frameworks/tff-for-ids 

  

5.3.3.1 Set-up 

To correctly set up this project, one needs to have the right environment of library versions, 

python version etc. To achieve this the following steps must be followed: 

• Create a virtual environment 

• Install requirements from requirements.txt 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/fedpate.git
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/fedpate.git
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/tff-for-ids
https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/privacy-preserving-federated-learning/privacy-preserving-fl-frameworks/tff-for-ids
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• Have python 3.8.10 

 

In our case we used conda environment and pip as the package manager, so an example 

of this procedure is (after navigating to the project’s folder): 

• conda create -n venv python==3.8.10 

• conda activate venv 

• pip install -r requirements.txt 

 

5.3.3.2 Model Running 

To run the code, one needs to run the following command which enables argument parsing. 

The arguments customize the learning process and allow multiple and different experiments 
to be conducted by the user: 

1. python3 src/tff.py –train_path –test_path –-imb_parameter -–dp_parameter –-n_clients 

where: 

• --train_path: path to train dataset, e.g. .../UNSW_NB15_training-set.csv 

• --test_path: path to train dataset, e.g. .../UNSW_NB15_testing-set.csv 

• --imb_parameter: parameter that defines class imbalance. 1 means no imbalance 

and higher than one means higher data imbalance distribution. 

• --dp_parameter: parameter that defines application of differential privacy. 0 means 

no DP and higher that 0 means stronger application of DP. 

• --n_clients: the number of FL clients. 
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6 Conclusions 
The present report has outlined the IoT-NGIN tools for enhancing IoT intelligence. Initially, the 

MLaaS platform has been presented, following the MLOps paradigm for managing the 
complete lifecycle of ML tasks. Apart from building and deploying ML services, the MLaaS 

platform supports next-generation IoT-related technological schemes, such as AI in 
edge/fog/cloud computing, integration with Digital Twins and Distributed Ledgers. The fact 
that it builds on state-of-the-art open source tools, ensures the long-term updates of its 

components, not only from functional, but also from a security perspective. With its MLaaS 
platform, IoT-NGIN goes beyond existing integrated open-source MLOps, by integrating 

additional services, such as ML model storage, data storage, data acquisition, access 
management and CI/CD support. 

In addition, three ML techniques are incorporated in the MLaaS platform, namely the Online 

Learning, the Reinforcement Learning and the Privacy-Preserving Federated Learning 
framework. Although the concepts are not new in the ML industry, IoT-NGIN provides open-

source design and implementation and integrates them in its open-source MLaaS platform. 
OL is already available through the MLaaS platform, while for RL the technical specification 

and concrete usage for Smart Energy LL use cases has been defined. Federated Learning 
will be also integrated in the next release, expected as part of deliverable D3.4. In the present 

report, Federated Learning has been proposed following the as-a-service model for three 
state-of-the-art FL frameworks. The focus has been on enhancing and investigating those 
three frameworks, namely NVIDIA FLARE, Flower and Tensorflow Federated (TFF) with privacy 

preservation. Although FLARE and TFF include such techniques, it is not clear how different 
models behave with each of them. To that end, the present document presents the 

experimental evaluation of the model performance when enhanced with varying privacy 
preservation levels. In addition, since Flower is less mature in such techniques, it has been 

integrated with PATE, yielding the FedPATE framework in the context of IoT-NGIN, providing 
in this way an easy to develop, scalable, ML framework-agnostic FL framework with privacy 
guarantees. 

The software implementation of the components presented in this deliverable are provided 

as open source on the project’s page on the public Gitlab repository, at 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/. Details about installation 
and usage are also provided in this report for convenience of interested audience. 

 

 

 

 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_intelligence/


H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

122 of 125 

 

 

7 References 
 

[1]  BDVA, "Big Data Value (BDV) Strategic Research and Innovation Agenda (SRIA)," 2017. 

[Online]. Available: https://bdva.eu/sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf. 

[2]  IoT-NGIN, D3.1 - Enhancing deep learning and reinforcement learning, H2020-957246 

IoT-NGIN Deliverable Report, 2021.  

[3]  Kubeflow, "The Machine Learning Toolkit for Kubernetes," [Online]. Available: 

https://www.kubeflow.org/. [Accessed 2022]. 

[4]  MINIO, "MinIO for Kubernetes," [Online]. Available: https://min.io/product/kubernetes. 

[Accessed 2022]. 

[5]  Kubeflow, "Kubeflow Manifests," Github, [Online]. Available: 

https://github.com/kubeflow/manifests. [Accessed 2022]. 

[6]  KServe, "End to end inference service example with Minio and Kafka," [Online]. 

Available: https://kserve.github.io/website/0.9/modelserving/kafka/kafka/. [Accessed 
2022]. 

[7]  Kubeflow, "An overview of Kubeflow’s architecture," 2022. [Online]. Available: 

https://v1-5-branch.kubeflow.org/docs/started/architecture/. [Accessed 2022]. 

[8]  Kubeflow, "Kubeflow Documentation - KServe," [Online]. Available: 

https://www.kubeflow.org/docs/external-add-ons/kserve/kserve/. [Accessed 2022]. 

[9]  KServe, "KServe Documentation - Data Plane," [Online]. Available: 

https://kserve.github.io/website/0.9/modelserving/data_plane/. [Accessed 2022]. 

[10]  National Security Agency, "Avoid Dangers of Wildcard TLS Certificates and the ALPACA 

Technique," Cybersecurity Information Sheet, 2021. [Online]. Available: 

https://media.defense.gov/2021/Oct/07/2002869955/-1/-
1/0/CSI_AVOID%20DANGERS%20OF%20WILDCARD%20TLS%20CERTIFICATES%20AND%2

0THE%20ALPACA%20TECHNIQUE_211007.PDF. [Accessed 2022]. 

[11]  D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning internal representations by 

error propagation," San Diego, California: Institute for Cognitive Science, University of 
California., 1985. 

[12]  T. M. Y. B. Razvan Pascanu, "On the difficulty of training Recurrent Neural Networks," 

2012. 

[13]  R. Dey and F. M. Salem, "Gate-Variants of Gated Recurrent Unit (GRU) Neural," 

Department of Electrical and Computer Engineering, 2017. 

[14]  R. B. Z. Bharath Ramsundar, TensorFlow for Deep Learning, O'Reilly Media, Inc., 2018.  



H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

123 of 125 

 

 

[15]  D. P. Kingma and J. Lei Ba, "ADAM: A method for stochastic optimization," 2014. 

[16]  S. S. Shapiro and M. B. Wilk, "An Analysis of Variance Test for Normality," 1965. 

[17]  T. W. Anderson and D. A. Darling, "Asymptotic Theory of Certain "Goodness of Fit" 

Criteria Based on Stochastic Processes," 1952. 

[18]  R. B. D’Agostino and E. S. Pearson, "Tests for Departure from Normality. Empirical Results 

for the Distributions of b2 and √b1," in Biometrika, 1973, p. 613–622. 

[19]  Y. Li, "Deep Reinforcement Learning: An Overview," arXiv, 2017.  

[20]  V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. 

Riedmiller, "Playing Atari with Deep Reinforcement Learning," 2013. 

[21]  V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. Harley, T. . P. Lillicrap, D. Silver 

and K. Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning," 2016. 

[22]  Forrester, "Federated Learning: A Distributed Machine Learning Technique Without 

Data Aggregation," 2022. [Online]. Available: 
https://www.forrester.com/report/federated-learning-a-distributed-machine-learning-
technique-without-data-aggregation/RES177214. 

[23]  IoT-NGIN, "D3.2 - Enhancing Confidentiality preserving federated ML," H2020 - 957246 - 

IoT-NGIN Deliverable Report, 2021. 

[24]  IoT-NGIN, "D5.1 - Enhancing IoT Cybersecurity," H2020 - 957246 - IoT-NGIN Deliverable 

Report, 2021. 

[25]  NVIDIA DEVELOPER, "NVIDIA FLARE," [Online]. Available: 

https://developer.nvidia.com/flare. 

[26]  Adap GmbH, "Flower," open source, [Online]. Available: https://flower.dev. [Accessed 

2022]. 

[27]  TensorFlow, "TensorFlow Federated: Machine Learning on Decentralized Data," 

[Online]. Available: https://www.tensorflow.org/federated. [Accessed 2022]. 

[28]  R. Shokri, "Privacy-preserving deep learning," in Proceedings of the 22nd ACM SIGSAC 

conference on computer and communications security, 2015.  

[29]  C. Dwork, M. Naor, O. Reingold, G. N. Rothblum and S. Vadhan, "On the complexity of 

differentially private data release: efficient algorithms and hardness results," STOC, p. 

381–390, 2009.  

[30]  M. Lyu, D. Su and L. Ninghui, "Understanding the sparse vector technique for differential 

privacy," arXiv preprint arXiv:1603.01699, 2016.  



H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

124 of 125 

 

 

[31]  Benaissa and Ayoub, "TenSEAL: A library for encrypted tensor operations using 

homomorphic encryption," arXiv preprint arXiv:2104.03152, 2021.  

[32]  NVIDIA FLARE, "provision.py," 2022. [Online]. Available: 

https://github.com/NVIDIA/NVFlare/blob/b799c15ed82da5df32c3bff00aa92c15f366f
a83/nvflare/lighter/provision.py. 

[33]  D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. H. Li, 

T. Parcollet, P. Porto Buarque de Gusmao and N. D. Lane, "FLOWER: A friendly 
federated learning framework," 2022.  

[34]  N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar and Ú. Erlingsson, 

"SCALABLE PRIVATE LEARNING WITH PATE," in ICLR, 2018.  

[35]  N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow and K. Talwar, "iclr.cc," 2017. 

[Online]. Available: 

https://iclr.cc/archive/www/lib/exe/fetch.php%3Fmedia=iclr2017:paperno_iclr2017.p
df. 

[36]  Y. Pan, J. Ni and Z. Su, "FL-PATE: Differentially Private Federated Learning with 

Knowledge Transfer," in IEEE, 2021.  

[37]  N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow and K. Talwar, "Semi-supervised 

knowledge transfer for deep learning from private training data," in ICLR, 2017.  

[38]  H. B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. y. Arcas, 

"Communication-Efficient Learning of Deep Networks from Decentralized Data," 2017.  

[39]  J. Kiefer and J. Wolfowitz, "Stochastic estimation of the maximum of a regression 

function," The Annals of Mathematical Statistics, pp. 462-466, 1952.  

[40]  I. Kholod, E. Yanaki, D. Fomichev, E. Shalugin, E. Novikova, E. Filippov and M. Nordlund, 

"Open-Source Federated Learning Frameworks for IoT: A Comparative Review and 

Analysis," Sensors, vol. 21, no. 167, 2021.  

[41]  S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich and A. T. Suresh, 

"Mime: Mimicking centralized stochastic algorithms in federated learning," arXiv 
preprint arXiv:2008.03606, 2020.  

[42]  L. Ziwei, L. Ping, W. Xiaogang and T. Xiaoou, "Deep Learning Face Attributes in the Wild," 

2015.  

[43]  C. Gregory, A. Saeed, T. Jonathan and v. S. Andre, "EMNIST: an extension of MNIST to 

handwritten letters," arXiv preprint arXiv:1702.05373, 2017.  

[44]  A. Krizhevsky, V. Nair and G. Hinton, "CIFAR-10 (Canadian Institute for Advanced 

Research)," 2009.  

[45]  G. Jocher, "YOLOv5," https://github.com/ultralytics/yolov5, 2020. 



H2020 -957246    -   IoT-NGIN  

 
D3.3 - ENHANCED IOT FEDERATED DEEP LEARNING/ REINFORCEMENT ML 

 

125 of 125 

 

 

[46]  T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll{\'a}r and C. L. 

Zitnick, "Microsoft coco: Common objects in context," in European conference on 
computer vision, Springer, 2014, pp. 740-755. 

[47]  J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: Unified, real-

time object detection," in Proceedings of the IEEE conference on computer vision and 

pattern recognition, 2016, pp. 779-788. 

[48]  M. Everingham, L. Van Gool, C. K. Williams, J. Winn and A. Zisserman, "The pascal visual 

object classes (voc) challenge," International journal of computer vision, vol. 88, no. 2, 

pp. 303-338, 2010.  

[49]  Maldivien, "Coco-to-yolo-downloader," https://github.com/maldivien/Coco-to-yolo-

downloader, 2021. 

[50]  W. Li, F. Milletarì, D. Xu, N. Rieke, J. Hancox, W. Zhu, M. Baust, Y. Cheng, S. Ourselin, M. 

J. Cardoso and A. Feng, "Privacy-preserving federated brain tumour segmentation," 
Springer, pp. 133--141, 2019.  

[51]  A. Krizhevsky, "Learning Multiple Layers of Features from Tiny Images," 2009.  

[52]  "NSL-KDD dataset," [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html. 

[53]  Argo CD, "Argo CD - Declarative GitOps CD for Kubernetes," [Online]. Available: 

https://argo-cd.readthedocs.io/en/stable/. [Accessed 2022]. 

[54]  Kustomize.io, "Kubernetes native configuration management," [Online]. Available: 

https://kustomize.io. [Accessed 2022]. 

 

 


	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended Audience
	1.2 Relations to other activities
	1.3 Document overview

	2 IoT-NGIN Machine Learning as a Service Framework
	2.1 Introduction
	2.2 Technical architecture overview
	2.3 MLaaS platform architectural approach
	2.4 MLaaS platform components
	2.4.1 ML Components
	2.4.2 Infrastructure Components

	2.5 MLaaS reference architecture
	2.5.1 Overall architecture
	2.5.2 Access to the MLaaS platform
	2.5.3 End-to-end services examples

	2.6 Kubeflow
	2.6.1 Kubeflow overview
	2.6.2 IoT-NGIN MLaaS Kubeflow test environment

	2.7 KServe
	2.7.1 KServe overview
	2.7.2 IoT-NGIN MLaaS KServe installation


	3 IoT-NGIN Machine Learning Techniques
	3.1 Online Learning Framework
	3.1.1 Description
	3.1.2 Technical Design
	3.1.3 Implementation for IoT-NGIN LLs

	3.2 Reinforcement Learning
	3.2.1 Description
	3.2.2 Technical Design
	3.2.3 Implementation for IoT-NGIN LLs


	4 IoT-NGIN Privacy-Preserving Federated Learning Framework
	4.1 Description
	4.2 Technical Design
	4.2.1 NVIDIA FLARE
	4.2.1.1 Privacy Preserving Mechanisms
	4.2.1.2 NVIDIA FLARE Secure FL Infrastructure

	4.2.2 IoT-NGIN FedPATE: Flower & PATE
	4.2.2.1 PATE as Privacy Preserving Mechanism
	4.2.2.2 IoT-NGIN FedPATE
	4.2.2.2.1 Model Overview
	4.2.2.2.2  Student Training


	4.2.3 TensorFlow Federated
	4.2.3.1 Privacy Preserving mechanisms


	4.3 Implementation for IoT-NGIN LLs
	4.3.1 NVIDIA FLARE
	4.3.1.1 Experimental Setup
	4.3.1.2 Experimental Results

	4.3.2 IoT-NGIN FedPATE
	4.3.2.1 Experimental Setup
	4.3.2.2 Experimental results

	4.3.3 TensorFlow Federated
	4.3.3.1 Experimental setup
	4.3.3.2 Experimental Results


	4.4 Discussion

	5 Installation and User Guide
	5.1 MLaaS Framework
	5.1.1 Installation principles
	5.1.2 Application installation

	5.2 Online Learning Framework
	5.3 Privacy-preserving Federated Learning Framework
	5.3.1 NVIDIA FLARE
	5.3.2 IoT-NGIN FedPATE
	5.3.2.1 Conda Environments
	5.3.2.2 Docker

	5.3.3 TensorFlow Federated
	5.3.3.1 Set-up
	5.3.3.2 Model Running



	6 Conclusions
	7 References

