
ã Copyright by the IoT-NGIN Consortium

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 957246

WORKPACKAGE WP5 PROGRAMME IDENTIFIER H2020-ICT-
2020-1

DOCUMENT D5.1 GRANT AGREEMENT ID 957246

REVISION V0.1 START DATE OF THE
PROJECT 01/10/2020

DELIVERY DATE 30/10/2021 DURATION 3 YEARS

D5.1
Enhancing IoT
Cybersecurity

Ref. Ares(2021)7019854 - 15/11/2021

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

2 of 82

DISCLAIMER
This document does not represent the opinion of the European Commission, and the European
Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain IoT-NGIN consortium parties,
and may not be reproduced or copied without permission. All IoT-NGIN consortium parties have
agreed to full publication of this document. The commercial use of any information contained in this
document may require a license from the proprietor of that information.

Neither the IoT-NGIN consortium as a whole, nor a certain party of the IoT-NGIN consortium warrant
that the information contained in this document is capable of use, nor that use of the information is
free from risk, and does not accept any liability for loss or damage suffered using this information.

ACKNOWLEDGEMENT
This document is a deliverable of IoT-NGIN project. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement Nº
957246.

The opinions expressed in this document reflect only the author’s view and in no way reflect the
European Commission’s opinions. The European Commission is not responsible for any use that may
be made of the information it contains.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

3 of 82

PROJECT ACRONYM IoT-NGIN

PROJECT TITLE Next Generation IoT as part of Next Generation Internet

CALL ID H2020-ICT-2020-1

CALL NAME Information and Communication Technologies

TOPIC ICT-56-2020 - Next Generation Internet of Things

TYPE OF ACTION Research and Innovation Action

COORDINATOR Capgemini Technology Services (CAP)

PRINCIPAL
CONTRACTORS

Atos Spain S.A. (ATOS), ERICSSON GmbH (EDD), ABB Oy (ABB), INTRASOFT
International S.A. (INTRA), Engineering-Ingegneria Informatica SPA (ENG),
Bosch Sistemas de Frenado S.L.U. (BOSCH), ASM Terni SpA (ASM), Forum
Virium Helsinki (FVH), Optimum Technologies Pilroforikis S.A. (OPT), eBOS
Technologies Ltd (EBOS), Privanova SAS (PRI), Synelixis Solutions S.A. (SYN),
CUMUCORE Oy (CMC), Emotion s.r.l. (EMOT), AALTO-Korkeakoulusaatio
(AALTO), i2CAT Foundation (I2CAT), Rheinisch-Westfälische Technische
Hochschule Aachen (RWTH), Sorbonne Université (SU)

WORKPACKAGE WP5

DELIVERABLE TYPE REPORT

DISSEMINATION
LEVEL

PUBLIC

DELIVERABLE STATE FINAL

CONTRACTUAL DATE
OF DELIVERY 30/10/2021

ACTUAL DATE OF
DELIVERY 15/11/2021

DOCUMENT TITLE Enhancing IoT Cybersecurity

AUTHOR(S) A. Voulkidis (SYN), T. Velivassaki (SYN), S. Bourou (SYN), A. Zalonis (INTRA), D.
Skias (INTRA), A. Gonos (OPT)

REVIEWER(S) A. Corsi (ENG), Y. Kortesniemi (AALTO)

ABSTRACT SEE EXECUTIVE SUMMARY

HISTORY SEE DOCUMENT HISTORY

KEYWORDS IoT, cybersecurity, Federated Learning, Generative Adversarial Networks,
model poisoning, training, dataset

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

4 of 82

Document History
Version Date Contributor(s) Description

V0.1 09/06/2021 SYN Table of Contents

V0.2 21/07/2021 OPT Contributions related to IoT vulnerabilities
and attacks

V0.3 14/09/2021 INTRA Input for IoT-NGIN cyberthreat modelling
methodology

V0.4 27/09/2021 SYN, INTRA, OPT Contribution to state-of-the-art GAN
models and tools

V0.5 12/10/2021 SYN, INTRA, OPT Contribution to IoT-NGIN dataset
generator; Analysis of LLs use cases

V0.6 22/10/2021 SYN, INTRA Updates and further additions to IoT-NGIN
dataset generator

V0.7 04/11/2021 SYN, INTRA Contribution to IoT vulnerabilities crawler

V0.8 08/11/2021 SYN Installation guidance updates for IoT-
NGIN dataset generator; Overall updates

V0.9 09/11/2021 SYN Complete draft ready for Peer Review

V0.9.1 11/11/2021 ENG Peer reviewed version

V0.9.2 12/11/2021 AALTO Peer reviewed version

V1.0 15/11/2021 SYN Updates on the basis of review comments;
Quality check; Final version

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

5 of 82

Table of Contents
Document History .. 4

Table of Contents .. 5

List of Figures .. 8

List of Tables ... 9

List of Acronyms and Abbreviations .. 10

Executive Summary ... 12

1 Introduction .. 13

1.1 Intended Audience ... 15

1.2 Relations to other activities .. 15

1.3 Document overview ... 15

2 Background and Motivation .. 17

2.1 What is on-device Federated Learning .. 17

2.2 How is IoT cybersecurity threatened ... 21

2.2.1 IoT vulnerabilities .. 21

2.2.2 Attacks in Federated Learning systems .. 23

2.3 How can ML contribute to cybersecurity in on-device FL .. 26

3 Cybersecurity needs towards IoT-NGIN Living Labs ... 28

3.1 Human-Centred Twin Smart Cities Living Lab .. 28

3.1.1 Preconditions per application ... 28

3.1.2 Mapping to IoT-NGIN FL-related cybersecurity tools .. 29

3.1.3 Use Case Requirements analysis .. 29

3.2 Smart Agriculture IoT Living Lab ... 30

3.2.1 Preconditions per application ... 30

3.2.2 Mapping to IoT-NGIN FL-related cybersecurity tools .. 31

3.2.3 Use Case Requirements analysis .. 31

3.3 Industry 4.0 Living Lab ... 32

3.3.1 Preconditions per application ... 32

3.3.2 Mapping to IoT-NGIN FL-related cybersecurity tools .. 33

3.3.3 Use Case Requirements analysis .. 33

3.4 Energy Grid Active Monitoring/Control Living Lab .. 36

3.4.1 Preconditions per application ... 37

3.4.2 Mapping to IoT-NGIN FL-related cybersecurity tools .. 37

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

6 of 82

3.4.3 Use Case Requirements analysis .. 38

4 IoT-NGIN methodology to IoT-driven cybersecurity in FL .. 40

5 State-of-the-art GAN-based approaches for synthetic dataset generation 44

5.1 GAN models overview .. 44

5.1.1 Vanilla GAN .. 44

5.1.2 Wasserstein GAN (WGAN) .. 45

5.1.3 WGAN-GP ... 46

5.2 GAN models for IDS ... 46

5.2.1 DoS-WGAN ... 46

5.2.2 IDSGAN ... 47

5.2.3 SynGAN ... 47

5.3 GAN Models for Tabular Data Generation .. 48

5.3.1 TableGAN ... 49

5.3.2 CTGAN .. 49

5.3.3 CopulaGAN ... 49

5.4 Evaluation Metrics for Tabular Data Generation ... 50

5.4.1 Visual evaluation ... 50

5.4.2 Machine Learning-Based Metrics .. 51

5.5 Intrusion Detection System (IDS) Datasets .. 51

5.5.1 KDD’99 .. 51

5.5.2 NSL-KDD .. 52

5.5.3 UNSW-NB15 ... 52

6 IoT-NGIN GAN-based dataset generator ... 53

6.1 Technical design .. 53

6.1.1 Feature engineering .. 53

6.1.2 Data preprocessing ... 57

6.1.3 Generation of tabular data ... 57

6.2 Hands-on experiments .. 58

6.2.1 Visual evaluation ... 58

6.2.2 Machine Learning-Based Metrics .. 63

6.2.3 Comparative performance analysis of GAN-based models 64

6.3 Installation guidelines .. 65

7 IoT-NGIN IoT vulnerability crawler ... 67

7.1 High-level architecture and specification .. 68

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

7 of 82

7.2 Installation guidelines .. 71

8 Conclusions ... 72

9 References .. 73

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

8 of 82

List of Figures
Figure 1: Federated Learning framework. 1. The global model is sent to the devices. 2. The
model is updated based on the data. 3. The updated parameters are sent to the server. 4.
A new global model is created. .. 18

Figure 2: Data vs. Model poisoning attacks on FL system. ... 23

Figure 3: Cyber-threat modelling approach; for each node, implementation hints in IoT-NGIN
are provided. ... 41

Figure 4: Malicious Attack Detector deployment in FL system. ... 42

Figure 5: Number of each category for NSL-KDD dataset. .. 55

Figure 6: Cumulative Sums and Distributions for discrete feature “num_compromised”. Real
data are illustrated in blue, while synthetic are illustrated in orange color. 59

Figure 7: Cumulative Sums and Distributions for discrete feature “hot”. Real data are
illustrated in blue, while synthetic are illustrated in orange color. ... 60

Figure 8: Cumulative Sums and Distributions for continuous feature “dst_host_rerror_rate”.
Real data are illustrated in blue, while synthetic are illustrated in orange color. 61

Figure 9: Cumulative Sums and Distributions for continuous feature
“dst_host_srv_diff_host_rate”. Real data are illustrated in blue, while synthetic are illustrated
in orange color. ... 62

Figure 10: Correlation matrices, indicating the associations per column of the real dataset
and each of the synthesizers. .. 63

Figure 11: High-level architecture of the vulnerability crawler. ... 68

Figure 12: Tentative vulnerability scanning plugin descriptor document. 70

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

9 of 82

List of Tables
Table 1: Requirements analysis for Use case #1 “Traffic Flow Prediction & Parking Prediction“.
 ... 29

Table 2: Requirements analysis for Use case #4 “Crop diseases prediction, Smart irrigation and
precision aerial spraying“. .. 31

Table 3: Requirements analysis for Use case #7 “Human-centred safety in a self-aware indoor
factory environment“. .. 33

Table 4: Requirements analysis for Use case #8 “Human-centred Augmented Reality assisted
build-to-order assembly “ ... 34

Table 5: Requirements analysis for Use case #9 “Digital powertrain and condition monitoring“
 ... 36

Table 6: Requirements analysis for Use Case #9 “Move from Reacting to Acting in Smart Grid
Monitoring & Control “. ... 38

Table 7: Requirements analysis for Use Case #10 “Driver-friendly dispatchable EV charging“.
 ... 39

Table 8: Types of attacks in the NSL-KDD dataset. .. 54

Table 9: Categorical features of NSL-KDD dataset. .. 55

Table 10: The four groups of features in the NSL-KDD dataset. .. 56

Table 11: The functional features of each attack category. ... 56

Table 12: Detection and Machine Learning Efficacy Metrics for CTGAN, CopulaGAN and
TableGAN. .. 64

Table 13: Comparison table of models’ performance. .. 64

Table 14: Vulnerability management process [40]. ... 67

Table 15: Subcomponents of the vulnerability crawler. ... 69

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

10 of 82

List of Acronyms and Abbreviations
AGV Automated Guided Vehicle

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

CDF Cumulative Distribution Function

CPU Central Processing Unit

CSV Comma-Separated Values

CTGAN Conditional Tabular GAN

CVE Common Vulnerability Exposure

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DCGAN Deep Convolutional GAN

DDOS Distributed Denial of Service

DOS Denial-of-Service

EHR Electronic Health Records

ENISA European Union Agency for Cybersecurity

ERR Error Rate based Rejection

EU European Union

FedAvg Federated Average

FL Federated Learning

GAN Generative Adversarial Network

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

HTTP Hypertext Transfer Protocol

IID Independent and Identically Distributed

IDS Intrusion Detection System

IoC Indicators of Compromise

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

11 of 82

IoT Internet of Things

JSON JavaScript Object Notation

LFR Loss Function based Rejection

MAD Malicious Attack Detector

MISP Malware Information Sharing Platform

ML Machine Learning

MQTT Message Queue Telemetry Transport

MTD Moving Target Defence

NIDS Network Intrusion Detection System

NIS Directive Directive on Security of Network and Information Systems

OES Operators of Essential Services

OWASP Open Web Application Security Project

PMU Phasor Measurement Unit

PNR Passenger Name Records

PQA Power Quality Analyser

R2L Remote to Local

RCE Remote Code Execution

SDG Synthetic Data Gym

SDV Synthetic Data Vault

SGD Stochastic Gradient Descent

SSRF Server-Side Request Forgery

U2R User to Root

VGM Variational Gaussian Mixture Model

VNC Virtual Network Computer

UWB Ultra-Wide Band

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Generative Adversarial Network with Gradient Penalty

WP Work Package

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

12 of 82

Executive Summary
The Internet of Things (IoT) and Artificial Intelligence (AI) combined together have
revolutionized intelligence delivery in a multitude of applications. At the same time, the
smooth operation of intelligent IoT systems requires consideration of cybersecurity aspects in
the design and delivery of such IoT systems. IoT-NGIN provides a set of tools, which aim at
protecting IoT systems participating in Federated Learning installations against cyberattacks,
such as network or data and model poisoning attacks. The main achievements of IoT-NGIN
towards the cybersecurity tools included in the present report can be summarized as follows:

• Analysis of vulnerabilities and cyberthreats which may challenge the secure operation
of federated learning systems, involving IoT and edge devices

• Analysis of cybersecurity needs of the use cases of IoT-NGIN Living Labs, which involve
federated learning in training their ML models

• Presentation of a generic cyberthreat modelling methodology proposed and
respected by IoT-NGIN for providing on-device Federated Learning security

• Presentation of four cybersecurity tools which will be developed in IoT-NGIN aiming at
enhancing cybersecurity in IoT-based Federated Learning systems, namely:

o Generative Adversarial Network (GAN) based IoT attack dataset generator,
useful for generating synthetic datasets of attacks, which can be further used
for Machine Learning model training.

o Malicious Attack Detector (MAD) able to identify anomalous behaviors in
network or model update datasets and thus facilitate the detection of
potential cyberthreats or attacks.

o IoT vulnerabilities crawler which allows identifying network vulnerabilities in IoT
systems and thus accelerate their mitigation.

o Moving Target Defence (MTD) network of Honeypots as a useful tool for tracing
and analysing attackers’ behaviours, induced by IoT systems’ vulnerabilities,
and thus allowing enhancement of threat modelling and management
processes.

• Extensive analysis of state-of-the-art Generative Adversarial Network (GAN) models
and tools for synthetic dataset generation.

• Initial version of the Generative Adversarial Network (GAN) based IoT attack dataset
generator, including technical design and specifications, as well as initial
implementation

• Initial version of the IoT vulnerabilities crawler, including technical design and
specifications.

The work presented in this document acts as the basis for the future activities of IoT-NGIN in
cybersecurity for on-device federated learning. The future work includes further updates for
the presented components, as well as design and development for the rest two. The
outcomes of these activities will be reported in D5.2 “Enhancing IoT Cybersecurity (Update)”,
which is due in the third quarter of 2022.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

13 of 82

1 Introduction
The Internet of Things (IoT) has launched for good in both business and everyday lives, with
numerous distributed and highly diversified “things” sensing different aspects of their
environment. Different combinations of devices, sensors and business scope across domains
provide the bill of materials for numerous, often, unprecedented, applications, leaving room
for both inspiration and innovation. The connected things are continuously increasing in
volume, and capabilities, collecting huge amounts of data. IDC predicted in 2020 that by
2025 there will be 55.7 B connected devices worldwide, 75% of which will be connected to
an IoT platform [1]. IDC also estimates in the same report data generated from connected
IoT devices to be 73.1 ZB by 2025, growing from 18.3 ZB in 2019. Moreover, Gartner estimated
in 2020 that 47% of organizations intend to increase investments in IoT despite the impact of
COVID-19 [2]. The same survey reveals that IoT adoption is primarily driven by the Digital Twin
and Artificial Intelligence (AI) technologies.

AI provides the intelligence to an IoT platform that enables translating raw information into
useful forecasts and insights that allow triggering actions in business-specific defined
workflows. Together, IoT and AI have revolutionized the perception of smartness in
connected systems, providing insights to digital pioneers both in real time and in great detail.

Machine Learning (ML) is an AI technology, which allows to automatically identify patterns
and detect anomalies in the data collected by IoT devices, such as temperature, pressure,
humidity, air quality, vibration, sound, but also images, video and voice. Moreover, οther AI
technologies such as speech recognition and computer vision allow identifying linguistic or
visual patterns, enabling inference decisions, only possible by humans until recently. AI
applications for IoT enable companies to avoid unplanned downtime, increase operating
efficiency, spawn new products and services, and enhance risk management [3].

At its basic level AI enables the prediction of undesired or risky events, while at a more
advanced level is combined with actuation capabilities in IoT systems, which enable
automated reaction to such events, without human intervention. Indeed, several ML
techniques aim to improve the efficiency of the models in making predictions, such as Deep
Learning, Reinforcement Learning, Transfer Learning, as well as Federated Learning, as
discussed in D3.1. Federated Learning (FL) aims to build and train global models based on
training datasets that are distributed across different remote devices while avoiding data
leakage.

Despite the indisputable benefits of the combined use of IoT and AI, cybersecurity concerns
may be raised from the extensive use of connected and highly automated systems. As stated
in the State of the Union (SOTEU) in 2021 “if everything is connected, everything can be
hacked” [4]. In SOTEU 2021, the need for a European Cyber Defence Policy, including
legislation on common standards under a new European Cyber Resilience Act has been
identified. Moreover, the SOTEU 2020 [5] had already identified the need for realizing the
Digital Decade in Europe and IoT together with AI can be a driving force.

The legislative framework of the European Commission towards cybersecurity builds upon:
• The EU Cybersecurity strategy [6], which proposes building a European Cyber Shield

via a network of Security Operations Centres across the EU, identifying the significance
of AI and ML techniques in malicious activities detection in such centres. Also, it
suggests providing ultra-secure communication infrastructure, integrating cutting
edge technologies, such as Quantum, 5G, AI, edge computing.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

14 of 82

• The Directive on Security of Network and Information Systems (the NIS Directive) (EU)
2016/1148 [7], which is at the core of the EU Single Market for cybersecurity. It states
the need to take technical and organizational measures to “address risks” posed to
systems of both Operators of Essential Services (OES) and providers of digital services.
Both IoT and AI are at the core of such operations. A reformed NIS Directive has been
proposed to be developed, in order to “provide the basis for more specific rules that
are also necessary for strategically important sectors, including energy, transport and
health” [6]. The draft NIS2 Directive [8] contains a catalogue of measures listing
among other things, risk analysis and security concepts, prevention of security
incidents and crisis management, which must at least be implemented by the
companies.

• The Cybersecurity Act [9], promotes ICT certification at EU level, based on a European
Cybersecurity Certification Framework, which will result in ICT products, services and
processes in the EU to operate with an adequate cybersecurity level.

In addition, the General Data Protection Regulation (GDPR) also requires risk assessment
procedures to be in place for those organizations that collect, process and store Personal
Identifiable Information (PII). Article 34 to the GDPR states that “the controller has taken
subsequent measures which ensure that the high risk to the rights and freedoms of data
subjects is no longer likely to materialize” [10].

Considering these, IoT-NGIN provides a set of cybersecurity tools for IoT Federated Learning
systems. The main project contributions are towards anomaly detection and threat
monitoring, aiming to identify both existing and zero-day network-level attacks suffered by
“classical” connected systems, as well as data and model poisoning attacks compromising
FL systems. IoT-NGIN leverages ML and Generative Adversarial Networks to train and develop
its Malicious Attack Detection (MAD) service. Moreover, IoT-NGIN designs and develops a
distributed vulnerability scanning service for IoT device, as well as a distributed network of
dynamically changing honeypots, allowing to lure and trace attackers’ activity in controlled
environments, without compromising the production environment’s operation. Such threat
monitoring allows companies assess and mitigate the cybersecurity risks which are possible
in their IoT systems, helping them comply with the EU regulations for cybersecurity.

The present document, entitled “Enhancing IoT Cybersecurity”, is the first deliverable of WP5
(D5.1) and reports the activities of Task 5.1 “Mitigate poisoning attacks in on-device
federated ML” and Task 5.2 “Adversarial access early attack detection. Moreover, the
activities reported in D5.1 align with the objectives of WP5:

• Develop the first to our knowledge systematic study on local model poisoning attacks
to on-device federated ML

• Research towards a novel method and tool for generating synthetic labelled datasets
of poisoning attacks (contradictory or adversarial patterns) to assist with the
evaluation of ML-based anomaly detection algorithms.

The present document is a technical report which provides technical specifications and initial
version of the Generative Adversarial Network (GAN) based IoT attack dataset generator
and the IoT vulnerabilities crawler of IoT-NGIN.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

15 of 82

1.1 Intended Audience
The target audience includes mainly IoT system providers and ML engineers, including
technical staff. Through this report, they can find information about cyberthreats imposed in
current and future IoT systems enhanced with AI functionality. Beyond their awareness on the
underlying threats, they may identify their relevant cybersecurity requirements in application
domains covered by the IoT-NGIN Living Labs. Moreover, the audience may identify through
this report underlying business model in defining a threat modelling approach for their
systems. The IoT-NGIN threat modelling methodology could potentially raise their awareness
and motivate them in adopting a similar approach. Of course, the technical specifications
and design of the GAN based dataset generator and the IoT vulnerabilities crawler are of
high interest to the technical staff, based on their expertise. Furthermore, IT and ML
developers have the chance to download, test and extend the initial versions of these
components.

Moreover, the report can be useful to policy makers, who can find technical advantages of
the IoT-NGIN threat modelling approach. The cybersecurity benefits and technical details
could be promoted as indicative guidance of implementing cybersecurity measures in IoT-
based FL systems.

Finally, the report is useful internally, to the members of the development and integration
team of the IoT-NGIN consortium, involving mainly Work Package (WP) 3-WP6 partners, but
also to the whole Consortium for validation and exploitation purposes. Useful feedback could
be also received from the Advisory Board, including both technical and impact creation
comments.

1.2 Relations to other activities
First of all, the project activities which fed this document consider the use case requirements,
as well as the IoT-NGIN meta-architecture and its instantiation, as derived in WP1. The content
of this deliverable highly relates to the activities of WP3, regarding the development of the
FL framework, which the cybersecurity modules presented in the current document refer to.
Also, the content of the deliverable will feed the future activities within the framework of Task
5.1 and Task 5.2 and is planned to be updated in deliverable D5.2 “Enhancing IoT
Cybersecurity (Update)”, due in Q3 2022. Moreover, the document provides useful feedback
to the future integration and validation activities, as well as to the preparation of the trials in
the Living Labs (LLs) in WP7. Last, but not least, the outcomes presented in this document may
be exploited for impact creation in WP8.

1.3 Document overview
The rest of the document is organized as follows.

Section 2 draws the background and motivation for providing cybersecurity tools for IoT-
based FL systems.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

16 of 82

Section 3 analyses the cybersecurity requirements of the use cases which will trialed in the
LLs, identifying their needs for the IoT-NGIN cybersecurity tools for on-device FL.

Section 4 presents the IoT-NGIN cyberthreat modelling methodology and briefly presents the
IoT-NGIN cybersecurity tools, mapping them to the steps of this methodology.

Section 5 presents state-of-art techniques GAN-based techniques for synthetic dataset
generation and discusses their suitability for generating IDS datasets.

Section 6 provides the technical design of the GAN-based Dataset Generator of IoT-NGIN
and provides installation and user guidance for its initial implemented version.

Section 7 provides the technical design of the IoT Vulnerability Crawler of IoT-NGIN, as well
as information about the deployment of implemented releases, as soon as they become
available.

Section 8 draws conclusions and closes the deliverable.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

17 of 82

2 Background and Motivation
In this section, the need for adopting cybersecurity solutions while developing or running IoT
systems is identified, highlighting potential vulnerabilities and attacks in smart IoT systems. IoT-
NGIN aims to address such cyberthreats across domains, starting from ensuring cybersecurity
of FL processes in IoT-NGIN LL use cases.

2.1 What is on-device Federated Learning
In recent years, the development and extensive use of smart devices has raised increasing
interest in accessing, extracting, and sharing valuable information, which is gathered by
different types of devices. Already now, massive amounts of data are being collected from
different devices in a distributed manner [11] [12]. Such wealth of data is often used to feed
Machine Learning (ML) functions and applications, which are able to generate knowledge
in an intelligent manner. However, the effectiveness of Machine Learning (ML) models can
be significantly improved when training is done synergistically, exploiting multiple information
feeds, which, however, raises data privacy concerns.

Federated learning (FL) systems provide a noble path, as they are able to perform Machine
Learning without the need to share the private data [13]: FL enables edge devices to
collaborate in training a shared model without disclosing the training data to a central server
as the training takes place on-device.

In FL settings, data remain within their administrative domain and training is performed locally.
Then, the locally trained ML models are shared among the federated nodes or a central
node, leading to the generation of an aggregated model. In this way, data sovereignty is
respected via the FL setting, since the training data remain at the devices, while they are
never processed at central servers.

Indicatively, Figure 1 illustrates a common FL setup, which consists of a central server S and
several dispersed nodes ni, i Î 1, 2, … N (the nodes could be e.g. smartphones, laptops, or
IoT devices). In this setting, the nodes exchange locally trained model updates with the
central server, which performs the aggregation of the individual models. Specifically, in each
iteration, the server S sends the global model to each node ni, i Î 1, 2, … N. Then, the model
is trained based on the private local data stored on each node, and the updated model
parameters are sent back to the central server S, where all the model updates from each
different node are aggregated, creating a new global model. This procedure is then
repeated until it satisfies a termination condition, such as reaching a specified number of
iterations.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

18 of 82

Figure 1: Federated Learning framework. 1. The global model is sent to the devices. 2. The model is

updated based on the data. 3. The updated parameters are sent to the server. 4. A new global
model is created.

The basic federated averaging algorithm was introduced as Federated Average (FedAvg)
in 2017 [14], in which an averaging local Stochastic Gradient Descent (SGD) is used to
update the model. The basic FL setup includes the learning of a global model using data
stored locally at different remote devices and then only sending the updates of the trained
model to a central server. Specifically in the case of FedAvg, the aim of the basic FL setup is
to minimize the objective of the global model 𝑤, which is the sum of the weighted average
of the devices’ loss:

Where n is the total number of devices, 	𝐹!(𝑤) is the local objective function for the 𝑘"#
device, while 𝑝! ≥ 0, specifying the relative impact of each device and ∑ 𝑝𝑘! 	=	1.	

	

Federated Learning has been largely researched in the literature with the aim of optimizing
the distributed training process and costs. While optimization of (centralised) ML processes
has been focused on achieving low latency and storage requirements, such as in lite versions
of TensoFlow [15] and PyTorch [16], the distributed training under the FL setting shifts the
computational overhead from the centralized server to the devices, which affects the goals
of optimization. The research and development of FL algorithms relies largely on open source
FL experimentation frameworks, the most common ones being TensorFlow Federated [17],
PySyft [18], LEAF [19] and FedML [20]. In the following, the main challenges related to FL are

Local data #1

Local data #2

Local model #1

Local model #2

Local data #N

Local model #N3

S

n1

n2

nN

3

3

1 1

1

2

22

4

 min
%
𝐹(𝑤), 𝑤ℎ𝑒𝑟𝑒	𝐹(𝑤) ≔	0𝑝!

&

!'(

𝐹!(𝑤)

(1)

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

19 of 82

discussed, accompanied by a brief analysis of state-of-the-art FL techniques in addressing
them.

	

Challenges
The minimization problem of FL models (1) imposes several challenges. The first one is related
to communication cost, which is a crucial bottleneck in FL systems. Specifically, those systems
mainly consist of a large number of devices, which makes the communication slower.
Another challenge is about the systems heterogeneity since the devices on a FL network may
have different storage, computational and communication capabilities due to the varying
hardware components (CPU, GPU, memory), network connections (Wi-Fi, 3G, 4G, 5G) as well
as power (battery life). It is very common on FL set ups that active devices can drop out due
to energy or connectivity restrictions, limiting the FL model training to devices with better
conditions. However, the FL system should be effectively scaled on all devices,
independently of their type. Additionally, statistical heterogeneity poses another a
challenge: FL systems commonly consist of several devices, which end up collecting data in
a non-uniformly distributed way. This contravenes the frequently-held hypothesis of
independent and identically distributed (IID) data, which increases the analysis, modelling,
and evaluation difficulties. Lastly, privacy concerns are important even in FL applications.
Even though FL provides more protection to private data of each device by only sharing the
model updates, this communication between devices and server can still disclose sensitive
information.

Addressing communication challenges
Efficient communication on FL system can be achieved with various strategies. Hence,
optimization methods that enhance flexible local updating as well as low client participation
are widely used on FL networks. FedAvg works satisfactorily for non-convex problems;
however this method does not always guarantee convergence, but it can still diverge in FL
systems with heterogeneous data [21]. Additionally, works which try to succeed an effective
communication in a FL setup have been proposed. Indicatively, in [22] quantization with
structured random rotations was implemented, which restricts the communication between
server and devices by applying lossy compression and dropout.

Regarding the system heterogeneity in FL system, several studies have investigated the
impact of different resources to the performance of FL model, and different approaches
have been developed to handle this issue. The authors in [23] examine the effect of
heterogeneity in computational resources, such as CPU, memory, and network resources, on
the training time of FL. Techniques such as asynchronous communication, active sampling of
participating devices, and fault tolerance can address the system heterogeneity. A novel
device selection strategy based on resources is presented by [24], in which the server
aggregates as many updates as possible in a pre-defined time range. The work in [25]
designs mechanisms that encourage devices with higher-quality data to participate in the
learning process based on the system overheads realized on each device. Finally, aiming to
create a robust FL system towards dropped devices, the authors in [26] design a secure
aggregation protocol that is tolerant of arbitrary dropouts, provided that there are enough
model updates from the non-dropped devices. Although the system heterogeneity effect in
FL has been quite extensively researched, it still remains an open issue which needs to be
consider while designing FL systems.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

20 of 82

Addressing operation in constrained devices
Often, the edge devices, in which the training is performed, are low-cost devices without the
capacity to handle and train large amounts of data. In that case, a key issue is that only a
limited amount of data can be used during the training phase on each edge device. One
approach to address this issue is to use cooperative model updates. There, each edge node
shares its trained results, while it improves the common model using the collected updates
from the other devices. Those intermediate training results can be either exchanged via a
server among the devices or they can be transferred directly from one edge device to
another. The method in [27] describes an on-device federated learning algorithm, which
updates the model collaboratively between the edge devices and it is applied on anomaly
detection tasks.

Moreover, another major issue relates to the training process of the FL algorithms, which might
be too heavy for some low-capable devices to bear their execution. Interestingly, several
well-known frameworks like Tensorflow Federated [28] and LEAF [19] provide advancements
in developing FL algorithms, but they do not offer tools for estimating the training’s
computational overhead; such overhead could provide hints for the suitability of the
developed algorithms really for on-device training. As an alternative, FLOWER is proposed for
evaluating on-device FL on various smartphones and embedded devices [29] and
constitutes a nice solution for on-device FL.

Addressing statistical heterogeneity
Apart from system heterogeneity, FL networks can also suffer from statistical heterogeneity
as the training of FL models may be performed with non-identical distributed data across
devices. FL methods have been proposed to overcome this challenge. MOCHA [30] is an
optimization framework, which allows the personalized learning on devices. In this approach,
separate but related models are trained at each device while a shared representation via
multi-task learning is also supported. A different approach in [31] introduces a meta-learning
method using information from each device separately. Additionally, the FedProx framework
[21] can manage data heterogeneity in FL systems. Slightly modifying FedAvg, FedProx
guarantees convergence also for FL systems trained with non-identical distributed data.

Another important factor to be considered during the handling of heterogeneous data on
FL devices, apart from accuracy, is fairness. Specifically, using the basic objective function,
such as (1), the models in some devices may be advantaged, while models of other devices
may be disadvantaged, since the training may introduce biases towards devices with large
amounts of data. Some studies have introduced FL approaches, which reduce the variance
of model performance among the devices. In [32] a variable number of local updates based
on local loss is performed by some heuristics. The Agnostic Federated Learning framework in
[33] improves the common model for any target distribution composed of a mixture of the
client distributions. As a conclusion, works, as the ones presented, have been aimed for
addressing statistical heterogeneity, which is still open for the research community, as no
single solution has been or is able to be adopted for every case.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

21 of 82

Addressing privacy issues
To further enhance privacy in FL settings, different privacy preserving ML techniques have
been proposed. Differential Privacy (DP) [34] [35] is a framework that randomizes part of the
FL learning algorithm’s behavior to make it impossible to reveal behavior patterns that
correspond either to the model and the learned parameters, or to the training data. Another
privacy preserving technique is Homomorphic Encryption (HE) [36], which secures the ML
procedure by computing standard mathematical operations on encrypted data.
Furthermore, Secure Multiparty Computation (SMC) [37] [38] is a cryptographic technique
that empowers distributed parties to jointly compute an arbitrary function without revealing
their own private input and output pairs. SMC techniques provide security verification in well-
defined simulation frameworks, ensuring complete zero-proof knowledge [39].

2.2 How is IoT cybersecurity threatened
In addition to the inherent challenges of FL discussed above, smooth FL operation can be
challenged by inherent constraints or vulnerabilities of the federated devices, which are
induced by the distributed nature of the FL system. IoT devices operating unattended are
subject to cybersecurity or physical attacks, which may render them malicious participants
within the FL system. In the following, the cybersecurity challenges around FL are presented,
discussing the vulnerabilities of IoT devices in subsection 2.2.1, which may lead to the attacks
against the FL system, presented in subsection 2.2.2.

The European Union Agency for Cybersecurity (ENISA) defines security vulnerability as “a
weakness an adversary could take advantage of to compromise the confidentiality,
availability, or integrity of a resource” [40]. While there are known vulnerabilities, which may
thus be appropriately addressed, zero-day vulnerabilities can be more damaging, as they
have not been publicly disclosed and are kept private. Vulnerabilities provide breeding
grounds for potential attackers, who deploy specially crafted code known as exploit, which
takes advantage of vulnerabilities to compromise a resource.

2.2.1 IoT vulnerabilities
Security vulnerabilities in IoT devices could allow adversaries to knock devices offline, or even
worse, to take control of them remotely as a steppingstone in order to gain wider access to
the affected network.

From the point of view of the IoT web applications, Open Web Application Security Project
(OWASP), which is a non-profit foundation, has compiled a list of the top 10 web application
security risks for the 2021. This list1 includes:

• Broken access control: Failures typically lead to unauthorized disclosure, modification,
or destruction of data or performing a business function outside the user's limits.

• Cryptographic Failures: Failures related to cryptography (or lack thereof) often lead
to exposure of sensitive data. Such failures include the use of Hard-coded passwords
or broken cryptographic algorithms.

1 https://owasp.org/www-project-top-ten/

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

22 of 82

• Injection: The attacker can provide malicious input (inject it) to a web application
and change the operation of the application by forcing it to execute certain
commands.

• Insecure Design: Focuses on risks related to design and architectural flaws, with a call
for more use of threat modelling, secure design patterns, and reference architectures

• Security misconfigurations: Vulnerabilities might be introduced if unnecessary features
are enabled or installed (ports, privileges etc,)

• Vulnerable and Outdated Components
• Identification and Authentication Failures: Failures include the permission of weak or

well-known passwords, or ineffective multi-factor authentication etc.
• Software and Data Integrity Failures: Failures relate to code and infrastructure that

does not protect against integrity violations such as when an application relies upon
plugins, libraries, or modules from untrusted sources, repositories, or content delivery
networks

• Security Logging and Monitoring Failures: Systematic logging is critical for detecting
and responding to breaches.

• Server-Side Request Forgery (SSRF): SSRF flaws occur whenever a web application is
fetching a remote resource without validating the user-supplied URL.

This list was compiled based on reported vulnerabilities, which were classified using the
“Common Weakness Enumerations (CWE)”. CWE refers to the types of software weaknesses,
rather than specific instances of vulnerabilities within products or systems. This list acts as a
“dictionary” of the top and most common software vulnerabilities identified.

“Malware Information Sharing Platform (MISP)” is another very well-known platform that
facilitates the sharing, storing, and correlating of threat intelligence, including vulnerability
information. It provides an adjustable taxonomy and an “Indicators of Compromise (IOCs)”
database, i.e. a database of forensic data that identify potentially malicious activity on a
system or network.

An additional source of vulnerabilities is the “Common Vulnerability and Exposures (CVE)”
database hosted at MITRE. It is one of the largest publicly available source of vulnerability
information. CVE provides a common enumeration that promotes shareability and consists
of a list of information security vulnerabilities and exposures that aims to provide common
names for publicly known problems. MITRE’s CVE Program’s mission is to identify, define, and
catalog publicly disclosed cybersecurity vulnerabilities2. A CVE also holds a Common
Vulnerability Scoring System (CVSS), which is a vulnerability metric for communicating the
characteristics and severity of software vulnerabilities. MITRE also publishes the CWE top 25
Most Dangerous Software Weaknesses on an annual basis3. For example, one of the recent
and common CVEs for 2021 is the CVE-2021-3156: Sudo Privilege Escalation to Root. It holds
a CVSS score of 7.8, which is considered high. This vulnerability is due to improper parsing of
command line parameters and an attacker can exploit it via “sudoedit -s” and a command-
line argument that ends with a single backslash character. To mitigate this vulnerability one
can apply audit logs. Since brute-forcing is required to trigger the vulnerability, audit logs will
be flooded with events relating to sudoedit.

2 https://cve.mitre.org/cve/
3 https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

23 of 82

An additional common CVE vulnerability is Citrix CVE-2019-19781. This particular CVE has a
CVSS score of 9.8 which is considered critical. This CVE is a Remote Code Execution (RCE)
vulnerability. An arbitrary code execution vulnerability is a security flaw in software or
hardware allowing arbitrary code execution.

2.2.2 Attacks in Federated Learning systems
FL systems improve privacy preservation since the data remains locally on device, while only
the model updates from each training are shared to the server. However, surveys have
shown that FL may not always provide adequate privacy guarantees. Specifically, the
sharing of model updates between the server and the IoT devices during the training phase
can reveal sensitive information [41], [42]. In some cases, only a small portion of original
gradients can already disclose important knowledge about the local data [43]. In addition,
the malicious attackers want to exploit vulnerabilities to access the sensitive, private data of
IoT devices or to control ML networks and manipulate the outputs. Therefore, to reinforce the
FL features of IoT systems appropriately, all potential security, privacy, and network attacks
on FL networks must be investigated.

2.2.2.1 Poisoning attacks
Attacks commonly occur during the training phase of FL networks, which are referred to as
poisoning attacks, impacting either the dataset or the local model and, consequently,
distorting the global ML model accuracy and/or performance. The general goal of poisoning
attacks is to modify the behavior of FL model in an undesirable way. The attacks during
training of FL networks are divided in two types, namely Data Poisoning and Model Poisoning
attacks. The data poisoning attacks aim to compromise the integrity of training data, while
the model poisoning attacks target partial or full model replacement during training. In an FL
system, attacks can be executed by either the central server or the participating devices in
FL system. Figure 2 shows that data poisoning is performed at local data collection, while
model poisoning is sourced at the local model training process.

Figure 2: Data vs. Model poisoning attacks on FL system.

Local
data

Data Poisoning

Model Poisoning

Local model
training
process

Local
data

Local model
training
process

.

.

.

.

.

.

Data collection Model training

Central
Server

Δw1

Δwn

.

.

.

w’ = w + aggregate(Δw1 + … + Δwn)
Poisoned model parameter

Device n1

Device nΝ

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

24 of 82

2.2.2.1.1 Data poisoning
Data poisoning attacks can be executed by any FL device, while the effect on the final
trained ML model depends on the extent that the participating devices have been involved
in attacks as well as the amount of poisoned data. Data poisoning attacks are usually less
effective than model poisoning attacks. However, research in [44] demonstrates that
poisoning training data at edge-case with low probability are more efficient.

Data poisoning attacks are further divided in two categories: clean-label and dirty-label.
Clean-label [45] attacks are the attacks, in which the attacker cannot change the label of
training data since there is a procedure certifying the correct class of the data, and thus,
only the data is modified. The poisoning of data samples must be imperceptible in this kind
of attack. On the other hand, the dirty-label attacks [46] can alter both the data and the
label, which can be done by introducing several modified data with the desired target class,
causing model misclassification. Dirty-labels attacks are also referred as backdoor attacks.
An example of dirty-label poisoning is the label-flipping attack [47], where (as the name
indicates) labels of honest training data belonging to one class are flipped to another class,
without any modification of data features.

2.2.2.1.2 Model poisoning
Model poisoning attacks aim to corrupt the updates of the local model before sending them
to the central server or to insert hidden backdoors into the lobal model [48]. Research
performed in [49] demonstrates that the model poisoning attacks are much more efficient
than data poisoning attacks in FL systems. Furthermore, in FL system, the aggregator is not
familiar with the modes of local updates, making it incompetent to detect anomalies and
verify the correctness of local updates. The performance of model poisoning requires
sophisticated techniques and high computational resources.

The aim of model poisoning attacks is to provoke the global ML model to miss-classify a set
of data without being perceived, thus with high confidence. Threats of model poisoning
attacks on FL, introduced by a single malicious agent as well as strategies to perform this kind
of attack are analyzed in [50]. Additionally, [49] and [51] explore model poisoning attacks
by sending a poisoned subset of updates to the server in every given iteration. The poisoned
updates can be introduced to the global model by hidden backdoors. The work in [48]
demonstrates that even a single-shot attack could be adequate to insert a backdoor to a
model. The method developed in [52] uses Generative Adversarial Network (GAN) models
to generate model poisoning attacks. Specifically, malicious participants pretend to be
benign, while utilizing the GAN architecture to generate training data with incorrect label to
damage the other clients of FL system. Current methods that defend systems from poisoning
attacks are not entirely applicable in FL systems. To mitigate those attacks from FL, promising
approach would be anomaly detection in the central server.

2.2.2.2 Inference attacks
Inference attacks are another type of threats that can occur on FL systems. In those attacks,
adversaries do not attempt to violate the model itself. However, they aim either to lead the
model to produce wrong results or gather details about the model characteristics, which can
be achieved due to the communication channels in the FL settings. The adversaries could
use the uploaded model parameters to partially disclose information about the training data

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

25 of 82

of each FL client (or node). Specifically, the attacker can use the model updates to infer
private information, like membership, class representatives, and the attributes of a training
subset. These kinds of attacks can be grouped into two categories, the white-box attacks, in
which the adversary has full access to the FL model, and the black-box attacks, in which the
attacker can only obtain the predicted output.

Membership inference attacks [53] intends to reveal information by examining if specific
data samples exist on the private training set of a single client or of any client. For this purpose,
shadow models are built, creating a similar dataset to the original one. Attackers in FL systems
can perform both active and passive membership inference attacks [54]. In the case of
passive attacks, the adversary monitors the model updates and executes inference without
altering the local training or the global aggregation procedure. On the other side, in the
more powerful case of active attacks, the attackers can tamper with the training protocol,
thus sharing malicious updates and forcing the FL to disclose more information about FL
client’s local data.

Additionally, other inference attacks that make FL systems vulnerable, are property inference
attacks and model inversion attacks. Property inference or reconstruction attacks have as
goal to define specific sensitive properties’ values given that the attacker knows all the non-
sensitive attributes that describe the classes of the FL model [55]. The attackers can conclude
characteristic about participant’s private training data thought the inference of sensitive
attributes from the observations of local model gradients at different training rounds. In
model inversion attacks, the training data is reconstructed using the FL model updates [56].
This kind of attacks raised a lot of concerns about privacy. In recent years, the research
community has started dealing with the development of GAN models with regards to the
inversion task to better extract appropriate knowledge about attacks [57], [58].

2.2.2.3 Network attacks
A FL system can be considered a network, which, therefore, is vulnerable to different network
attacks. Networks are vulnerable to different kinds of attacks, by which adversaries aim to
gain access to the system and carry out actions related to their malicious intentions. In this
section the most well-known network attacks are analyzed.

In a Byzantine attack the malicious participants have complete control of their
authenticated devices and perform arbitrarily behavior to disrupt the network. Generally, in
a byzantine attack, the adversarial device cannot be distinguished from the benign ones.
Other cybersecurity attacks include sybil attacks, where the attacker simulates multiple
participants or several false identities with the aim of accessing the system and adding more
powerful attacks on it. The severity of sybil attacks increases when the malicious actor
manages to control more devices.

Denial-of-Service (DoS) [59] is a type of attack, in which the malicious actor makes the whole
network or some devices unavailable for the users. This is achieved by flooding the
computing or memory resources of the targeted machine until normal traffic cannot be
processed; therefore, the user access to the machine is denied. DoS attack is one of the most
frequently occurring cases of network intrusion. Distributed denial of service (DDoS) attack
aims to disrupt the normal traffic of a network by overwhelming the network itself or the
surrounding infrastructure with fraudulent internet traffic from multiple sources. Probe is
another type of attack, in which the hacker scans a machine or a device and gathers
network information to identify vulnerabilities or weak points that can be used to harm the

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

26 of 82

system [60]. Remote to Local (R2L) is a type of attack, in which a remote user sends packets
through the internet to a machine or a device, in which she/he does not have access [61].
The attacker aims to reveal the network vulnerabilities and take advantages of the privileges
that a local user would have. The User to Root (U2R) type refers to an attack, in which the
attacker imitates a normal user, while attempting to gain root access and super user
privileges to the system [62].

Yet another type of attack are backdoors, with which the malicious users can avoid normal
security requirements and authentication procedures without being discovered, aiming to
access a target network system. Via these attacks, the attacker can reach the resources of
the system, like servers or participants, and change the settings and properties. Botnet is a
type of cyberattack, which is accomplished by a group of malware-injected devices
controlled remotely by the attacker. These attacks are more sophisticated than others, due
to their ability to scale up to cause greater damage to the system. Finally, Man in the middle
attacks happen when attackers interrupt traffic within the network and secretly relay it -
possibly altered- between the communicating parties, which believe that they are in a
private communication. This attack can occur when malicious actors find a way to deceive
the communication protocols, even if they are highly secured.

2.3 How can ML contribute to cybersecurity in on-
device FL

The presence of attackers in an FL system degrades the training procedure, which introduces
security risks on the learning outcomes. Therefore, the detection of malicious nodes as well
as the poisoned model updates is of high importance in FL settings. However, it is common,
that the attackers pretend to be benign nodes among the system, making the detection of
them a challenging procedure. In recent years, the research community has expressed an
intense interest in defense mechanisms to mitigate poisoning attacks, and thus, to reinforce
the security of FL settings.

Some of the defense techniques exploit analytics and statistics to recognize abnormalities in
events that do not follow an expected pattern. To achieve this, a profile of normal behavior
is needed to detect attacks as a diversion from the normality. In FL systems, data and model
poisoning attacks can be detected by different anomaly detection methods. For instance,
Krum method [51] uses Euclidian Distance to identify malicious users based on the fact that
their parameter updates remarkably vary from others. Additionally, the method in [63]
detects the abnormal clients’ updates at the server. The authors in [64] attempt to handle
the adversarial attacks on FL by introducing a spectral anomaly detection with a variational
autoencoders framework, which is used by the central server to identify and remove the
malicious model updates based on their low-dimensional embeddings. Furthermore, [65]
presents two defense mechanisms against local poisoning attacks, the loss function based
rejection (LFR) and the error rate based rejection (ERR).

Recently, FoolsGold [66] was designed to detect sybil poisoning attacks by identifying
malicious clients through calculation of the similarities between different updates. Various
backdoor attacks in FL systems can be detected by the FederatedReverse method [67],
which contains four parts, namely reverse engineering, global reverse trigger generation,
outlier detection, and model repair. FederatedReverse also manages to restrict the influence
of backdoor attacks via the model repair component.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

27 of 82

A defence mechanism in FL settings, which mitigates poisoning attacks, but also provides
privacy preserving, is a challenging issue and not yet well studied. MLGuard [68] is a privacy
preserving distributed ML framework that simultaneously protects the learning procedure
from the malicious nodes. The MLGuard allows the collaboration of two servers and multiple
mobile users to train a common machine learning model, which provides privacy
preservation as well as a defense mechanism against poisoning attacks. To accomplish this,
the servers exploit a novel poisoning attack mitigation method to identify if node’s updates
are trustworthy or not. Specifically, the detection of malicious node is based on the similarity
score of each node, so the servers reject those nodes with the lowest similarity score.
Additionally, the strong privacy preserving character of MLGuard derives from an additive
secret sharing mechanism, permitting the devices to secretly share their model updates to
the servers.

Additionally, the research work in [69] presents a scheme for anomalous update detection
in both IID and non-IID data, while the privacy of each FL client is protected without
degrading the detection performance. In this method, the detection tasks are assigned to
the clients, using the private data to evaluate the performance of the updates. Then, the
aggregation of updates on the server is done by adjusting the weights based on the
evaluation results. Finally, differential privacy is integrated to the detection tasks to protect
clients’ privacy.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

28 of 82

3 Cybersecurity needs towards IoT-NGIN
Living Labs

The Use Cases (UCs) which will be validated in the LLs have been analysed under the AI
perspective in Deliverable document D3.1 “Enhancing deep learning / reinforcement
learning” [70]. Leveraging this analysis, the following subsections provide cybersecurity-
specific analysis of the UCs, for which ML model training via FL techniques has been specified.

3.1 Human-Centred Twin Smart Cities Living Lab
In the framework of the Human-Centred Twin Smart Cities Living Lab, the IoT-NGIN framework
will be validated against three use cases, namely UC#1 “Traffic Flow Prediction & Parking
Prediction”, UC#2 “Crowd management” and UC#3 “Co-commuting solutions based on
social networks”. Based on D3.1, UC#1 will deploy Federated Learning for the training of the
Traffic Flow Prediction and Parking Prediction AI services, while the rest will rely on other
training techniques. The following subsections provide the background information for the
UC needed for understanding the FL related cybersecurity needs of the UC, present the
cybersecurity tools against on-device FL which will be validated, as well as the UC
requirements from such tools.

3.1.1 Preconditions per application
The preconditions per UC application of the Human-Centred Twin Smart Cities Living Lab
have been analyzed under Artificial Intelligence (AI) perspective in D3.1, section 3.1.1. The
preconditions of UC#1 which are of interest to the cybersecurity tools against on-device FL
attacks can be outlined as follows.

a) In order to model and train distributed AI models on traffic flow and parking prediction,
weather data (and how that affects road & traffic conditions) and road data (number
of cars, velocity, fluctuation) will be used. The predictive model will also consume
historical data and public transportation information.

b) Traffic and parking prediction ML models will be federated at the edge cloud.
c) As IoT devices are installed in accessible public places and have network

connectivity, their safe network configuration and operation must be ensured.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

29 of 82

3.1.2 Mapping to IoT-NGIN FL-related cybersecurity tools

GAN based dataset
generation

Malicious Attack
Detector (MAD)

IoT vulnerability
crawler

MTD network of
honeypots

- - Detection of
vulnerabilities in IoT
devices (cameras,
radars) and
edge/cloud nodes

-

3.1.3 Use Case Requirements analysis
Table 1: Requirements analysis for Use case #1 “Traffic Flow Prediction & Parking Prediction“.

Living Lab Human-Centred Twin Smart Cities Living Lab

Use Case Traffic Flow Prediction & Parking Prediction

FL service Traffic Flow Prediction Parking Prediction

GAN based
dataset

generation

Dataset type N/A

Attacks covered N/A

Data size N/A

Malicious Attack
Detector (MAD)

Data types N/A

Data size N/A

Data
communication

protocols

N/A

Data availability N/A

IoT vulnerability
crawler

IoT devices Multispectral & Visual Cameras

Radars

Weather stations

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

30 of 82

Sensors on Robo-buses & City Streets

Deployment
type

Edge/cloud

MTD network of
honeypots

Service types
mimicked

Ν/Α

Applications
mimicked

N/A

3.2 Smart Agriculture IoT Living Lab
In the Smart Agriculture IoT Living Lab, the IoT-NGIN solution will be validated against UC#4
“Crop diseases prediction, Smart irrigation and precision aerial spraying” and UC#5 “Sensor
aided crop harvesting”. According to the AI-driven analysis of them, UC#4 will train its Crop
diseases prediction AI service in a FL system. In this subsection, an analysis of UC#4 under the
Smart Agriculture Living Lab is provided under the perspective of the cybersecurity tools
against on-device FL; including the preconditions, then mapping of those preconditions to
the cybersecurity tools and identifying relevant use case requirements.

3.2.1 Preconditions per application
The preconditions identified as relevant for cybersecurity against on-device FL for the “Crop
diseases prediction, Smart irrigation and precision aerial spraying” use case are identified as
follows:

a) Crop diseases prediction is based on images and real-time video analysis of the crop
and the leaves captured from visual and multi-spectral cameras located on semi-
autonomous drones flying over the orchard.

b) Crop diseases’ prediction also considers measurements acquired via SYN SynField4
precision agriculture IoT nodes, integrating a variety of sensor modules.

c) Real-time video analysis takes place either locally (on the drone), based on already
trained ML models, or remotely (at the edge) based on federated ML.

d) Both SynField devices and drones will communicate with an edge server. So, the
network vulnerabilities at device, edge or cloud level must be eliminated.

e) The training process of the ML prediction models must be protected against
cyberattacks, which could highly impact the according predictions.

f) IoT-NGIN will leverage existing datasets available for Living Lab experimentation, to
the extent possible. Alternatively, publicly available or synthetic datasets will be used.

4 https://www.synfield.gr/about/.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

31 of 82

3.2.2 Mapping to IoT-NGIN FL-related cybersecurity tools

GAN based dataset
generation

Malicious Attack
Detector (MAD)

IoT vulnerability
crawler

MTD network of
honeypots

Generation of
datasets including
network-level attacks

Detection of network
level attacks, as well
as data/model
poisoning attacks

Detection of
vulnerabilities in IoT
devices (SynField,
drones) and
edge/cloud nodes

Mimicking of
vulnerable
SynField nodes

3.2.3 Use Case Requirements analysis
In this section, the requirements of UC#4 are drawn in Table 2 for each of the FL-related
cybersecurity components of IoT-NGIN.

Table 2: Requirements analysis for Use case #4 “Crop diseases prediction, Smart irrigation and
precision aerial spraying“.

Living Lab Smart Agriculture IoT Living Lab

Use Case Crop diseases prediction. Smart irrigation and
precision aerial spraying

FL service Crop diseases prediction

GAN based
dataset

generation

Dataset type CSV

Attacks covered Network-level attacks, Data & Model poisoning
attacks

Data size To be defined

Malicious Attack
Detector (MAD)

Data types JSON

Data size To be defined

Data
communication

protocols

HTTP

MQTT

Data availability Request only

IoT devices SynField devices, drones

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

32 of 82

IoT vulnerability
crawler

Deployment
type

Edge/cloud

MTD network of
honeypots

Service types
mimicked

(indicative) Web server, Virtual Network Computer
(VNC)

Applications
mimicked

(indicative) Smart Agriculture app dashboard,
decoy database, Smart Agriculture app API

3.3 Industry 4.0 Living Lab
The Industry 4.0 Living Lab will validate the IoT-NGIN framework in real-life applications via 3
use cases in both BOSCH facilities in Barcelona and ABB facilities in Pitäjänmäki, Helsinki,
namely UC#6 “Human-centred safety in a self-aware indoor factory environment”, UC#7
“Human-centred Augmented Reality assisted build-to-order assembly” and UC#8 “Digital
powertrain and condition monitoring”. All three use cases will use Federated Learning
framework in training their AI models, according to D3.1.

3.3.1 Preconditions per application
The preconditions identified as relevant for cybersecurity against on-device FL for the
“Human-centred safety in a self-aware indoor factory environment” use case are identified
as follows:

a) Edge computing resources will be used to support a set of AI functions that will process
the real-time location of the Automated Guided Vehicles (AGVs), based on the real-
time stream coming from the safety cameras. The AI functions will determine a
potential collision between AGVs, or between a worker and an AGV and will issue an
early warning.

b) The AI models that will be used will be trained at the edge devices, in a federated
learning set up among edge devices in the same factory.

c) The cameras installed in the factory for collecting images of the AGV are installed in
accessible positions and communicate with the edge server via LAN or Internet
connection, so any network vulnerabilities must be early identified.

The “Human-centred Augmented Reality assisted build-to-order assembly” Use Case
underlines the following points, which are of interest to IoT-NGIN FL related cybersecurity
tools.

a) This UC aims to assist human workers in the assembly line with the use of Augmented
Reality (AR). Machine learning and computer vision techniques will be used to detect
product defects and differentiate between different components and modules.

b) IoT-NGIN will be able to recognize the components and the stage of the assembly
process using ML models, which will be trained locally at edge servers and federated
to produce an aggregate model.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

33 of 82

d) The cameras installed in the factory for collecting images during the assembly process
are installed in accessible positions and communicate with the edge server via LAN
or Internet connection, so any network vulnerabilities must be early identified.

Moreover, for UC#8 “Digital powertrain and condition monitoring”, the following
preconditions are of interest to FL-related IoT-NGIN tools.

a) Condition monitoring and predictive maintenance of powertrains and drive units will
be based on ML models, which will be generated using federated machine learning.

b) Parameter tuning and optimization (e.g. in terms of energy consumption) of drive units
will rely on ML models which will be generated via federated learning.

c) The IoT devices which will act as data sources, such as smart sensors and heat
cameras will be installed in accessible positions and will communicate with edge
devices to provide them their collected data. As such, network vulnerabilities should
be early detected.

3.3.2 Mapping to IoT-NGIN FL-related cybersecurity tools

GAN based dataset
generation

Malicious Attack
Detector (MAD)

IoT vulnerability
crawler

MTD network of
honeypots

- - Detection of
vulnerabilities in IoT
devices and
edge/cloud nodes

-

3.3.3 Use Case Requirements analysis
In this section, the requirements per use case are presented for each of the FL-related
cybersecurity component of IoT-NGIN in Table 3 to Table 5, respectively.
Table 3: Requirements analysis for Use case #7 “Human-centred safety in a self-aware indoor factory

environment“.

Living Lab Industry 4.0 Living Lab

Use Case Human-centred safety in a self-aware indoor
factory environment

FL service Collision Detection AGV Route Planning

Dataset type N/A

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

34 of 82

GAN based
dataset

generation

Attacks covered N/A

Data size N/A

Malicious Attack
Detector (MAD)

Data types N/A

Data size N/A

Data
communication

protocols

N/A

Data availability N/A

IoT vulnerability
crawler

IoT devices Cameras

Ultra-Wide Band (UWB) sensors

AGVs

Deployment
type

Edge/cloud

MTD network of
honeypots

Service types
mimicked

Ν/Α

Applications
mimicked

N/A

Table 4: Requirements analysis for Use case #8 “Human-centred Augmented Reality assisted build-

to-order assembly “

Living Lab Industry 4.0 Living Lab

Use Case Human-centred Augmented Reality assisted build-
to-order assembly

FL service (AR) Object detection and classification

GAN based
dataset

generation

Dataset type N/A

Attacks covered N/A

Data size N/A

Malicious Attack
Detector (MAD)

Data types N/A

Data size N/A

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

35 of 82

Data
communication

protocols

N/A

Data availability N/A

IoT vulnerability
crawler

IoT devices Cameras, Ultra-Wide Band (UWB) sensors, AGVs

Deployment
type

Edge/cloud

MTD network of
honeypots

Service types
mimicked

Ν/Α

Applications
mimicked

N/A

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

36 of 82

Table 5: Requirements analysis for Use case #9 “Digital powertrain and condition monitoring“

Living Lab Industry 4.0 Living Lab

Use Case Digital powertrain and condition monitoring

FL service Predictive maintenance
of powertrains

Energy consumption
optimization

GAN based
dataset

generation

Dataset type N/A

Attacks covered N/A

Data size N/A

Malicious Attack
Detector (MAD)

Data types N/A

Data size N/A

Data
communication

protocols

N/A

Data availability N/A

IoT vulnerability
crawler

IoT devices Variable speed drive, smart sensor, heat camera

Deployment
type

Edge/cloud

MTD network of
honeypots

Service types
mimicked

Ν/Α

Applications
mimicked

N/A

3.4 Energy Grid Active Monitoring/Control Living
Lab

The Energy Grid Active Monitoring/Control Living Lab will validate the IoT-NGIN framework in
two use cases, namely UC#9 “Move from Reacting to Acting in Smart Grid Monitoring &
Control” and UC#10 “Driver-friendly dispatchable EV charging”. UC#9 will exploit FL in
training consumption and/or generation prediction AI services, while UC#10 will use FL for
developing the “Forecasting of energy demand” AI service.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

37 of 82

3.4.1 Preconditions per application
Under the IoT cybersecurity perspective, the following preconditions are taken into account
for UC#9:

a) Anomaly detection ML models will be trained using FL techniques to identify grid
health issues early, to the extent possible, allowing tracking the health of the grid and
indicating that maintenance is required before obvious performance degradation or
even failure.

b) The cybersecurity of the model training process is mandatory for the Critical
Infrastructure of Energy, securing reliability and effectiveness of the ML models.

c) Given the integration of various platforms and numerous diverse devices, most of
them exposed in public places (e.g. smart meters), eliminating device vulnerabilities
is crucial for the UC.

d) Network-level cybersecurity is also of interest to the use case, to early detect and/or
avoid hacking activity in the energy network, to the extent possible.

The preconditions identified as relevant for cybersecurity against on-device FL for the “Driver-
friendly dispatchable EV charging” use case are identified as follows:

a) Data from geographically dispersed charging stations, electric vehicles and smart
meters will be used to train ML models, able to forecast the energy demand for the
EV charges.

b) The ML models will be trained via federated learning tools to exploit knowledge from
various edge servers, which could belong to different vendors, so they would be
unwilling to disclose any data.

c) As the charging stations, the electric vehicles and smart meters communicate with an
edge or cloud server, IoT vulnerabilities should be early detected.

d) The cybersecurity of ML model training must be ensured.
e) Network-level cybersecurity will thus be enforced via anomaly detection ML models,

providing inference over synthetic network datasets.

3.4.2 Mapping to IoT-NGIN FL-related cybersecurity tools
UC#9 and UC#10 will exploit the IoT-NGIN tools towards addressing FL attacks as shown in
the next table.

GAN based dataset
generation

Malicious Attack
Detector (MAD)

IoT vulnerability
crawler

MTD network of
honeypots

Generation of
datasets including
network-level attacks

Detection of network
level attacks in the
smart grid and across
the network of
charging stations;
Detection of
data/model
poisoning attacks in

Detection of
vulnerabilities in IoT
devices (e.g. smart
meters, Power quality
analysers (PQA),
Phasor Measurement
Units (PMUs), charging
stations, electric

N/A

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

38 of 82

anomaly detection
ML models for smart
grid status monitoring

vehicles) and
edge/cloud nodes

3.4.3 Use Case Requirements analysis
The UC#9 requirements for each of the IoT cybersecurity components of IoT-NGIN are drawn
in Table 6.

Table 6: Requirements analysis for Use Case #9 “Move from Reacting to Acting in Smart Grid
Monitoring & Control “.

Living Lab Energy Grid Active Monitoring/Control Living Lab

Use Case Move from Reacting to Acting in Smart Grid
Monitoring & Control

FL service Anomaly detection in smart grid operation

GAN based
dataset

generation

Dataset type CSV

Attacks covered Network-level attacks

Data size To be defined

Malicious Attack
Detector (MAD)

Data types JSON

Data size To be defined

Data
communication

protocols

MQTT

Data availability Real-time

IoT vulnerability
crawler

IoT devices Power quality analysers

Deployment
type

Edge/cloud

MTD network of
honeypots

Service types
mimicked

N/A

Applications
mimicked

N/A

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

39 of 82

The UC#10-specific requirements are drawn in Table 7 for each of the FL-related
cybersecurity components of IoT-NGIN.

Table 7: Requirements analysis for Use Case #10 “Driver-friendly dispatchable EV charging“.

Living Lab Energy Grid Active Monitoring/Control Living Lab

Use Case Driver-friendly dispatchable EV charging

FL service Forecasting of energy demand

GAN based
dataset

generation

Dataset type CSV

Attacks covered Network-level attacks

Data size To be defined

Malicious Attack
Detector (MAD)

Data types JSON

Data size To be defined

Data
communication

protocols

HTTP

MQTT

Data availability Real-time

IoT vulnerability
crawler

IoT devices Charging stations, Electric vehicle OBD devices,
Near real-time smart meters

Deployment
type

Edge/cloud

MTD network of
honeypots

Service types
mimicked

N/A

Applications
mimicked

N/A

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

40 of 82

4 IoT-NGIN methodology to IoT-driven
cybersecurity in FL

As presented in section 2, IoT systems may suffer from various cybersecurity attacks. In
addition to device or network vulnerabilities, risks may be posed by advancing technologies,
powered by the increasing use of AI, which expand the attack surface of IoT systems and
feed even more sophisticated attackers. IoT-NGIN proposes a cyber-threat modelling
approach, which mostly aligns to ENISA’s threat modelling methodology for AI [71]:

1. Identification of security objectives: The security properties of the IoT system are
identified. These could refer to protecting data injection, model training or inference
processes, to ensuring network or communication security, etc.

2. Identification of the system functions: The IoT system and its components’ processes
should be identified, highlighting the interactions between them, as well as with third-
party systems, in order to ensure proper IoT system function.

3. Asset identification: Assessment of hardware and software components, the security
of which should be protected. These could include IoT devices, data, processes, ML
models and artifacts, as well as tools necessary for system operation.

4. Threat identification: The cybersecurity threats are identified as states or setups which
result in the system assets failing to meet the security objectives.

5. Vulnerability identification: Extensively monitor the IoT system properties, which may
enable the realization of the identified threats, based on state-of-the-art
cyberattacks.

6. Threat detection: Cybersecurity threats are detected, based on evidence by already
realized attacks, as well as on more advanced techniques, which may identify new
threats which may be attributed to zero-day vulnerabilities.

7. Threat monitoring and continuous feedback: Cybersecurity attack patterns are
monitored and analyzed, in order to provide feedback to the previous threat
modelling steps. This may include allowing attackers’ access in controlled
environments for tracing attackers’ footprint.

The implementation of the cyberthreat modelling methodology in IoT-NGIN is depicted in
Figure 3. First, the security objective has been identified as securing the operation of on-
device FL systems. Then, the use cases per LL are analyzed from the cybersecurity
perspective, in order to identify both the use cases lifecycle, including their processes and
interactions. In addition, the IoT devices and services participating in each ML/FL process are
identified as assets of each use case. Threat identification is based on state-of-the-art analysis
of relevant attacks, including open repositories, such as MITRE ATT&CK5. Within IoT-NGIN
scope, data and model poisoning attacks, as well as network-level attacks are identified as
necessary to be tackled. Common network-level vulnerabilities are identified in literature and
vulnerability scanning is performed to detect any such vulnerabilities in IoT-NGIN FL settings.
IoT-NGIN proceeds with ML-based anomaly detection to identify potential threats that have
been materialized in the FL systems. Last, but not least, IoT-NGIN applies threat monitoring,
by deploying honeypots mimicking vulnerable services or applications in controlled
environments. This allows better understanding of attacks, analyzing their network traffic, and

5 https://attack.mitre.org

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

41 of 82

thus, providing valuable feedback to the threat and vulnerability identification processes, as
well as towards improving the threat detection process.

Figure 3: Cyber-threat modelling approach; for each node, implementation hints in IoT-NGIN are

provided.

In addition to the desk research and analysis required for accomplishing the identification
steps, IoT-NGIN provides a set of tools which support the threat detection and monitoring
processes for on-device FL settings.

First, IoT-NGIN provides the Generative Adversarial Network (GAN) based IoT attack dataset
generator component, which generates high-value synthetic datasets of attacks, using a
small portion of real data and preserving the utility and fidelity of real datasets. The GAN
architecture consists of two components, namely the Generator and the Discriminator. The
generator tries to generate new realistic data, as close to the input dataset as possible. Then,
the discriminator tries to tell generated from real input data. As both components try to
improve themselves, while the GAN is running, at the end the generator will be able to
generate realistic datasets, while the discriminator will no longer be able to identify the
synthetic against the real data. In IoT-NGIN, GANs are exploited in generating datasets
implying data and model poisoning attacks, as well as network level attacks for IoT systems

Identification
of security
objectives

Identification
of the system

functions

Asset
identification

Threat
identification

Vulnerability
identification

Threat
detection

Threat
monitoring

and
continuous
feedback

Protect
FL system

Use case
analysis for
cybersecurity

UC analysis for
IoT devices,
communication
and FL processes

Data & model
poisoning
attacks,
network-level
attacks

Scanning of IoT
vulnerabilities

Anomaly
detection
models

Honeypots
mimicking
vulnerable
services

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

42 of 82

participating in FL configurations. Such synthetic datasets can be used to compensate for
the unavailability of appropriate training datasets for ML anomaly detection models.

Figure 4: Malicious Attack Detector deployment in FL system.

Moreover, IoT-NGIN cybersecurity tools include the Malicious Attack Detector (MAD)
component. It refers to ML-based anomaly detection module, able to identify attacks in on-
device FL. The types of attacks or anomalies identified depend on the training dataset, which
will rely on both real and synthetic data. Considering the FL system of Figure 4, a MAD
instance can be placed in each FL node, either on the edge nodes participating in FL as
contributors of their local ML model updates or on the Aggregator node, which calculates
the global (aggregated) model and resides at edge or cloud resources.

The IoT vulnerabilities crawler is also part of the cybersecurity tools of IoT-NGIN for the
distributed IoT systems, which may implement FL configurations. It is a distributed service
which scans both IoT devices and services against a group of vulnerabilities organized in
service oriented plugins. The crawler is useful to performing vulnerability assessment of IoT
systems, as well as to providing useful feedback for improving their security, as well as to
further analyzing cyber-threats or attacks related to the identified vulnerabilities in the ioT
systems under investigation.

Last, but not least, the Moving Target Defence (MTD) network of Honeypots of IoT-NGIN allows
exploration of attackers’ behavior, exploiting IoT systems’ vulnerabilities. Honeypots are
widely used in network security. A honeypot is a decoy computer system that appears
attractive to an attacker and can be used to collect information on threat behavior and
vectors. MTD dynamically changes the attack surface to continuously increase complexity
and confuse the attacker, thus preventing the system vulnerabilities from being exploited.
The MTD network of Honeypots of IoT-NGIN can be used to mimick vulnerabilities identified

F
L

F
L

F
L

FL
Server

… Edge
Nodes

IoT
Nodes

Aggregator
Node

IoT
sensor

IoT
sensor

IoT
sensor

MAD MAD MAD

MAD

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

43 of 82

by the IoT vulnerabilities crawler. Then, it can provide useful feedback to the vulnerability and
threat modelling, as well as threat detection processes.

As a result, IoT-NGIN provides valuable tools for preserving cybersecurity in IoT systems. In the
next sections, the initial versions of the GAN based IoT attack dataset generator and the IoT
vulnerabilities crawler are presented.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

44 of 82

5 State-of-the-art GAN-based approaches for
synthetic dataset generation

Throughout this section, the GAN-based approaches for the generation of synthetic Intrusion
Detection System (IDS) Dataset, developed over the IoT-NGIN project is going to be
described. Firstly, an initial overview of GAN models is given, following by the analysis of the
state-of-the-art GAN-based models for tabular data generation, which are examined over
the project. Afterwards, the evaluation metrics that are applied on synthetic tabular data
are detailed described.

5.1 GAN models overview
Generative Adversarial Networks (GANs) are a type of Neural Network architecture for
generative modeling. GANs were first introduced by Goodfellow et al. [72] in 2014. GAN
models are used for unsupervised learning, based on a two-player game theoretical
scenario to learn the distribution and the patterns of the training data, in such a way that the
model can generate new data that preserve the characteristics of the training data. Later
developments in GANs improved speed and training performance. Arjovsky et al. introduced
the Wasserstein model [73], which is an improved GAN model that leverages the Wasserstein-
1 metric to define a more sophisticated loss function with Gulrajani et al. introducing gradient
penalty on Wasserstein GAN [74] to address the side effects of weight clipping during training.
In various applications, mainly focusing on generating images [75], [76], [77], [78] GANs have
shown remarkable results. Regarding the generation of adversarial malicious examples,
GANs have been tried out in some methods. In [79] and [80], the authors generate malicious
traffic records using GANs, while those type of models are used in [81] to synthesize malware
examples.

5.1.1 Vanilla GAN
A Vanilla GAN model consists of two independent sub-models, the Generator G and its
adversary, the Discriminator D. The generative model G understands the data distribution
p(g) of the real data space x. Then, considering an input noise variable, the Generator G
generates new adversarial examples G(z) that have the same distribution of x. The Generator
G is trained to maximize the probability that the Discriminator D could correctly predict
generated as real samples, while the Discriminator D is trained to distinguish if the given
sample is real or generated by the Generator G.

The mathematical expression of the Vanilla GAN derives from the cross-entropy between the
real and generated distributions, and is the following:

In equation (1), discriminator D(x) tries to maximize the quantity 𝑉(𝐺, 𝐷)	for any given
generator G(z), while G(z) is the generator’s output when given z. 𝔼)~+!"#"()) and 𝔼.~+$(.)
correspond to expected values over all real data instances and over all generated fake

 min
"
max
#

𝑉(𝐷, 𝐺) = 𝔼$~&!"#"($)[log	 𝐷(𝑥)] + 𝔼)~&$())[log	(1 − 𝐷(𝐺(𝑧)))] (1)

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

45 of 82

instances, respectively. The global optimum for this task is when 𝑝/0"0 =	𝑝1 and this
corresponds to the global minimum of the training criterion. To avoid overfitting when training
finite datasets, the Discriminator D must be optimized simultaneously with the Generator G.
Practically, it is possible that the equation (1) could not provide adequate gradients for G to
be trained sufficient. During the start of the learning process, the Discriminator D may reject
high confidence samples created by a poor Generator G, because they are different from
the training data. This can lead to saturation of 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)). To address that, Generator
G can be trained to maximize 𝑙𝑜𝑔𝐷(𝐺(𝑧)) instead of minimizing	𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)).

5.1.2 Wasserstein GAN (WGAN)
A modification of Vanilla GAN is the Wasserstein GAN (WGAN) [73], that aims to train the
Generator and the Discriminator to better approximate the distribution of the real data and
improve the training process. Firstly, a meaningful loss function, namely Wasserstein-1
distance, is applied, which is correlated with the quality of the generated samples. The
Wasserstein-1 distance measures the distance between probability distributions. Additionally,
the Discriminator of WGAN does not contain a sigmoid activation at the last layer, resulting
to logits. The Wasserstein-1 distance, as it is described in equation (2), is applied directly to
logits, forcing the logit distributions to be similar. The output of the discriminator loss is a score,
which indicates the realness or fakeness of the generated sample. The Lipschitz function is
used to constrain the optimization problem, by clipping the weights of the discriminator
function. Lastly, the RMSProp optimizer is used. The Wasserstein-1 metric, also called Earth
Mover’s distance is defined as follows:

where ||𝑥 − 𝑦|| is the cost function, 𝑝2	, 𝑝1 are the probability distributions and 𝛱(𝑝2 , 𝑝1) denotes
the set of all joint distributions 𝛾(𝑥, 𝑦). The infinite number of joint distributions in 𝛱A𝑝2 , 𝑝1B makes
the Wasserstein-1 distance intractable. Thus, the authors in [73] apply Kantorovich-Rubinstein
duality. Hence, Wasserstein-1 distance takes the following form:

where the supremum corresponds to all the 1-Lipschitz functions 𝑓: 𝑋 → ℝ. Merging this
function with a GAN, the result is as follows:

where the functions {𝑓%}%∈5 are K-Lipschitz.

The WGAN model performs a more stable training process, that is less sensitive to the
architecture of the model and the selection of hyperparameters. Moreover, the mode
collapse phenomenon, a typical GAN issue in which the Generator is able to produce limited
varieties of the trained samples, is reduced. The most significant benefit of WGAN is the

 𝑊;𝑝* , 𝑝+= = 	 inf
,∈./&%,&&1

𝔼($,2)~,?@|𝑥 − 𝑦|@C, (2)

𝑊;𝑝* , 𝑝+= =
1
𝐾	 sup||4||'56

𝔼$~&%[𝑓(𝑥)] − 𝔼$~&([𝑓(𝑥)], (3)

min
"
max
7∈8

𝔼$~9!"#"[𝑓(𝑥;𝑤)] −	𝔼)~&$[𝑓(G;𝑧; 𝜃+=;𝑤)], (4)

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

46 of 82

continuously estimation of Wasserstein-1 distances, by training the Discriminator till optimality.
In contrast, weight clipping is not a good way to enforce Lipschitz constraint. The role of this
constraint is to prevent 𝑓 from arbitrarily enhancing small differences and to assure that the
𝑓 result of two similar samples will be similar as well. If the clipping parameter is large, then
the time needed for the weights to reach their limit increase. If the clipping is small, this may
result to vanishing gradients problem, in which a deep NN cannot propagate important
gradient information from the output of the model back to starting layers. That is the reason
why authors in [74] proposed the use of gradient penalty instead of weight clipping.

5.1.3 WGAN-GP
Wasserstein GAN with Gradient Penalty (WGAN-GP) [74] was introduced shortly after the
WGAN algorithm. The improvement of this work lies on the gradient penalty that is used to
enforce Lipschitz constraint, instead the weight clipping of the WGAN. Particularly, the
WGAN-GP penalizes the model when the gradient norm moves away from the target norm
value of 1. The application of gradient penalty requires one more modification in the
architecture. Specifically, the batch normalization is not used in the Discriminator, since the
batch normalization introduces correlation between the samples of the same batch.
However, the gradient penalty is calculated for each individual sample and not for the entire
batch, making the batch normalization not a suitable technique. Other normalization
techniques, which does not correlate the samples can be used, such as layer normalization.
The WGAN-GP demonstrates strong performance as well as stability in different applications.

The loss function with Wasserstein distance and gradient penalty applied, is defined by the
equation:

where λ is the penalty coefficient.

5.2 GAN models for IDS
The ability of GANs to learn data distribution and then synthesize data based on this
distribution can bring valuable effects in many fields. GAN models have shown great
possibilities in the generation of synthetic images [75] and text [82]. Recently, extensive
research has been performed in the application of GAN models in cybersecurity field.
Specifically, GAN-based models can be used in different tasks in in this field, such as malware
detection [83], generation of adversarial malware attacks [84] as well as in IDS. In this
chapter, an analysis of GAN-based models for generation of adversarial attacks trained and
validated at real-world network datasets is provided.

5.2.1 DoS-WGAN
DoS-WGAN [84] is a GAN-based architecture that utilizes the Wasserstein generative
adversarial networks (WGAN) with gradient penalty technology with aim to generate DoS
attacks that evade Network Intrusion Detection System (NIDS). The algorithm synthesizes a

 max
%~'

𝔼(~)!"#"[𝑓(𝑥;𝑤)] − 𝔼*~+$.𝑓/G/𝑧; 𝜃,3;𝑤34 + 𝜆𝔼-~+$[(||∇%𝑓(𝐺/𝑧; 𝜃,3;𝑤)||. − 1)
.], (5)

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

47 of 82

set of eigenvalues of traffic, preserving the characteristics of DoS attacks. Output of this
model can reduce the detection rate of a network traffic classifier.

The DoS-GAN model is trained and evaluated at DoS attacks of KDD’99 [85] dataset. The
architecture is composed by a Generator, Convertor and Discriminator. The Generator is
trained to make Discriminator incapable to distinguish the generated data from the real. The
Generator products a set of 41-dimensional values. The Convertor integrates the property
values of DoS records with the created ones, creating a forged set of values for network
traffic. Then, the discriminator receives the forged and the normal network traffics and
attempts to distinguish them. The generated data are fed to a NIDS, in which the detection
rate drops to 47.6 % from 97.3 %.

5.2.2 IDSGAN
IDSGAN [79] is a GAN-based framework, having as goal to generate adversarial malicious
traffic examples, that are able to deceive and evade detection process of the defense
systems. The architecture of IDSGAN methods consists of a Generator, a black-box IDS and
a Discriminator. The training and evaluation of IDSGAN models is performed at NSL-KDD
dataset, which their characteristics were considered during the preprocessing of the
dataset.

For the training of IDSGAN, the NSL-KDD dataset is split to normal and malicious traffic. The
adversarial malicious attacks are generated by the Generator, based on the original
malicious traffic records. Then, those adversarial attacks and the original normal traffic are
fed to the black-box IDS, which aims to detect attacks. Machine learning algorithms are used
for the implementation of black-box IDS component of IDSGAN method. Subsequently, the
Discriminator is trained to simulates the black-box IDS from the predicted labels and the
original labels. Feedback from the Discriminator is given to the training procedure of the
Generator. The Generator and the Discriminator are designed and developed on basis of
Wasserstein GAN [73].

During the generation of adversarial examples, the attack function of the traffic is not
invalidated since the functional and nonfunctional features are considered. The IDSGAN
shows good performance in synthesizing adversarial malicious attacks of different attacks.
Additionally, the authors of IDSGAN performed experiments, that demonstrate the wide
feasibility and flexibility of IDSGAN framework.

5.2.3 SynGAN
SynGAN [86] is another framework that generates adversarial network attacks based on GAN
models. This model synthesizes malicious packet flow mutations from real attack traffic, that
can be used to improve NIDS attack detection rates. SynGAN model contains the Generator,
the Discriminator and the Evaluator and it applies GP-WGAN algorithm on order to generate
network Distributed Denial of Service (DDoS) attacks.

The Generator tries to generate adversarial examples similar to real attacks. Afterwards, the
Discriminator attempts to distinguish the generated by the real samples and provides
feedback to the Generator to improve the quality of generated samples. When the training
is finished, only the Generator is used to generate adversarial DDoS attacks. In the end, the

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

48 of 82

Evaluator tries to discern the generated from the real attack record using appropriate quality
benchmark.

The developed framework is evaluated at two IDS datasets, which are NSL-KDD and
CICIDS2017 [87]. The quality of generation procedure is measured by benchmark based on
root mean square error. The SynGAN model is able to generate similar adversarial attacks to
the original attacks.

5.3 GAN Models for Tabular Data Generation
Over the past years, potential use of GANs have been explored for tabular data generation
since they offer great flexibility to model data distributions in contrast with traditional
statistical techniques. Specifically, several algorithms such as TableGAN [88], CTGAN [89] and
CopulaGAN [90] proved that GANs outperform classical methods for tabular data synthetic
generation. Additionally, suitable quantitative and qualitative methods to evaluate those
trainable GAN models are needed.

Several GAN models have been used to handle tabular data. Kunar et al. introduced CTAB-
GAN [91], a conditional table GAN that can model diverse data types with complex
distributions. In [92], Passenger Name Records (PNRs) data are synthesized utilizing a Cramer
GAN, categorical feature embedding and a Cross-Net architecture. The authors in [93], use
GANs to generate continuous time series on Electronic Health Records (EHR) data while in
[94] MedGAN, which combines an autoencoder with a GAN, is proposed to generate high-
dimensional discrete variables from EHR data. TableGAN [88], consists of a convolutional
Discriminator and a de-convolutional Generator and a Classifier to increase the semantic
integrity of the synthetic data. In [89], CTGAN is proposed which uses a conditional generator
to synthesize tabular data. CopulaGAN [90], a variation of the CTGAN model which utilizes
Cumulative Distribution Function (CDF) based trans-formation to facilitate the CTGAN model
training.

Giving the table Treal with real data, the task of synthetic data generation results to a
synthetic table Tsyn. The T is partitioned into training set Ttrain and test set Ttest. A GAN model
is trained at Ttrain. The data generator G learns the data distribution of each column in a
table T and then it is used to generate a synthetic data of the table Tsyn. A successful data
generator G for tabular data should be able to address the challenges associated with the
nature of real-world tabular data.

It is common, that the T contains mixed data types of numerical and categorical columns.
The numerical columns of table can have either discrete or continues values. Thus, the
Generator G should be trained to simultaneously learn and generate a mix of data types.
Additionally, the shape distribution of each column may differ, following usually non-
Gaussian and multimodal distributions, where the min-max transformation causes vanishing
gradient problems. In categorical columns of real-world tabular data, the imbalance
problem often occurs since some classes have more instances than others. Imbalanced data
leads to mode collapse as well as to inadequate training of the minor classes. Furthermore,
sparse one-hot-encoded vectors can cause issues at the training procedure of the
Discriminator D since it learns to distinguish real from fake data from the distribution’s rareness
rather to the realness of the value. Different GAN models have been created in order to solve
some or all of the above aforementioned issues. TGAN [95] is constructed to work on any

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

49 of 82

tabular dataset, while MedGAN [94] tries to generate simultaneously discrete and continuous
samples.

5.3.1 TableGAN
TableGAN [88] is a GAN-based architecture which synthesizes fake tabular data with similar
statistical properties to the original table. Privacy concerns motivate the authors to develop
this model to prevent information leakage. The discriminator D and the generator G of the
TableGAN are convolutional neural networks (CNN). The architecture of TableGAN is based
on the deep convolutional GAN (DCGAN) [75], which is one of the most popular models for
image synthesis.

Another architectural component of TableGAN is the classifier C, which is involved in the
training process and aims to increase the semantic integrity of generated records. The
classifier C has the same architecture as the discriminator D, while it is trained based on the
ground-truth labels of the real table. C learns the correlation between true labels and the
features of the table and predicts the labels of the synthetic data. Thus, C educates the
generator G if the generated record is semantically correct.

5.3.2 CTGAN
Conditional Tabular GAN (CTGAN) [89] is a GAN-based architecture, designed to synthesize
tabular data. The key improvements of CTGAN try to overcome the challenges of modelling
tabular data using GAN architecture. In particular, the architecture of CTGAN deals with
non-Gaussian and multimodal distribution by exploiting a mode-specific normalization,
which converts continuous values of arbitrary distribution into a bounded vector, a
representation suitable for neural networks. Previous models, such as TableGAN [88],
normalize continuous values to [-1, 1] using min-max normalization techniques. In CTGAN, the
variational Gaussian mixture model (VGM) [96] is used for each continuous column
independently.

Additionally, a conditional generator and training-by-sampling is implemented to overcome
the data imbalance challenge of discrete columns. The data is sampled in a way that all the
categories of discrete columns are evenly occurred during the training procedure. A cond
vector allows the conditioning on a value of a specific column via one-hot-encoding. The
conditional generator G takes as inputs random noise as well as the cond vector, while it is
forced to mimic the desired condition. The training of the model is done using the WGAN loss
with gradient penalty [74]. The output of conditional generator is evaluated by the critic,
computing the distance between the learned and real conditional distribution.

5.3.3 CopulaGAN
CopulaGAN model [90] is a variation of the CTGAN, which is introduced in SDV opensource
library. It exploits the Cumulative Distribution Function (CDF) based transformation, that is
applied via the GaussianCopula. Particularly, the CopulaGAN uses those alternatives of
CTGAN in order to learn easier the data. Based on probability theory, copulas are used to
describe the intercorrelation between random variables.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

50 of 82

During the training procedure, CopulaGAN tries to learn the data types and the format of
the training data. The non-numerical and null data are transformed using a Reversible Data
Transformation (RDT). Due to this transformation, a fully numerical representation occurs from
which the model can learn the probability distributions of each table column. Additionally,
the CopulaGAN attempts to learn the correlation between the columns of the table.

5.4 Evaluation Metrics for Tabular Data Generation
Recent advances of generative modelling identified the need for suitable quantitative and
qualitative methods to evaluate trainable models. Reliable evaluation metrics are important
not only to rate GAN models but also to identify possible errors in the generated data.
Specifically in cases where people face difficulties distinguishing the quality of synthetic data,
such as medical images, the requirement for trusted metrics is essential [97].

Evaluating a GAN model is not a straightforward procedure since various metrics can lead
to different outcomes. Specifically, a good performance in one evaluation metric cannot
guarantee good performance in another metric [98]. Additionally, the metrics should be
chosen with respect to the application that are going to be used for. Inception Score [99],
Fréchet Inception Distance [100] and Perceptual Path Length [101] are some metrics that
are introduced for the evaluation of general GAN models.

The synthetic data would be evaluated against a sufficient number of metrics that are
suitable for the task of tabular data generation. A combination of those methods can express
a complete picture about the performance of the generator G of different GAN models. The
evaluation is performed on the table of real data Treal as well as on the table of synthetic
data Tsyn, which are generated from the trained generator G. Metrics can be categorized
into two subcategories: Visual, and Machine Learning based.

5.4.1 Visual evaluation
Visual representation of the generated data is a powerful method to evaluate the
performance of the generator G, by analyzing if G is able to maintain the properties of the
real data. Based on this, humans can easily verify results and recognize similar patterns
between real and synthetic data. Additionally, the visual analysis of results provides
information that cannot be covered from the quantitative metrics. The visual evaluation can
be based on Distribution, Cumulative Sums, and Column Correlation.

The Distribution plot of each column for real and synthetic data can be a quick sanity check,
although it does not reveal any hidden relation. This representation can point out if the
statistical properties of the generated and real data are similar to each other.

The Cumulative Sum of each column for real and generated data can be visualized to
indicate the similarity between the distributions per column. This visualization can present a
useful understanding for both categorical and continuous columns. However, this
representation cannot provide any insight about the relations between columns.

Another evaluation method can be based on the Correlation table, which shows the
association between each column of the table. Comparing the correlation matrix of the real
and synthetic data can indicate if the generator manages to appropriately model the
relationship between the columns of the table.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

51 of 82

5.4.2 Machine Learning-Based Metrics
This family of metrics exploits Machine Learning algorithms to evaluate the quality of the
generated data. They are able to provide insight knowledge about the relations that Treal
and Tsyn have. Particularly, GANs for tabular data generation task are evaluated by the
detection metrics as well as Machine Learning efficacy metrics as they are described in [102].

The Detection Metrics evaluate how difficult is to differentiate the generated from the real
data. Specifically, those metrics are based on Machine Learning models, which predict if the
input data is synthetic or real. For this reason, a flag is associated to each data record,
indicating if it is real or generated. Afterwards, the data with the flags are shuffled and the
Machine Learning models are cross-validated, attempting to predict the flag. Finally, the
result of those metrics equal to 1 minus the average ROC AUC score of all cross-validation
splits. The Machine Learning models that can be used in those metrics are Logistic Regression
or SVD classifier.

The Machine Learning Efficacy Metrics indicate if it is possible to replace the real with
generated data to solve problems using Machine Learning models. In particular, a model is
trained on Tsyn, and then, it is tested on Treal. In case of classification problems, Decision
Tree, AdaBoost, or MLP classifier can be used, while the performance of those models is
evaluated based on accuracy and F1 score. For regression tasks, Linear Regression or MLP
regression may be utilized as machine learning models, and the evaluation is performed by
R2. The average performance of different models can be used as metric for the evaluation
of G.

As it is mentioned above, those metrics are occurred by solving Machine Learning problems.
Therefore, they can only be applied on datasets that contain a target column, which should
be predicted based on the rest of the data. The target column could contain true labels or
ground truth values for the classification and regression task, respectively.

5.5 Intrusion Detection System (IDS) Datasets
In this chapter, an analysis of the most well-known available IDS datasets is provided,
including the KDD’99 [85] , the NSL-KDD [103] and the UNSW-NB15 [104].

5.5.1 KDD’99
KDD’99 [85] is a very common IDS dataset, which have been extensively used in research,
especially for intrusion detection in network traffic. The dataset contains 41 features, and it
has 5 classes, which are Normal, Denial of Service (DoS), Probe, Remote to Local (R2L) and
User to Root (U2R). The KDD’99 includes 4,898,430 and 311,029 records in training and testing
set respectively, making it the largest IDS dataset. Training and testing sets are highly
imbalanced since the DoS class has many more records than the second most frequent
class, that is Normal. Another characteristic of KDD’99 is that the testing set includes a higher
amount of R2L records than the training set. However, the most critical issue of this dataset is
the large number of duplications records, specifically for DoS class. This can lead to unstable
and inconsistent training procedure of machine learning algorithms.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

52 of 82

5.5.2 NSL-KDD
The NSL-KDD [103] is an Intrusion Detection System dataset, which is an improved version of
its predecessor, the KDD’99 [85] dataset, which suffers from a large number of duplicate
records. Specifically, the NSL-KDD dataset does not contain redundant records in the train
and test sets. Therefore, classifiers that would be trained and tested at those datasets would
not be biased based on the most frequent records. Another advantage of NSL-KDD over the
KDD’99 is the reasonable amount of data in the train and test sets, providing the opportunity
to perform experiments on the complete sets. The NSL-KDD is one of the most well-known
publicly available datasets since it is used by many researchers to develop efficient and
accurate Intrusion Detection Systems. The labeled attacks of the NSL-KDD dataset can be
grouped in four main types, namely Denial of Service (DoS), Probe, User to Root (U2R), and
Remote to Local (R2L).

5.5.3 UNSW-NB15
The UNSW-NB15 [104] is a relatively new dataset, published in 2015. The dataset has 49
features and ten classes, included some modern attacks. The features of UNSW-NB15 are
grouped in five parts, which are Basic, Flow, Time, Content and Additional features. The
classes are Normal, Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms. The classes of UNSW-NB15 are also imbalanced, with Normal class to
have most records, following by records of Generic and Exploits class.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

53 of 82

6 IoT-NGIN GAN-based dataset generator
Throughout this section, the procedures that takes place over the IoT-NGIN project to design,
develop and evaluate the GAN-based data generation models, are going to be described.
Firstly, an analysis of GAN-based dataset generators regarding the technical design aspects
is provided, including feature engineering, data preprocessing, and the generation of
adversarial DoS attacks. Then, a detailed overview of hands-on experiments for GAN-based
model on IDS data generation are presented, containing visual evaluation as well as the
Machine Learning Metrics of CTGAN, CopulaGAN and TableGAN. Finally, installation
guidelines provide all the needed information on how to properly install the IoT-NGIN GAN-
based dataset generation component, combined with user guidelines on how to
successfully run and evaluate the models.

6.1 Technical design
This section describes the processes, which are been considered during the design and
implementation of robust GAN-based models to generate high quality DoS attacks.
Specifically, feature engineering and data preprocessing procedures are analyzed as well
as the reasons that certain decisions are made. Lastly, information about the data
generation procedure is given.

6.1.1 Feature engineering
The generation of meaningful synthetic IDS data requires the exploitation of appropriate
features. The processes of using domain knowledge to extract those needed features from
the NSL-KDD dataset are presented in this section. Specifically, this decision making requires
an analysis of the dataset as well as a deep understanding of the limitations and
requirements for adversarial attacks generation procedure.

Therefore, the types of NSL-KDD attacks are presented, following by a statistical analysis of
the dataset. Then, the properties of NSL-KDD features are described. Based on those
properties and the attacks’ principles, the features are divided to functional and non-
functional, making the last ones appropriate inputs to the generation models.

6.1.1.1 Types of attacks
The attacks of the NDL-KDD dataset can be categorized in four main types, which are Denial
of Service (DoS), Probe, User to Root (U2R), and Remote to Local (R2L), which have been
described in Section 2.2.2.3. Table 1 illustrates the type and the labeled attacks of the NSL-
KDD dataset.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

54 of 82

Table 8: Types of attacks in the NSL-KDD dataset.

Type Labeled Attack

DoS
neptune, back, land, pod, smurf, teardrop,

mailbomb, apache2, processtable, udpstorm,
worm

Probe ipsweep, nmap, portsweep, satan, mscan, saint

R2L

ftp_write, guess_passwd, imap, multihop, phf, spy,
warezclient, warezmaster, sendmail, named,
snmpgetattack, snmpguess, xlock, xsnoop,

httptunnel

U2L buffer_overflow, loadmodule, perl, rootkit, ps,
sqlattack, xterm

6.1.1.2 Statistical analysis of dataset
The NSL-KDD dataset [103] contains 148,514 traffic records of normal activities and attacks.
The dataset includes the train set KDDTrain+ and the test set KDDTest+. The training and the
testing datasets do not have the same distribution, while the testing dataset contains some
attacks that are not included in the train dataset.

From analysis of the NSL-KDD dataset, it is observed that there are 77,052 normal traffics,
which is more than half of the total records. Regarding the attack records, DoS type is the
most frequent with 53,386 instances, Probe type has 14,077 instances, while there are a few
traffic records for R2L and U2R attacks, 3880 and 119 instances, respectively. Figure 5
illustrates the distribution of records, normal and attack types, in the NSL-KDD dataset.

DoS is one of the most common types of attack, and it frequently occurs in everyday life. This
characteristic of DoS attacks is reflected in the NSL-KDD dataset, in which this category
contains the majority of attack records. Additionally, the detection of DoS attacks is a crucial
challenge that needs thorough investigation.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

55 of 82

Figure 5: Number of each category for NSL-KDD dataset.

6.1.1.3 Features of NSL-KDD dataset
Each traffic record of the NSL-KDD dataset has 41 features, nine of them have categorical
values, while the rest of the features are in discrete or in continuous values. The categorical
features of NSL-KDD are mentioned in Table 9.

Table 9: Categorical features of NSL-KDD dataset.

Categorical
Features

protocol_type, Service, Flag, land,
logged_in, root_shell, is_host_login,

is_guest_login, su_attempted

The NSL-KDD features can be broken down into four categories, according to the type and
property of the features. A short description of the categories is given below, while the Table
11 contains the features of each category.

• Intrinsic features (9): includes necessary information of the record, such as protocol,
service, and duration.

• Content features (13): comprise information about the content, such as the login
activities. Those features demonstrate if there are behaviors related to attacks.

• Time-based features (9): contains the number of connections to the same destination
host or service as the current connection in the past two seconds.

• Host-based features (10): checks the 100 past connections, which have the same
destination host or service with the current connection.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

56 of 82

Table 10: The four groups of features in the NSL-KDD dataset.

Feature category NSL-KDD features

Intrinsic duration, protocol_type, service, flag, src_bytes, dst_bytes, land,
wrong_fragment, urgent

Content

hot, num_failed_logins, logged_in, num_compromised,
root_shell, su_attempted, num_root, num_file_creations,

num_shells, num_access_files, num_outbound_cmds,
is_host_login, is_guest_login

Time-based count, srv_count, serror_rate, srv_serror_rate, rerror_rate,
srv_rerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate

Host-based

dst_host_count, dst_host_srv_count, dst_host_same_srv_rate,
dst_host_diff_srv_rate, dst_host_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate,
dst_host_srv_serror_rate, dst_host_rerror_rate,

dst_host_srv_rerror_rate

6.1.1.4 Constraints for the Generating Adversarial Examples
The generated tabular data should represent attacks that have evading IDS as their purpose;
however, in order to achieve this, the generation process should take account and maintain
the functional characteristic of each attack category [79]. Based on attack principles, each
category of attacks has its functional and nonfunctional features. The functional features
describe the basic function of the attack, while the nonfunctional represent the secondary
characteristics of the attack. The attack properties remain undistributed when the functional
features do not change, and only the nonfunctional features are modified. Thus, to achieve
reliable and valid generated attack records, the functional features should be unchanged,
while the nonfunctional features can be modified. Therefore, the GAN models should be
trained and then generate only the non-functional features, taking into account the
examined attack category. Table 3 illustrates the functional features of each attack
category of the NSL-KDD dataset, as it is discussed in [105].

Table 11: The functional features of each attack category.

Attack
Category Intrinsic Content Time-Based

Traffic
Host-Based

Traffic
DoS x x

Probe x x x
U2R x x
R2L x x

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

57 of 82

6.1.2 Data preprocessing
An essential step in the ML cycle is data preprocessing, which refers to the techniques of
preparing the raw data to be used for building and training ML models. Specifically, data
preprocessing may contain cleaning, filtering, organization or transforming procedures. To
build robust IoT-NGIN GAN-based generator, data preprocessing techniques are performed
at NSL-KDD dataset.

Firstly, data cleaning is performed, mainly regarding the process of fixing incorrect values in
the features of the dataset. The columns names of the features are converted to lower case
and spaces are removed. Furthermore, the “su_attempted” feature of NSL-KDD should be
binary, however after data exploration, it is observed that this feature has 3 values, namely
0.0, 1.0 and 2.0. Therefore, the last value is replaced to ‘0.0’ for both train and test datasets.

The next step is related to the organization of the data. The presented GAN models are
focused on the application of different GAN models for the generation of synthetic DoS
attacks. Thus, the traffic records of the NSL-KDD dataset are divided into normal and attack
classes based on the ‘class’ column, while the attacks are separated to four categories: DoS,
Probe, R2L, and U2R. The records of DoS attack are selected for the training and evaluation
GANs. Considering the constraints for the generation of adversarial attacks, the features of
each DoS record of NSL-KDD are split into functional and nonfunctional based on the Table
11. The nonfunctional are used as the training set of GAN models, while the functional ones
remain unmodified at the generated samples.

To improve the quality of the GAN-based generators, further data organization techniques
are performed. Specifically, the nonfunctional features with categorical values are identified
since the training of GANs requires this knowledge to model the data appropriately.
Additionally, the distribution of each feature is determined since the training of CopulaGAN
is improved by providing the distribution of features that is not Gaussian.

6.1.3 Generation of tabular data
Experiments are designed to investigate the general properties and performance of the
different GAN models for the task of generation of synthetic IDS data. In particular, the
CTGAN [89], CopulaGAN [90], and TableGAN [88] are trained at the NSL-KDD dataset, taking
into account the analysis and the preprocessing steps, which are described in subsections
6.1.1 and 6.1.2. For our experiments, we use the GAN models, which are provided by the
open-source synthetic data generation ecosystem SDV–The Synthetic Data Vault [106] and
Synthetic Data Gym (SDGym) [107]. Each model is trained with a batch size of 500 and for
100 epochs. The learning rates for the generator and discriminator of all models are both
0.0002. Additionally, the discriminator steps of CTGAN and CopulaGAN are set to 5. The
training inputs to GAN models are the nonfunctional features of DoS attacks. Consequently,
the trained models are able to generate the nonfunctional features, which afterwards are
coupled with the functional ones to create meaningful DoS records.

Then, the synthetic datasets generated by the trained GAN models are evaluated using the
metrics, which are described in Section 5.4 of this deliverable. The Distribution and
Cumulative Sum plots are created using the Table Evaluator [108] library, while the Machine
Learning-based metrics are calculated based on the Single Table Metrics of the SDV library
[102].

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

58 of 82

6.2 Hands-on experiments
In this subsection, visual evaluation, and machine learning-based metrics, related to the
performance of generated DoS attacks, are provided.

6.2.1 Visual evaluation
The performance of GAN models for the generation of DoS attack records can be
demonstrated visually by cumulative sum and distribution plots. Indicatively, the evaluation
plots of two discrete features and two continuous features are displayed in order to
summarize the quality of synthetic data. Figure 6 and Figure 7 show the plots of discrete
features, namely “num_compromised” and “hot”. It is observed that both CTGAN and
CopulaGAN outperform TableGAN in the case of discrete values. Cumulative sum and
distribution plots of CTGAN and CopulaGAN indicate that the generated discrete features
of data present similar behavior with the real one. On the other hand, the corresponding
plots of TableGAN show that this method cannot model the behavior of discrete features.

Discrete features

C
TG

A
N

C
op

ul
aG

A
N

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

59 of 82

Ta
bl

eG
A

N

Figure 6: Cumulative Sums and Distributions for discrete feature “num_compromised”. Real data are
illustrated in blue, while synthetic are illustrated in orange color.

C
TG

A
N

C
op

ul
aG

A
N

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

60 of 82

Ta
bl

eG
A

N

Figure 7: Cumulative Sums and Distributions for discrete feature “hot”. Real data are illustrated in
blue, while synthetic are illustrated in orange color.

Continuous features
Figure 8 and Figure 9 illustrate the corresponding diagrams for continuous features. In those
cases, the TableGAN achieves slightly better performance than CTAGN and CopulaGAN.
However, as it is depicted in Figure 9, all GAN methods suffer when modeling continuous
features with sparse data.

C
TG

A
N

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

61 of 82

C
op

ul
aG

A
N

Ta
bl

eG
A

N

Figure 8: Cumulative Sums and Distributions for continuous feature “dst_host_rerror_rate”. Real data
are illustrated in blue, while synthetic are illustrated in orange color.

C
TG

A
N

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

62 of 82

C
op

ul
aG

A
N

Ta
bl

eG
A

N

Figure 9: Cumulative Sums and Distributions for continuous feature “dst_host_srv_diff_host_rate”. Real

data are illustrated in blue, while synthetic are illustrated in orange color.

Correlation matrices
Figure 10 illustrates the column wise correlation of real data as well as the generated one
from CTGAN, CopulaGAN, and TableGAN. The columns with features that contain zero
values are eliminated from this representation. Ideally, the correlation matrix of generated
data should be as similar as possible to the real data correlation table. Therefore, the
correlation matrix of generated data is compared to the correlations of real data and the
methods, that succeed to maintain the real data correlation, are considered as successful.
Generally, all the models are able to adequately capture the correlations between features.
Although, as it is observed, TableGAN faces difficulties in capturing some of the correlations.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

63 of 82

Real data CTGAN

CopulaGAN TableGAN

Figure 10: Correlation matrices, indicating the associations per column of the real dataset and each

of the synthesizers.

6.2.2 Machine Learning-Based Metrics
The Machine Learning-Based metrics of the three models are demonstrated in Table 12. It is
observed that for all the models, the Detection Metric indicates that the Logistic Regression
Classifier finds it moderately difficult to distinguish the real from the generated data.
Therefore, the real and the generated data are distinguishable to one degree. Finally,
regarding the Machine Learning Efficacy Metrics, it seems that all the models indicate similar
performance, showing that it is possible to replace the real with synthetic data to solve
Machine Learning problems.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

64 of 82

Table 12: Detection and Machine Learning Efficacy Metrics for CTGAN, CopulaGAN and TableGAN.

 Detection
Metric Machine Learning Efficacy Metrics

 Logistic
Regression

Decision
Tree AdaBoost

Logistic
Regression
classifier

MLP
classifier Average

CTGAN 0.74 0.97 0.96 0.84 0.96 0.93

CopulaGAN 0.75 0.97 0.95 0.92 0.96 0.95

TableGAN 0.76 0.95 0.94 0.92 0.97 0.94

6.2.3 Comparative performance analysis of GAN-based
models

Based on a thorough examination of models’ performance with respect to various aspects,
the Table 13 is generated. Regarding the ability of methods to model discrete features, it is
observed that CTGAN and CopulaGAN show much better performance than TableGAN,
which is incapable to perform this task. On the other hand, TableGAN indicates the strongest
ability to capture the statistical properties and then generate realistic continuous features
among the other models. CopulaGAN seems that is capable, to one extent, to model
continuous features, while CTGAN presents slightly poor behavior. Both of CTGAN and
CopulaGAN display a limited ability to model sparse continuous values.

Regarding the performance of GAN models on ML-based metrics, all of them indicate similar
behavior. The Logistic Regression classifier has almost the same moderately difficulty to
differentiate the generated from the real data. Additionally, the generated IDS data can
replace the real one to solve Machine Learning problems. To conclude, considering the
aforementioned, the CopulaGAN seems to have the best in-total performance among the
others, mainly based on its ability to satisfactorily model both discrete and continuous values.

Table 13: Comparison table of models’ performance.

 CTGAN CopulaGAN TableGAN

Discrete features x

Continuous features -

Detection metric - - -

ML Efficacy metrics

In total

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

65 of 82

6.3 Installation guidelines
This subsection describes the processes to install the developed GAN-based components. It
should be mentioned, that to build and train CTGAN and CopulaGAN models, the open-
source Synthetic Data Vault (SDV) library [106] is used, which is a synthetic data generation
ecosystem of libraries, providing the means to learn tabular data and then to generate
synthetic data with the same statistical properties as the original one. For the development
of TableGAN, the Synthetic Data Gym (SDGym) [107] is exploited, which is a framework to
benchmark the performance of data generators based on SDV ecosystem.

The visual evaluation of trained models is performed based on Table Evaluator [53] library,
while the Machine Learning-based metrics are calculated based on the Single Table Metrics
of the SDV library [102]. The code and the installation procedures are available on the
project Gitlab repository, accessible at https://gitlab.com/h2020-iot-ngin, and a brief
description is given here.

The developed methods can be installed by the following command:

git clone https://gitlab.com/h2020-iot-
ngin/enhancing_iot_cybersecurity_and_data_privacy/gan-based-data-
generators/ids-data-generator.git

A folder “ids-data-generator” is created, containing the following subfolders:

• CTGAN_copulaGAN: the code to train CTGAN and CopulaGAN
• data: the NSL-KDD data
• evaluation: the code to evaluate CTGAN, CopulaGAN and TableGAN
• sdgym: a modified version of SDGym repo [107], including model save function and

some other minor changes
• tableGAN: the code to train tableGAN
• utils: developed functions and the modified Table Evaluator code, which initially is

cloned by the repo6 and adjusted to the evaluation needs of models

After the execution of each model training and evaluation script, the following files will also
be created:

• models: the trained models
• results: plots of cumulative sums, distributions, and correlation matrices for the three

models
• synthetic_dataset: one .csv file of synthetic DoS attacks for each model

To avoid having conflicts with other software installed in the system, it is recommended to
create two different conda environment7 for each project. The creation of the two different
conda environments as well as the running guidelines for each component are provided
below.

CTGAN_copulaGAN component

6 https://github.com/Baukebrenninkmeijer/table-evaluator
7 https://docs.conda.io/projects/conda/en/latest/index.html

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

66 of 82

Create a conda environment
cd CTGAN_copulaGAN
conda create -n sdv python=3.7.9
conda activate sdv
pip install -r requirements.txt

The training of the model is done by executing the following commands:
python CTGAN_train.py # CTGAN model training
python copulaGAN_train.py # CopulaGAN model training

Evaluation of models:
cd ../evaluation
python CTGAN_evaluation.py # CTAGAN model evaluation
python copulaGAN_evaluation.py # copulaGAN model evaluation

TableGAN components
Create a different conda environment, based on the requirements of SDGym framework:
conda deactivate
cd ../tableGAN
conda create -n sdgym python=3.7.9
conda activate sdgym
pip install -r requirements.txt

Training of TableGAN model:
python tableGAN_train.py

To evaluate the TableGAN model, the sdv conda environment should be activated:
conda deactivate
conda activate sdv
python tableGAN_evaluation.py

Access the outcomes of the training and evaluations procedures by:
cd ../models # the trained models
cd ../evaluation # visual evaluation plots
cd ../synthetic_dataset # synthetic DoS attacks

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

67 of 82

7 IoT-NGIN IoT vulnerability crawler
According to ENISA, a security vulnerability is “a weakness an adversary could take
advantage of to compromise the confidentiality, availability, or integrity of a resource” [40].
Tightly coupled with the notion of security threats that are defined as “any circumstance or
event with the potential to adversely impact organizational operations (including mission,
functions, image, or reputation), organizational assets, individuals, other organizations, or the
Nation through an information system via unauthorized access, destruction, disclosure, or
modification of information, and/or denial of service” [109] and attack defined as “any kind
of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy information
system resources or the information itself” [110], the management of vulnerabilities is a
proactive rather than a reactive task, since there are no explicit hints of their existence;
instead, active and targeted vulnerability scanning should be pursued in order to identify
and classify the existing vulnerabilities of a system. Indeed, from a process perspective,
vulnerability management should be performed in a step-wise manner, ENISA identifying 5
relevant steps, as per Table 14.

Table 14: Vulnerability management process [40].

Step Descripition

Preparation Define the scope of the vulnerability management process.

Vulnerability
Scanning

Vulnerability scanners are automated tools that scan a system for
known security vulnerabilities providing a report with all the identified
vulnerabilities sorted based on their severity. Known vulnerability
scanners are Nexpose, Nessus and OpenVAS.

Identification,
Classification and
Evaluation of the
Vulnerabilities

The vulnerability scanner provides a report of the identified
vulnerabilities.

Remediating
Actions

The asset owner determines which of the vulnerabilities will be
mitigated.

Rescan Once the remediating actions are completed, a rescan is performed
to verify their effectiveness.

The vulnerability management steps of ENISA imply thoughtful and targeted vulnerability
management. However, in a dynamic environment such as an IoT network of devices and
services dispersed in the cloud, fog, near and far edge continuum, vulnerability
management faces multiple additional challenges, including the uncertainty about the
number or characteristics of the existing devices, the type of exposed services, etc. IoT-NGIN
aims to tackle these challenges by designing and implementing a dynamic vulnerability
crawler able to scan for vulnerabilities the IoT-NGIN-supported IoT devices and services under
three different modalities:

• On demand,
• On first appearance,

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

68 of 82

• On a time-scheduled basis.

In the following paragraphs, the technical specification and high-level design of this
vulnerability crawler are presented.

7.1 High-level architecture and specification
The aim of the vulnerability crawler is to scan devices and services in order to identify possibly
vulnerable services executed in either. To tackle with the highly dynamic nature of IoT
networks where variability refers both to the type of services and to the number of devices
and services that need to be supported, a dynamic, modular architecture has been chosen,
as depicted in Figure 11.

Figure 11: High-level architecture of the vulnerability crawler.

Five core subcomponents have been determined, collectively interworking to achieve the
functionality of the vulnerability crawler as a whole, as per Table 15. Note that each
subcomponent has been designed as a stateless microservice, the necessary state
management being operated by a dedicated DB. The adopted microservices design is
compliant to the state-of-the-art microservices-oriented architectures definition [111], which
matches the cloud-native principles and requirements [112], effectively granting the

Vulnerability
Crawler

Scanning Controller

Scanning
Executor

Scanning
Executor

…

Device
Manager Device Indexing

Plugin
Repository

Honeypot management

Scanning
Scheduler

circl.lu
CVE Search API

circl.lu
CVE Search API

Plugin
Manager

ArgoCD – Continuous Delivery

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

69 of 82

vulnerability crawler with resilience, manageability, observability, adaptability, predictability
and scalability characteristics [113].

Table 15: Subcomponents of the vulnerability crawler.

Sub
component Description Input Output

Device
Manager

Gathers and maintains
information about
devices and services
known to the
vulnerability crawler
framework

Device information
from the Device
Indexing component
(WP4)

Device information
to the Scanning
Scheduler

Scanning
Scheduler

Schedules vulnerability
scans, either on
demand, or following a
schedule, effectively
enabling time-driven IoT
services

Device information
from the Device
Manager. Can also be
self-initiated, when
dealing with
scheduled scans

Scanning jobs to
the Scanning
Controller

Scanning
Controller

Orchestrates the
spawning of vulnerability
scanning jobs against
the devices

Scanning jobs from the
Scanning scheduler.
List of supported
plugins from the Plugin
manager

Plugin-specific scan
directives to the
job-spawning
framework (ArgoCD
[114]). Vulnerability
scan results to the
network of
honeypots (WP5).

Plugin
Manager

Maintains a list of
scanning plugins, each
one scanning a device
or service for a particular
grouped set of
vulnerabilities

List of plugins from the
plugin repository. The
plugin repository may
be mounted as a
volume containing
plugin descriptors or a
DB containing plugin
descriptors

List of available
plugins to the
scanning controller

Scanning
Executor

Performs a scan against
a device or service,
against a particular
grouped set of
vulnerabilities, as
managed by a scan
plugin

Plugin-specific scan
directives to the job-
spawning framework.
Information from
external vulnerability
DBs and associated
services

Vulnerability scan
results to the
scanning controller

Whenever a new device gets admitted in the IoT-NGIN platform (e.g. registered and indexed
in IoT-NGIN under the framework of the device indexing service documented in deliverable

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

70 of 82

D4.2 [115]), it publishes the device details to a publish subscribe broker (FIWARE Orion Context
Broker, see D4.2 [115] and [116] for details) and gets communicated to the Device Manager,
acting as a subscriber to the aforementioned broker. The device details contain information
on the device details as per the FIWARE IoT Agent API [117] including its IP address. This
information gets stored into the internal DB of the Device Manager and gets transferred to
the Scanning Scheduler, so that a new scan pipeline may be scheduled.

The Scanning Scheduler, in turn, checks whether this device is known and whether it has
been recently scanned. If the device is not known or if it is known but has not been scanned
recently, it schedules a vulnerability scan against it. Otherwise, a scan gets scheduled for a
(configurable) future timeslot. In any case when it is time to perform a scan against a device
(or service), the scanning scheduler forwards the target device to the Scanning Controller.
The latter communicates with the Plugin Manager in order to get the list of available and
active vulnerability scanning plugins. Each plugin should be considered as a descriptor
document presenting the plugin details, accompanied with the plugin source code. Figure
12, below presents a tentative, indicative description of a plugin descriptor document.

apiVersion: iot-ngin.eu/v1
kind: VulnerabityScannerPlugin
metadata:
 name: {plugin name}
 description: {plugin description}
 version: {plugin version}
 url: {URL of the plugin homepage, if any.}
 target-device-class: {The device class for which the plugin is targeted to}
plugin:
 service: {Service relevant to vulnerability}
 ports: [{List of ports to scan. May also be a range of ports}]
 timeout: {Time in ms before a connection gets characterized as timed out}
 vulnerability-services: [{List of vuln. search API endpoints to search}]
 vulnerability-services-keys: [{List of API keys to use with the external
 vulnerability databases}]
 workspace-type: {Location type of the plugin, may be “volume”, or “remote”}
 workspace-chroot: {The home directory of the plugin}
 flavour: {Programming langugage of the plugin}
 command: {The command to run to execute the scan}

Figure 12: Tentative vulnerability scanning plugin descriptor document.

Once having access to the list of available vulnerability scanning plugins, the scanning
controller will communicate with ArgoCD, instructing it to launch a set of Scanning Executors,
one for each plugin that is available. Each one of the spawned executors will be also fed
with the device details to scan for vulnerabilities and with the corresponding scanning plugin
descriptor (possibly also code, depending on the workspace-type of the plugin; if the
workspace-type of the plugin corresponds to a git repository, then the code will
automatically be downloaded from that repo, into workspace-chroot). Upon spawning,
each scanning executor will start scanning the target device for vulnerabilities considering
the descriptor-defined service, against the ports defined in the ports descriptor field. Finally,
depending on the flavour of the plugin (runtime required for the plugin to be executed), a
command gets executed to start the vulnerability scanning, at service level, i.e. identify

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

71 of 82

whether there are some expected services running behind the designated ports, which
service version is running etc. Upon scanning completion, the relevant results will be used as
filters to public vulnerability databases, in order to understand whether the running services
are known to be vulnerable and, if yes, what are the details of the relevant vulnerabilities
(e.g. severity level). When the scanning and the vulnerability lookup both get completed,
the results are sent back to the Scanning Controller which, in turn, interfaces with the network
of honeypots, so that a relevant honeypot may be spawned and configured, if such one
exists.

The adopted design allows IoT-NGIN to scale and exploit at the maximum extend the
available computational resources at edge level, effectively basing its operation on
numerous, independent, short-lived scanning tasks. In any case, multiple vulnerability
screening processes against multiple devices should be able to be executed, at any given
moment.

More concrete technical details on the Vulnerability Crawler framework will be provided in
the continuation of this deliverable, D5.2, due in Q3 2022.

7.2 Installation guidelines
The vulnerability crawler will be available for installation using two different modalities for use
in Kubernetes environments, namely i) using standard Kubernetes manifests and ii) using the
well-known Kubernetes applications package manager Helm [118]. More details will be
provided on the component’s gitlab repository available at https://gitlab.com/h2020-iot-
ngin/enhancing_iot_cybersecurity_and_data_privacy/vulnerability-crawler and in the
continuation of this deliverable, D5.2, due in Q3 2022.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

72 of 82

8 Conclusions
The present report has addressed the risks derived from IoT vulnerabilities and cyber attacks
in the IoT domain, focusing on systems which perform federated learning for training their ML
models. To this end, the results of the desk analysis of IoT and FL related vulnerabilities and
attacks have been briefly presented and considered in identifying cybersecurity needs for
the use cases against which the IoT-NGIN framework will be validated in the LLs.

Moreover, IoT-NGIN has addressed the need for strategic management of cyberthreats for
corporations adopting or developing smart IoT solutions. To this end, the report presents the
cyberthreat modelling methodology proposed by IoT-NGIN and explains how it is
implemented in IoT-NGIN. Specifically, IoT-NGIN contributes with four cybersecurity tools to
threat modelling and management, namely the GAN based IoT attack dataset generator,
MAD, the IoT vulnerabilities crawler and the MTD Network of Honeypots.

The report includes the initial version of the GAN based IoT attack dataset generator,
featuring technical design and specifications, as well as initial implementation. Extensive
comparative analysis of GAN methods and tools for synthetic dataset generation has
presented and considered as the basis for the IoT-NGIN generator. The first version of the tool
supports generation of synthetic tabular IDS datasets. Future extension will include
generation of datasets incorporating data and model poisoning attacks in FL systems.

Moreover, the initial version of the IoT vulnerabilities crawler has been presented. This includes
technical design and specifications, while the initial implementation is part of our future work.

In addition, the next steps of IoT-NGIN activities towards IoT cybersecurity include finalization
of the technical design and specifications of all four cybersecurity tools, as well as their
implementation. The outcomes of this work will be reported in deliverable document D5.2
“Enhancing IoT Cybersecurity (Update)”, which is due in the third quarter of 2022. The stable
releases will be made available in the project GitLab page as open source, allowing further
development and experimentation by third parties.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

73 of 82

9 References

[1] IDC, "IoT Growth Demands Rethink of Long-Term Storage Strategies, says IDC," 2020.
[Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prAP46737220.
[Accessed 2021].

[2] Gartner, "Gartner Survey Reveals 47% of Organizations Will Increase Investments in IoT
Despite the Impact of COVID-19," 2020. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2020-10-29-gartner-survey-
reveals-47-percent-of-organizations-will-increase-investments-in-iot-despite-the-
impact-of-covid-19-. [Accessed 2021].

[3] Deloitte, "Intelligent IoT - Bringing the power of AI to the Internet of Things," 2017.
[Online]. Available: https://www2.deloitte.com/us/en/insights/focus/signals-for-
strategists/intelligent-iot-internet-of-things-artificial-intelligence.html. [Accessed 2021].

[4] EC, "2021 State of the Union Address by President von der Leyen," 2021. [Online].
Available: https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_21_4701.
[Accessed 2021].

[5] European Commission, "State of the Union Address 2020," 2020. [Online]. Available:
https://ec.europa.eu/info/sites/info/files/soteu_2020_en.pdf.

[6] European Commission, "JOINT COMMUNICATION TO THE EUROPEAN PARLIAMENT AND
THE COUNCIL - The EU's Cybersecurity Strategy for the Digital Decade," 2020. [Online].
Available: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=72164.

[7] European Parliament and the Council of the European Union, "DIRECTIVE (EU)
2016/1148 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6 July 2016
concerning measures for a high common level of security of network and information
systems across the Union," Official Journal of the European Union, 2016. [Online].
Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=uriserv:OJ.L_.2016.194.01.0001.01.ENG&toc=OJ:L:2016:194:TOC.

[8] EC, "Proposal for a Directive of the European Parliament and of the Council on
measures for a high common level of cybersecurity across the Union, repealing
Directive (EU) 2016/1148," 2020. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:52020PC0823&from=EN. [Accessed 2021].

[9] European Parliament and the Council of the European Union, "REGULATION (EU)
2019/881 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 April 2019 on
ENISA (the European Union Agency for Cybersecurity) and on information and
communications technology cybersecurity certification and repealing Regulation (EU)
No," 2019. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32019R0881&from=EN.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

74 of 82

[10] EU, "Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive 95/46/EC
(General Da," 2016. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EL. [Accessed 2021].

[11] H. Li, K. Ota and M. Dong, "Learning iot in edge: Deep learning for the internet of things
with edge computing," IEEE Network, vol. 32, no. 1, pp. 96-101, 2018.

[12] M. Mohammadi, A. Al-Fuqaha, S. Sorour and M. Guizani, "Deep learning for iot big data
and streaming analytics: A survey," IEEE Communications Surveys Tutorials, vol. 20, no.
4, pp. 2923-2960, 2018.

[13] Q. Yang, Y. Liu, T. Chen and Y. Tong, "Federated machine learning: Concept and
applications," ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10,
no. 2, 2019.

[14] E. M. H. B. McMahan, D. Ramage, S. Hampson and B. A. y. Arcas, "Communication-
efficient learning of deep networks from decentralized data," in Artificial Intelligence
and Statistics, 2017.

[15] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M. Natraj,
S. Regev, R. Rhodes, T. Wang and P. Warden, "TensorFlow Lite Micro: Embedded
Machine Learning on TinyML Systems," CoRR, 2020.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani
and Ch, "PyTorch: An Imperative Style, High-Performance Deep Learning Library,"
CoRR, 2019.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard and R.
Jozefowicz, "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,"
2015. [Online]. Available: https://www.tensorflow.org/.

[18] T. Ryffel, r. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert and J. Passerat-
Palmbach, "A generic framework for privacy preserving deep learning," arXiv preprint
arXiv:1811.04017, 2018.

[19] S. Caldas, P. Wu, T. Li, J. Konecny ́, H. B. McMahan, V. Smith and A. Talwalkar, "LEAF: A
benchmark for federated settings," CoRR, 2018.

[20] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H.
Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar, Q. Yang and
Annavaram, "FedML: A Research Library and Benchmark for Federated Machine
Learning," CoRR, 2020.

[21] A. K. S. M. S. M. Z. A. T. V. S. T. Li, "Federated Optimization in Heterogeneous Networks,"
in Conference on Machine Learning and Systems (MLSys), 2020.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

75 of 82

[22] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh and D. Bacon, "Federated
Learning: Strategies for Improving Communication Efficiency," CoRR, vol.
abs/1610.05492, 2016.

[23] Z. Chai, H. Fayyaz, Z. Fayyaz, A. Anwar, Y. Zhou, N. Baracaldo, H. Ludwig and Y. Cheng,
"Towards Taming the Resource and Data Heterogeneity in Federated Learning," 2019
{USENIX} Conference on Operational Machine Learning (OpML 19), pp. 19-21, 2019.

[24] T. Nishio and R. Yonetani, "Client Selection for Federated Learning with Heterogeneous
Resources in Mobile Edge," in CC 2019 - 2019 IEEE International Conference on
Communications (ICC), Shanghai, 2019.

[25] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang and D. I. Kim, "Incentive design for
efficient federated learning in mobile networks: A contract theory approach," arXiv
preprint , 2019.

[26] M. Hao, H. Li, X. Luo, G. Xu, H. Yang and S. Liu, "Efficient and privacy-enhanced
federated learning for industrial artificial intelligence.," EEE Transactions on Industrial
Informatics, 2019.

[27] R. Ito, M. Tsukad and H. Matsutani, "An On-Device Federated Learning Approach for
Cooperative Model Update Between Edge Devices," IEEE Access, vol. 9, pp. 92986-
92998, 2021.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving, M. Isard, Kudlur, L. M., J., R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu and Zhen, "Tensorflow: A system for large-
scale machine learning," in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016.

[29] A. Mathur, D. J. Beutel, P. P. B. d. Gusmão, J. Fernandez-Marques, T. Topal, X. Qiu, T.
Parcollet, Y. Gao and N. D. Lane, "On-device Federated Learning with Flower," in On-
device Intelligence Workshop at the Fourth Conference on Machine Learning and
Systems (MLSys), 2021.

[30] V. Smith, C.-K. C. M. Sanjabi and A. S. Talwalkar, "Federated Multi-Task Learning," in
Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017.

[31] M. Khodak, M.-F. F. Balcan and A. S. Talwalkar, "Adaptive Gradient-Based Meta-
Learning Methods," in Advances in Neural Information Processing Systems 32 (NeurIPS
2019), 2019.

[32] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng and D. Liu, "LoAdaBoost: Loss-based AdaBoost
federated machine learning with reduced computational complexity on IID and non-
IID intensive care data," PLOS ONE, vol. 15, no. 4, pp. 1-16, 04 2020.

[33] M. Mohri, G. Sivek and A. T. Suresh, "Agnostic Federated Learning," in Proceedings of
the 36th International Conference on Machine Learning, 2019.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

76 of 82

[34] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar and L. Zhang,
"Deep Learning with Differential Privacy," in CCS '16: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016.

[35] F. McSherry and K. Talwar, "Mechanism Design via Differential Privacy," in 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS'07), 2007.

[36] R. Rivest, L. Adleman and M. Dertouzos, "On Data Banks and Privacy Homomorphism,"
Foundations of Secure Computation, pp. 169-179, 1978.

[37] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-z. Gao, H. L and Y.-a. Tan, "Secure Multi-Party
Computation: Theory, practice and applications," Information Sciences, 2019.

[38] Q. Yang, Y. Liu, T. Chen and Y. Tong, "Federated Machine Learning: Concept and
Applications," ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 2,
2019.

[39] O. Goldreich and Y. Oren, "Definitions and Properties of Zero-Knowledge Proof
Systems," Journal of Cryptology, vol. 7, no. 1, 1994.

[40] European Union Agency for Cybersecurity - ENISA, "Vulnerabilities and Exploits - What
is a Security Vulnerability?," [Online]. Available:
https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/vulnerabilities-and-
exploits. [Accessed Oct. 2021].

[41] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor and R. Rogers, "Protection Against
Reconstruction and Its Applications in Private Federated Learning," arXiv preprint, 2018.

[42] L. Melis, C. Song, E. D. Cristofaro and V. Shmatikov, "Inference Attacks Against
Collaborative Learning," C0RR, 2018.

[43] L. T. Phong, Y. Aono, T. Hayashi, L. Wang and S. Moriai, "Privacy-Preserving Deep
Learning via Additively Homomorphic Encryption," IEEE Transactions on Information
Forensics and Security, vol. 13, no. 5, pp. 1333-1345, 2018.

[44] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-y. Sohn, K. Lee and
D. Papailiopoulos, "Attack of the Tails: Yes, You Really Can Backdoor Federated
Learning," CoRR, 2020.

[45] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras and T. Goldstein,
"Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks," in
Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018.

[46] T. Gu, B. Dolan-Gavitt and S. Garg, "BadNets: Identifying Vulnerabilities in the Machine
Learning Model Supply Chain".

[47] B. Biggio, B. Nelson and P. Laskov, "Poisoning Attacks against Support Vector
Machines," 2013.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

77 of 82

[48] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin and V. Shmatikov, "How To Backdoor
Federated Learning," in Twenty Third International Conference on Artificial Intelligence
and Statistics, 2020.

[49] A. N. Bhagoji, S. Chakraborty, P. Mittal and S. Calo, "Analyzing Federated Learning
through an Adversarial Lens," in 36th International Conference on Machine Learning,
2019.

[50] A. Bhagoji, S. Chakraborty, P. Mittal and S. Calo, "Model poisoning attacks in federated
learning," in Workshop on Security in Machine Learning (SecML), collocated with the
32nd Conference on Neural Information Processing Systems (NeurIPS’18), 2018.

[51] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui and J. Stainer, "Machine Learning with
Adversaries: Byzantine Tolerant Gradient Descent," in Advances in Neural Information
Processing Systems 30 (NIPS 2017), 2017.

[52] J. Zhang, J. Chen, D. Wu, B. Chen and S. Yu, "Poisoning attack in federated learning
using generative adversarial nets," in 18th IEEE International Conference on Trust,
Security And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 2019.

[53] R. Shokri, M. Stronati, C. Song and V. Shmatikov, "Membership inference attacks
against machine learning models," in 2017 IEEE Symposium on Security and Privacy
(SP), IEEE, 2017, pp. 3-18.

[54] M. Nasr, R. Shokri and A. Houmansadr, "Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning," in 2019 IEEE symposium on security and privacy (SP), IEEE, 2019,
pp. 739-753.

[55] L. Melis, C. Song, E. De Cristofaro and V. Shmatikov, "Exploiting unintended feature
leakage in collaborative learning," in 2019 IEEE Symposium on Security and Privacy (SP),
IEEE, 2019, pp. 691-706.

[56] J. Geiping, H. Bauermeister, H. Dröge and M. Moeller, "Inverting Gradients--How easy
is it to break privacy in federated learning?," arXiv preprint arXiv:2003.14053, 2020.

[57] S. Chen, M. Kahla, R. Jia and G.-J. Qi, "Knowledge-Enriched Distributional Model
Inversion Attacks," arXiv preprint arXiv:2010.04092, 2020.

[58] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li and D. Song, "The secret revealer: Generative
model-inversion attacks against deep neural networks," in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 253-261.

[59] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker and S. Savage, "Inferring internet
denial-of-service activity," ACM Transactions on Computer Systems (TOCS), vol. 24, pp.
115-139, 2006.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

78 of 82

[60] N. Khamphakdee, N. Benjamas and S. Saiyod, "Improving intrusion detection system
based on snort rules for network probe attack detection," in In 2014 2nd International
Conference on Information and Communication Technolog, Bandung, Indonesia,
May 2014.

[61] A. Alharbi, S. Alhaidari and M. Zohdy, "Denial-of-service, probing, user to root (U2R) &
remote to user (R2L) attack detection using hidden Markov models," International
Journal of Computer and Information Technology, 2018.

[62] S. Paliwal and R. Gupta, "Denial-of-service, probing & remote to user (R2L) attack
detection using genetic algorithm," International Journal of Computer Applications,
vol. 60, no. 19, pp. 57-62, 2012.

[63] S. Li, Y. Cheng, Y. Liu, W. Wang and T. Chen, "Abnormal Client Behavior Detection in
Federated Learning," CoRR, 2019.

[64] S. Li, Y. Cheng, W. Wang, Y. Liu and T. Chen, "Learning to Detect Malicious Clients for
Robust Federated Learning," CoRR, 2020.

[65] M. Fang, X. Cao, J. Jia and N. Z. Gong, "Local Model Poisoning Attacks to Byzantine-
Robust Federated Learning," CoRR, 2019.

[66] C. Fung, C. J. M. Yoon and I. Beschastnikh, "Mitigating Sybils in Federated Learning
Poisoning," CoRR, 2018.

[67] C. Zhao, Y. Wen, S. Li and F. a. M. D. Liu, "FederatedReverse: A Detection and Defense
Method Against Backdoor Attacks in Federated Learning," in 2021 ACM Workshop on
Information Hiding and Multimedia Security, 2021.

[68] Y. Khazbak and T. a. C. G. Tan, "MLGuard: Mitigating Poisoning Attacks in Privacy
Preserving Distributed Collaborative Learning," in 29th International Conference on
Computer Communications and Networks (ICCCN), 2020.

[69] L. Zhao, S. Hu, Q. Wang, J. Jiang, S. Chao and X. a. H. P. Luo, "Shielding collaborative
learning: Mitigating poisoning attacks through client-side detection," IEEE Transactions
on Dependable and Secure Computing, 2020.

[70] IoT-NGIN, "D3.1 - Enhancing deep learning / reinforcement learning," H2020 - 957246 -
IoT-NGIN Deliverable Report, 2021.

[71] ENISA, "AI cybersecurity challenges," 2020.

[72] I. . Goodfellow, J. . Pouget-Abadie, M. . Mirza, B. . Xu, D. . Warde-Farley, S. . Ozair, A. .
Courville and Y. . Bengio, "Generative Adversarial Nets," , 2014. [Online]. Available:
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf. [Accessed 27 9
2021].

[73] M. Arjovsky, S. Chintala and L. Bottou, "Wasserstein generative adversarial networks," in
International conference on machine learning, PMLR, 2017, pp. 214-223.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

79 of 82

[74] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A. Courville, "Improved training of
wasserstein GANs," 2017. [Online]. Available: http://papers.nips.cc/paper/7159-
improved-training-of-wasserstein-gans.pdf. [Accessed 10 9 2021].

[75] A. Radford, L. Metz and S. Chintala, "Unsupervised representation learning with deep
convolutional generative adversarial networks," arXiv preprint arXiv:1511.06434, 2015.

[76] E. Denton, S. Chintala, A. Szlam and R. Fergus, "Deep generative image models using
a laplacian pyramid of adversarial networks," arXiv preprint arXiv:1506.05751, 2015.

[77] T. Karras, T. Aila, S. Laine and J. Lehtinen, "Progressive growing of gans for improved
quality, stability, and variation," arXiv preprint arXiv:1710.10196, 2017.

[78] S. Liu, T. Wang, D. Bau, J.-Y. Zhu and A. Torralba, "Diverse image generation via self-
conditioned gans," in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 14286-14295.

[79] Z. Lin, Y. Shi and Z. Xue, "Idsgan: Generative adversarial networks for attack generation
against intrusion detection," arXiv preprint arXiv:1809.02077, 2018.

[80] J. Charlier, A. Singh, G. Ormazabal, R. State and H. Schulzrinne, "SynGAN: Towards
generating synthetic network attacks using GANs," arXiv preprint arXiv:1908.09899,
2019.

[81] W. Hu and Y. Tan, "Generating adversarial malware examples for black-box attacks
based on GAN," arXiv preprint arXiv:1702.05983, 2017.

[82] L. Yu, W. Zhang, J. Wang and Y. Yu, "Seqgan: Sequence generative adversarial nets
with policy gradient," Proceedings of the AAAI conference on artificial intelligence,
vol. 31, no. 1, 2017.

[83] J.-Y. Kim, S.-J. Bu and S.-B. Cho, "Malware detection using deep transferred generative
adversarial networks," in International Conference on Neural Information Processing,
Springer, 2017, pp. 556-564.

[84] Q. Yan, M. Wang, W. Huang, X. Luo and F. R. Yu, "Automatically synthesizing DoS attack
traces using generative adversarial networks," International Journal of Machine
Learning and Cybernetics, vol. 10, no. 12, pp. 3387-3396, 2019.

[85] "KDD Cup 1999 Data," [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[86] J. Charlier, A. Singh, G. Ormazabal, R. State and H. Schulzrinne, "SynGAN: Towards
generating synthetic network attacks using GANs," arXiv preprint arXiv:1908.09899,
2019.

[87] I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, "Toward generating a new intrusion
detection dataset and intrusion traffic characterization.," ICISSp, vol. 1, pp. 108-116,
2018.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

80 of 82

[88] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park and Y. Kim, "Data synthesis based
on generative adversarial networks," arXiv preprint arXiv:1806.03384, 2018.

[89] L. Xu, M. Skoularidou, A. C. Infante and K. Veeramachaneni, "Modeling Tabular data
using Conditional GAN," 2019. [Online]. Available:
https://nips.cc/conferences/2019/acceptedpapersinitial. [Accessed 10 9 2021].

[90] "CopulaGAN Model," [Online]. Available:
https://sdv.dev/SDV/user_guides/single_table/copulagan.html.

[91] Z. Zhao, A. Kunar, H. Van der Scheer, R. Birke and L. Y. Chen, "CTAB-GAN: Effective
Table Data Synthesizing," arXiv preprint arXiv:2102.08369, 2021.

[92] A. Mottini, A. Lheritier and R. Acuna-Agost, "Airline passenger name record generation
using generative adversarial networks," arXiv preprint arXiv:1807.06657, 2018.

[93] A. Yahi, R. Vanguri, N. Elhadad and N. P. Tatonetti, "Generative adversarial networks
for electronic health records: A framework for exploring and evaluating methods for
predicting drug-induced laboratory test trajectories," arXiv preprint arXiv:1712.00164,
2017.

[94] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart and J. Sun, "Generating multi-label
discrete patient records using generative adversarial networks," in Machine learning
for healthcare conference, PMLR, 2017, pp. 286-305.

[95] L. Xu and K. Veeramachaneni, "Synthesizing Tabular Data using Generative Adversarial
Networks.," arXiv: Learning, 2018.

[96] M. Svensén and C. M. Bishop, "Pattern recognition and machine learning," Springer,
2007.

[97] A. Borji, "Pros and Cons of GAN Evaluation Measures: New Developments," arXiv
preprint arXiv:2103.09396, 2021.

[98] L. Theis, A. v. d. Oord and M. Bethge, "A note on the evaluation of generative models,"
arXiv preprint arXiv:1511.01844, 2015.

[99] T. Salimans, G. Ian, W. Zaremba, V. Cheung, A. Radford and X. Chen, "Improved
techniques for training gans," Advances in neural information processing systems, vol.
29, pp. 2234-2242, 2016.

[100] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and S. Hochreiter, "Gans trained by a
two time-scale update rule converge to a local nash equilibrium," Advances in neural
information processing systems, vol. 30, 2017.

[101] T. Karras, S. Laine and T. Aila, "A style-based generator architecture for generative
adversarial networks," in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 4401-4410.

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

81 of 82

[102] "Synthetic Data Evaluation-Single Table Metrics," [Online]. Available:
https://sdv.dev/SDV/user_guides/evaluation/single_table_metrics.html.

[103] "NSL-KDD Dataset’," [Online]. Available: https://www.unb.ca/cic/datasets/index.html.

[104] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set)," in 2015 military communications
and information systems conference (MilCIS), IEEE, 2015, pp. 1-6.

[105] W. Lee and S. J. Stolfo, "A framework for constructing features and models for intrusion
detection systems," ACM transactions on Information and system security (TiSSEC), vol.
3, no. 4, pp. 227-261, 2000.

[106] "SDV - The Synthetic Data Vault," [Online]. Available:
https://sdv.dev/SDV/user_guides/benchmarking/synthesizers.html.

[107] "SDGym: Benchmarking framework for Synthetic Data Generators," [Online]. Available:
https://github.com/sdv-dev/SDGym.

[108] "Table Evaluator," [Online]. Available: https://baukebrenninkmeijer.github.io/table-
evaluator/.

[109] National Institute of Standards and Technology, "Definition of threat," [Online].
Available: https://csrc.nist.gov/glossary/term/threat. [Accessed Oct. 2021].

[110] National Institute of Standards and Technology, "Definition of attack," [Online].
Available: https://csrc.nist.gov/glossary/term/attack. [Accessed Oct. 2021].

[111] C. Richardson, "Microservices Architecture," 2021. [Online]. Available:
https://microservices.io/. [Accessed Nov. 2021].

[112] The Linux Foundation, "CNCF Cloud Native Definition v1.0," 11 June 2018. [Online].
Available: https://github.com/cncf/toc/blob/main/DEFINITION.md. [Accessed Nov.
2021].

[113] DataStax, "What is Cloud Native?," [Online]. Available:
https://www.datastax.com/cloud-native. [Accessed Nov. 2021].

[114] "ArgoCD home page," The Linux Foundation, 2021. [Online]. Available:
https://argoproj.github.io/cd/. [Accessed Nov. 2021].

[115] H2020 IoT-NGIN consortium, "Deliverable D4.2: Enhancing IoT Ambient Intelligence,"
2021.

[116] "Welcome to Orion Context Broker," 2021. [Online]. Available: https://fiware-
orion.readthedocs.io/en/master/. [Accessed Nov. 2021].

H2020 -957246 - IoT-NGIN
 D5.1 - ENHANCING IOT CYBERSECURITY

82 of 82

[117] Telefonica Investigación y Desarrollo, S.A.U, "FIWARE IoT Agent API," 2021. [Online].
Available: https://iotagent-node-lib.readthedocs.io/en/latest/api/index.html.
[Accessed Nov. 2021].

[118] The Linux Foundation, "Helm - The package manager for Kubernetes," 2021. [Online].
Available: https://helm.sh/. [Accessed Nov. 2021].

[119] S. Caldas, J. Konečny, H. B. McMahan and A. Talwalkar, "Expanding the reach of
federated learning by reducing client resource requirements," arXiv preprint
arXiv:1812.07210, 2018.

