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Executive Summary 
The Internet of Things (IoT) and Artificial Intelligence (AI) combined together have 
revolutionized intelligence delivery in a multitude of applications. At the same time, the 
smooth operation of intelligent IoT systems requires consideration of cybersecurity aspects in 
the design and delivery of such IoT systems. IoT-NGIN provides a set of tools, which aim at 
protecting IoT systems participating in Federated Learning installations against cyberattacks, 
such as network or data and model poisoning attacks. The main achievements of IoT-NGIN 
towards the cybersecurity tools included in the present report can be summarized as follows: 

• Analysis of vulnerabilities and cyberthreats which may challenge the secure operation 
of federated learning systems, involving IoT and edge devices 

• Analysis of cybersecurity needs of the use cases of IoT-NGIN Living Labs, which involve 
federated learning in training their ML models 

• Presentation of a generic cyberthreat modelling methodology proposed and 
respected by IoT-NGIN for providing on-device Federated Learning security 

• Presentation of four cybersecurity tools which will be developed in IoT-NGIN aiming at 
enhancing cybersecurity in IoT-based Federated Learning systems, namely: 

o Generative Adversarial Network (GAN) based IoT attack dataset generator, 
useful for generating synthetic datasets of attacks, which can be further used 
for Machine Learning model training. 

o Malicious Attack Detector (MAD) able to identify anomalous behaviors in 
network or model update datasets and thus facilitate the detection of 
potential cyberthreats or attacks. 

o IoT vulnerabilities crawler which allows identifying network vulnerabilities in IoT 
systems and thus accelerate their mitigation. 

o Moving Target Defence (MTD) network of Honeypots as a useful tool for tracing 
and analysing attackers’ behaviours, induced by IoT systems’ vulnerabilities, 
and thus allowing enhancement of threat modelling and management 
processes. 

• Extensive analysis of state-of-the-art Generative Adversarial Network (GAN) models 
and tools for synthetic dataset generation. 

• Initial version of the Generative Adversarial Network (GAN) based IoT attack dataset 
generator, including technical design and specifications, as well as initial 
implementation 

• Initial version of the IoT vulnerabilities crawler, including technical design and 
specifications. 

The work presented in this document acts as the basis for the future activities of IoT-NGIN in 
cybersecurity for on-device federated learning. The future work includes further updates for 
the presented components, as well as design and development for the rest two. The 
outcomes of these activities will be reported in D5.2 “Enhancing IoT Cybersecurity (Update)”, 
which is due in the third quarter of 2022. 
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1 Introduction 
The Internet of Things (IoT) has launched for good in both business and everyday lives, with 
numerous distributed and highly diversified “things” sensing different aspects of their 
environment. Different combinations of devices, sensors and business scope across domains 
provide the bill of materials for numerous, often, unprecedented, applications, leaving room 
for both inspiration and innovation. The connected things are continuously increasing in 
volume, and capabilities, collecting huge amounts of data. IDC predicted in 2020 that by 
2025 there will be 55.7 B connected devices worldwide, 75% of which will be connected to 
an IoT platform [1]. IDC also estimates in the same report data generated from connected 
IoT devices to be 73.1 ZB by 2025, growing from 18.3 ZB in 2019. Moreover, Gartner estimated 
in 2020 that 47% of organizations intend to increase investments in IoT despite the impact of 
COVID-19 [2]. The same survey reveals that IoT adoption is primarily driven by the Digital Twin 
and Artificial Intelligence (AI) technologies. 

AI provides the intelligence to an IoT platform that enables translating raw information into 
useful forecasts and insights that allow triggering actions in business-specific defined 
workflows. Together, IoT and AI have revolutionized the perception of smartness in 
connected systems, providing insights to digital pioneers both in real time and in great detail. 

Machine Learning (ML) is an AI technology, which allows to automatically identify patterns 
and detect anomalies in the data collected by IoT devices, such as temperature, pressure, 
humidity, air quality, vibration, sound, but also images, video and voice. Moreover, οther AI 
technologies such as speech recognition and computer vision allow identifying linguistic or 
visual patterns, enabling inference decisions, only possible by humans until recently. AI 
applications for IoT enable companies to avoid unplanned downtime, increase operating 
efficiency, spawn new products and services, and enhance risk management [3]. 

At its basic level AI enables the prediction of undesired or risky events, while at a more 
advanced level is combined with actuation capabilities in IoT systems, which enable 
automated reaction to such events, without human intervention. Indeed, several ML 
techniques aim to improve the efficiency of the models in making predictions, such as Deep 
Learning, Reinforcement Learning, Transfer Learning, as well as Federated Learning, as 
discussed in D3.1. Federated Learning (FL) aims to build and train global models based on 
training datasets that are distributed across different remote devices while avoiding data 
leakage. 

Despite the indisputable benefits of the combined use of IoT and AI, cybersecurity concerns 
may be raised from the extensive use of connected and highly automated systems. As stated 
in the State of the Union (SOTEU) in 2021 “if everything is connected, everything can be 
hacked” [4]. In SOTEU 2021, the need for a European Cyber Defence Policy, including 
legislation on common standards under a new European Cyber Resilience Act has been 
identified. Moreover, the SOTEU 2020 [5] had already identified the need for realizing the 
Digital Decade in Europe and IoT together with AI can be a driving force. 

The legislative framework of the European Commission towards cybersecurity builds upon: 
• The EU Cybersecurity strategy [6], which proposes building a European Cyber Shield 

via a network of Security Operations Centres across the EU, identifying the significance 
of AI and ML techniques in malicious activities detection in such centres. Also, it 
suggests providing ultra-secure communication infrastructure, integrating cutting 
edge technologies, such as Quantum, 5G, AI, edge computing. 
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• The Directive on Security of Network and Information Systems (the NIS Directive) (EU) 
2016/1148 [7], which is at the core of the EU Single Market for cybersecurity. It states 
the need to take technical and organizational measures to “address risks” posed to 
systems of both Operators of Essential Services (OES) and providers of digital services. 
Both IoT and AI are at the core of such operations. A reformed NIS Directive has been 
proposed to be developed, in order to “provide the basis for more specific rules that 
are also necessary for strategically important sectors, including energy, transport and 
health” [6]. The draft NIS2 Directive [8] contains a catalogue of measures listing 
among other things, risk analysis and security concepts, prevention of security 
incidents and crisis management, which must at least be implemented by the 
companies. 

• The Cybersecurity Act [9], promotes ICT certification at EU level, based on a European 
Cybersecurity Certification Framework, which will result in ICT products, services and 
processes in the EU to operate with an adequate cybersecurity level. 

In addition, the General Data Protection Regulation (GDPR) also requires risk assessment 
procedures to be in place for those organizations that collect, process and store Personal 
Identifiable Information (PII). Article 34 to the GDPR states that “the controller has taken 
subsequent measures which ensure that the high risk to the rights and freedoms of data 
subjects is no longer likely to materialize” [10]. 

Considering these, IoT-NGIN provides a set of cybersecurity tools for IoT Federated Learning 
systems. The main project contributions are towards anomaly detection and threat 
monitoring, aiming to identify both existing and zero-day network-level attacks suffered by 
“classical” connected systems, as well as data and model poisoning attacks compromising 
FL systems. IoT-NGIN leverages ML and Generative Adversarial Networks to train and develop 
its Malicious Attack Detection (MAD) service. Moreover, IoT-NGIN designs and develops a 
distributed vulnerability scanning service for IoT device, as well as a distributed network of 
dynamically changing honeypots, allowing to lure and trace attackers’ activity in controlled 
environments, without compromising the production environment’s operation. Such threat 
monitoring allows companies assess and mitigate the cybersecurity risks which are possible 
in their IoT systems, helping them comply with the EU regulations for cybersecurity. 

The present document, entitled “Enhancing IoT Cybersecurity”, is the first deliverable of WP5 
(D5.1) and reports the activities of Task 5.1 “Mitigate poisoning attacks in on-device 
federated ML” and Task 5.2 “Adversarial access early attack detection. Moreover, the 
activities reported in D5.1 align with the objectives of WP5: 

• Develop the first to our knowledge systematic study on local model poisoning attacks 
to on-device federated ML 

• Research towards a novel method and tool for generating synthetic labelled datasets 
of poisoning attacks (contradictory or adversarial patterns) to assist with the 
evaluation of ML-based anomaly detection algorithms. 

The present document is a technical report which provides technical specifications and initial 
version of the Generative Adversarial Network (GAN) based IoT attack dataset generator 
and the IoT vulnerabilities crawler of IoT-NGIN. 
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1.1 Intended Audience 
The target audience includes mainly IoT system providers and ML engineers, including 
technical staff. Through this report, they can find information about cyberthreats imposed in 
current and future IoT systems enhanced with AI functionality. Beyond their awareness on the 
underlying threats, they may identify their relevant cybersecurity requirements in application 
domains covered by the IoT-NGIN Living Labs. Moreover, the audience may identify through 
this report underlying business model in defining a threat modelling approach for their 
systems. The IoT-NGIN threat modelling methodology could potentially raise their awareness 
and motivate them in adopting a similar approach. Of course, the technical specifications 
and design of the GAN based dataset generator and the IoT vulnerabilities crawler are of 
high interest to the technical staff, based on their expertise. Furthermore, IT and ML 
developers have the chance to download, test and extend the initial versions of these 
components. 

Moreover, the report can be useful to policy makers, who can find technical advantages of 
the IoT-NGIN threat modelling approach. The cybersecurity benefits and technical details 
could be promoted as indicative guidance of implementing cybersecurity measures in IoT-
based FL systems. 

Finally, the report is useful internally, to the members of the development and integration 
team of the IoT-NGIN consortium, involving mainly Work Package (WP) 3-WP6 partners, but 
also to the whole Consortium for validation and exploitation purposes. Useful feedback could 
be also received from the Advisory Board, including both technical and impact creation 
comments. 

1.2 Relations to other activities 
First of all, the project activities which fed this document consider the use case requirements, 
as well as the IoT-NGIN meta-architecture and its instantiation, as derived in WP1. The content 
of this deliverable highly relates to the activities of WP3, regarding the development of the 
FL framework, which the cybersecurity modules presented in the current document refer to. 
Also, the content of the deliverable will feed the future activities within the framework of Task 
5.1 and Task 5.2 and is planned to be updated in deliverable D5.2 “Enhancing IoT 
Cybersecurity (Update)”, due in Q3 2022. Moreover, the document provides useful feedback 
to the future integration and validation activities, as well as to the preparation of the trials in 
the Living Labs (LLs) in WP7. Last, but not least, the outcomes presented in this document may 
be exploited for impact creation in WP8. 

1.3 Document overview 
The rest of the document is organized as follows. 

Section 2 draws the background and motivation for providing cybersecurity tools for IoT-
based FL systems. 
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Section 3 analyses the cybersecurity requirements of the use cases which will trialed in the 
LLs, identifying their needs for the IoT-NGIN cybersecurity tools for on-device FL. 

Section 4 presents the IoT-NGIN cyberthreat modelling methodology and briefly presents the 
IoT-NGIN cybersecurity tools, mapping them to the steps of this methodology. 

Section 5 presents state-of-art techniques GAN-based techniques for synthetic dataset 
generation and discusses their suitability for generating IDS datasets. 

Section 6 provides the technical design of the GAN-based Dataset Generator of IoT-NGIN 
and provides installation and user guidance for its initial implemented version.  

Section 7 provides the technical design of the IoT Vulnerability Crawler of IoT-NGIN, as well 
as information about the deployment of implemented releases, as soon as they become 
available.  

Section 8 draws conclusions and closes the deliverable. 
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2 Background and Motivation 
In this section, the need for adopting cybersecurity solutions while developing or running IoT 
systems is identified, highlighting potential vulnerabilities and attacks in smart IoT systems. IoT-
NGIN aims to address such cyberthreats across domains, starting from ensuring cybersecurity 
of FL processes in IoT-NGIN LL use cases. 

2.1 What is on-device Federated Learning 
In recent years, the development and extensive use of smart devices has raised increasing 
interest in accessing, extracting, and sharing valuable information, which is gathered by 
different types of devices. Already now, massive amounts of data are being collected from 
different devices in a distributed manner [11] [12]. Such wealth of data is often used to feed 
Machine Learning (ML) functions and applications, which are able to generate knowledge 
in an intelligent manner. However, the effectiveness of Machine Learning (ML) models can 
be significantly improved when training is done synergistically, exploiting multiple information 
feeds, which, however, raises data privacy concerns.  

Federated learning (FL) systems provide a noble path, as they are able to perform Machine 
Learning without the need to share the private data [13]: FL enables edge devices to 
collaborate in training a shared model without disclosing the training data to a central server 
as the training takes place on-device.  

In FL settings, data remain within their administrative domain and training is performed locally. 
Then, the locally trained ML models are shared among the federated nodes or a central 
node, leading to the generation of an aggregated model. In this way, data sovereignty is 
respected via the FL setting, since the training data remain at the devices, while they are 
never processed at central servers.  

Indicatively, Figure 1 illustrates a common FL setup, which consists of a central server S and 
several dispersed nodes ni, i  Î 1, 2, … N (the nodes could be e.g. smartphones, laptops, or 
IoT devices). In this setting, the nodes exchange locally trained model updates with the 
central server, which performs the aggregation of the individual models. Specifically, in each 
iteration, the server S sends the global model to each node ni, i  Î 1, 2, … N. Then, the model 
is trained based on the private local data stored on each node, and the updated model 
parameters are sent back to the central server S, where all the model updates from each 
different node are aggregated, creating a new global model. This procedure is then 
repeated until it satisfies a termination condition, such as reaching a specified number of 
iterations.  



H2020 -957246    -   IoT-NGIN  
 D5.1 - ENHANCING IOT CYBERSECURITY 

 

18 of 82 

 

 
Figure 1: Federated Learning framework. 1. The global model is sent to the devices. 2. The model is 

updated based on the data. 3. The updated parameters are sent to the server. 4. A new global 
model is created. 

The basic federated averaging algorithm was introduced as Federated Average (FedAvg) 
in 2017 [14], in which an averaging local Stochastic Gradient Descent (SGD) is used to 
update the model. The basic FL setup includes the learning of a global model using data 
stored locally at different remote devices and then only sending the updates of the trained 
model to a central server. Specifically in the case of FedAvg, the aim of the basic FL setup is 
to minimize the objective of the global model 𝑤, which is the sum of the weighted average 
of the devices’ loss: 

 

 

 

 

Where n is the total number of devices, 	𝐹!(𝑤) is the local objective function for the  𝑘"# 
device, while 𝑝! ≥ 0, specifying the relative impact of each device and ∑ 𝑝𝑘! 	=	1.	

	

Federated Learning has been largely researched in the literature with the aim of optimizing 
the distributed training process and costs. While optimization of (centralised) ML processes 
has been focused on achieving low latency and storage requirements, such as in lite versions 
of TensoFlow [15] and PyTorch [16], the distributed training under the FL setting shifts the 
computational overhead from the centralized server to the devices, which affects the goals 
of optimization. The research and development of FL algorithms relies largely on open source 
FL experimentation frameworks, the most common ones being TensorFlow Federated [17], 
PySyft [18], LEAF [19] and FedML [20]. In the following, the main challenges related to FL are 
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discussed, accompanied by a brief analysis of state-of-the-art FL techniques in addressing 
them. 

	

Challenges 
The minimization problem of FL models (1) imposes several challenges. The first one is related 
to communication cost, which is a crucial bottleneck in FL systems. Specifically, those systems 
mainly consist of a large number of devices, which makes the communication slower. 
Another challenge is about the systems heterogeneity since the devices on a FL network may 
have different storage, computational and communication capabilities due to the varying 
hardware components (CPU, GPU, memory), network connections (Wi-Fi, 3G, 4G, 5G) as well 
as power (battery life). It is very common on FL set ups that active devices can drop out due 
to energy or connectivity restrictions, limiting the FL model training to devices with better 
conditions. However, the FL system should be effectively scaled on all devices, 
independently of their type. Additionally, statistical heterogeneity poses another a 
challenge: FL systems commonly consist of several devices, which end up collecting data in 
a non-uniformly distributed way. This contravenes the frequently-held hypothesis of 
independent and identically distributed (IID) data, which increases the analysis, modelling, 
and evaluation difficulties. Lastly, privacy concerns are important even in FL applications. 
Even though FL provides more protection to private data of each device by only sharing the 
model updates, this communication between devices and server can still disclose sensitive 
information.  

 

Addressing communication challenges 
Efficient communication on FL system can be achieved with various strategies. Hence, 
optimization methods that enhance flexible local updating as well as low client participation 
are widely used on FL networks. FedAvg works satisfactorily for non-convex problems; 
however this method does not always guarantee convergence, but it can still diverge in FL 
systems with heterogeneous data [21]. Additionally, works which try to succeed an effective 
communication in a FL setup have been proposed. Indicatively, in [22] quantization with 
structured random rotations was implemented, which restricts the communication between 
server and devices by applying lossy compression and dropout.  

Regarding the system heterogeneity in FL system, several studies have investigated the 
impact of different resources to the performance of FL model, and different approaches 
have been developed to handle this issue. The authors in [23] examine the effect of 
heterogeneity in computational resources, such as CPU, memory, and network resources, on 
the training time of FL. Techniques such as asynchronous communication, active sampling of 
participating devices, and fault tolerance can address the system heterogeneity. A novel 
device selection strategy based on resources is presented by [24], in which the server 
aggregates as many updates as possible in a pre-defined time range. The work in [25] 
designs mechanisms that encourage devices with higher-quality data to participate in the 
learning process based on the system overheads realized on each device. Finally, aiming to 
create a robust FL system towards dropped devices, the authors in [26] design a secure 
aggregation protocol that is tolerant of arbitrary dropouts, provided that there are enough 
model updates from the non-dropped devices. Although the system heterogeneity effect in 
FL has been quite extensively researched, it still remains an open issue which needs to be 
consider while designing FL systems. 
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Addressing operation in constrained devices 
Often, the edge devices, in which the training is performed, are low-cost devices without the 
capacity to handle and train large amounts of data. In that case, a key issue is that only a 
limited amount of data can be used during the training phase on each edge device. One 
approach to address this issue is to use cooperative model updates. There, each edge node 
shares its trained results, while it improves the common model using the collected updates 
from the other devices.  Those intermediate training results can be either exchanged via a 
server among the devices or they can be transferred directly from one edge device to 
another. The method in [27] describes an on-device federated learning algorithm, which 
updates the model collaboratively between the edge devices and it is applied on anomaly 
detection tasks.    

Moreover, another major issue relates to the training process of the FL algorithms, which might 
be too heavy for some low-capable devices to bear their execution.  Interestingly, several 
well-known frameworks like Tensorflow Federated [28] and LEAF [19] provide advancements 
in developing FL algorithms, but they do not offer tools for estimating the training’s 
computational overhead; such overhead could provide hints for the suitability of the 
developed algorithms really for on-device training. As an alternative, FLOWER is proposed for 
evaluating on-device FL on various smartphones and embedded devices [29] and 
constitutes a nice solution for on-device FL. 

 

Addressing statistical heterogeneity 
Apart from system heterogeneity, FL networks can also suffer from statistical heterogeneity 
as the training of FL models may be performed with non-identical distributed data across 
devices. FL methods have been proposed to overcome this challenge. MOCHA [30] is an 
optimization framework, which allows the personalized learning on devices. In this approach, 
separate but related models are trained at each device while a shared representation via 
multi-task learning is also supported. A different approach in [31] introduces a meta-learning 
method using information from each device separately. Additionally, the FedProx framework 
[21] can manage data heterogeneity in FL systems. Slightly modifying FedAvg, FedProx 
guarantees convergence also for FL systems trained with non-identical distributed data. 

Another important factor to be considered during the handling of heterogeneous data on 
FL devices, apart from accuracy, is fairness. Specifically, using the basic objective function, 
such as (1), the models in some devices may be advantaged, while models of other devices 
may be disadvantaged, since the training may introduce biases towards devices with large 
amounts of data. Some studies have introduced FL approaches, which reduce the variance 
of model performance among the devices. In [32] a variable number of local updates based 
on local loss is performed by some heuristics. The Agnostic Federated Learning framework in 
[33] improves the common model for any target distribution composed of a mixture of the 
client distributions. As a conclusion, works, as the ones presented, have been aimed for 
addressing statistical heterogeneity, which is still open for the research community, as no 
single solution has been or is able to be adopted for every case. 
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Addressing privacy issues 
To further enhance privacy in FL settings, different privacy preserving ML techniques have 
been proposed. Differential Privacy (DP) [34] [35] is a framework that randomizes part of the 
FL learning algorithm’s behavior to make it impossible to reveal behavior patterns that 
correspond either to the model and the learned parameters, or to the training data.  Another 
privacy preserving technique is Homomorphic Encryption (HE) [36], which secures the ML 
procedure by computing standard mathematical operations on encrypted data. 
Furthermore, Secure Multiparty Computation (SMC) [37] [38] is a cryptographic technique 
that empowers distributed parties to jointly compute an arbitrary function without revealing 
their own private input and output pairs. SMC techniques provide security verification in well-
defined simulation frameworks, ensuring complete zero-proof knowledge [39]. 

 

2.2 How is IoT cybersecurity threatened 
In addition to the inherent challenges of FL discussed above, smooth FL operation can be 
challenged by inherent constraints or vulnerabilities of the federated devices, which are 
induced by the distributed nature of the FL system. IoT devices operating unattended are 
subject to cybersecurity or physical attacks, which may render them malicious participants 
within the FL system. In the following, the cybersecurity challenges around FL are presented, 
discussing the vulnerabilities of IoT devices in subsection 2.2.1, which may lead to the attacks 
against the FL system, presented in subsection 2.2.2. 

The European Union Agency for Cybersecurity (ENISA) defines security vulnerability as “a 
weakness an adversary could take advantage of to compromise the confidentiality, 
availability, or integrity of a resource” [40]. While there are known vulnerabilities, which may 
thus be appropriately addressed, zero-day vulnerabilities can be more damaging, as they 
have not been publicly disclosed and are kept private. Vulnerabilities provide breeding 
grounds for potential attackers, who deploy specially crafted code known as exploit, which 
takes advantage of vulnerabilities to compromise a resource. 

2.2.1 IoT vulnerabilities 
Security vulnerabilities in IoT devices could allow adversaries to knock devices offline, or even 
worse, to take control of them remotely as a steppingstone in order to gain wider access to 
the affected network. 

From the point of view of the IoT web applications, Open Web Application Security Project 
(OWASP), which is a non-profit foundation, has compiled a list of the top 10 web application 
security risks for the 2021. This list1 includes: 

• Broken access control: Failures typically lead to unauthorized disclosure, modification, 
or destruction of data or performing a business function outside the user's limits. 

• Cryptographic Failures: Failures related to cryptography (or lack thereof) often lead 
to exposure of sensitive data. Such failures include the use of Hard-coded passwords 
or broken cryptographic algorithms.  

 
1 https://owasp.org/www-project-top-ten/ 
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• Injection:  The attacker can provide malicious input (inject it) to a web application 
and change the operation of the application by forcing it to execute certain 
commands. 

• Insecure Design: Focuses on risks related to design and architectural flaws, with a call 
for more use of threat modelling, secure design patterns, and reference architectures 

• Security misconfigurations: Vulnerabilities might be introduced if unnecessary features 
are enabled or installed (ports, privileges etc,) 

• Vulnerable and Outdated Components 
• Identification and Authentication Failures: Failures include the permission of weak or 

well-known passwords, or ineffective multi-factor authentication etc. 
• Software and Data Integrity Failures: Failures relate to code and infrastructure that 

does not protect against integrity violations such as when an application relies upon 
plugins, libraries, or modules from untrusted sources, repositories, or content delivery 
networks 

• Security Logging and Monitoring Failures: Systematic logging is critical for detecting 
and responding to breaches. 

• Server-Side Request Forgery (SSRF): SSRF flaws occur whenever a web application is 
fetching a remote resource without validating the user-supplied URL. 
 

This list was compiled based on reported vulnerabilities, which were classified using the 
“Common Weakness Enumerations (CWE)”. CWE refers to the types of software weaknesses, 
rather than specific instances of vulnerabilities within products or systems. This list acts as a 
“dictionary” of the top and most common software vulnerabilities identified. 

“Malware Information Sharing Platform (MISP)” is another very well-known platform that 
facilitates the sharing, storing, and correlating of threat intelligence, including vulnerability 
information. It provides an adjustable taxonomy and an “Indicators of Compromise (IOCs)” 
database, i.e. a database of forensic data that identify potentially malicious activity on a 
system or network.  

An additional source of vulnerabilities is the “Common Vulnerability and Exposures (CVE)” 
database hosted at MITRE. It is one of the largest publicly available source of vulnerability 
information. CVE provides a common enumeration that promotes shareability and consists 
of a list of information security vulnerabilities and exposures that aims to provide common 
names for publicly known problems. MITRE’s CVE Program’s mission is to identify, define, and 
catalog publicly disclosed cybersecurity vulnerabilities2. A CVE also holds a Common 
Vulnerability Scoring System (CVSS), which is a vulnerability metric for communicating the 
characteristics and severity of software vulnerabilities. MITRE also publishes the CWE top 25 
Most Dangerous Software Weaknesses on an annual basis3. For example, one of the recent 
and common CVEs for 2021 is the CVE-2021-3156: Sudo Privilege Escalation to Root. It holds 
a CVSS score of 7.8, which is considered high. This vulnerability is due to improper parsing of 
command line parameters and an attacker can exploit it via “sudoedit -s” and a command-
line argument that ends with a single backslash character. To mitigate this vulnerability one 
can apply audit logs. Since brute-forcing is required to trigger the vulnerability, audit logs will 
be flooded with events relating to sudoedit. 

 
2 https://cve.mitre.org/cve/ 
3 https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html 
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An additional common CVE vulnerability is Citrix CVE-2019-19781. This particular CVE has a 
CVSS score of 9.8 which is considered critical. This CVE is a Remote Code Execution (RCE) 
vulnerability. An arbitrary code execution vulnerability is a security flaw in software or 
hardware allowing arbitrary code execution. 

2.2.2 Attacks in Federated Learning systems 
FL systems improve privacy preservation since the data remains locally on device, while only 
the model updates from each training are shared to the server. However, surveys have 
shown that FL may not always provide adequate privacy guarantees. Specifically, the 
sharing of model updates between the server and the IoT devices during the training phase 
can reveal sensitive information [41], [42]. In some cases, only a small portion of original 
gradients can already disclose important knowledge about the local data [43]. In addition, 
the malicious attackers want to exploit vulnerabilities to access the sensitive, private data of 
IoT devices or to control ML networks and manipulate the outputs. Therefore, to reinforce the 
FL features of IoT systems appropriately, all potential security, privacy, and network attacks 
on FL networks must be investigated.  

2.2.2.1 Poisoning attacks 
Attacks commonly occur during the training phase of FL networks, which are referred to as 
poisoning attacks, impacting either the dataset or the local model and, consequently, 
distorting the global ML model accuracy and/or performance. The general goal of poisoning 
attacks is to modify the behavior of FL model in an undesirable way. The attacks during 
training of FL networks are divided in two types, namely Data Poisoning and Model Poisoning 
attacks. The data poisoning attacks aim to compromise the integrity of training data, while 
the model poisoning attacks target partial or full model replacement during training. In an FL 
system, attacks can be executed by either the central server or the participating devices in 
FL system. Figure 2 shows that data poisoning is performed at local data collection, while 
model poisoning is sourced at the local model training process.  

 
Figure 2: Data vs. Model poisoning attacks on FL system. 
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2.2.2.1.1 Data poisoning 
Data poisoning attacks can be executed by any FL device, while the effect on the final 
trained ML model depends on the extent that the participating devices have been involved 
in attacks as well as the amount of poisoned data. Data poisoning attacks are usually less 
effective than model poisoning attacks. However, research in [44] demonstrates that 
poisoning training data at edge-case with low probability are more efficient.  

Data poisoning attacks are further divided in two categories: clean-label and dirty-label. 
Clean-label [45] attacks are the attacks, in which the attacker cannot change the label of 
training data since there is a procedure certifying the correct class of the data, and thus, 
only the data is modified. The poisoning of data samples must be imperceptible in this kind 
of attack. On the other hand, the dirty-label attacks [46] can alter both the data and the 
label, which can be done by introducing several modified data with the desired target class, 
causing model misclassification. Dirty-labels attacks are also referred as backdoor attacks. 
An example of dirty-label poisoning is the label-flipping attack [47], where (as the name 
indicates) labels of honest training data belonging to one class are flipped to another class, 
without any modification of data features.  

2.2.2.1.2 Model poisoning 
Model poisoning attacks aim to corrupt the updates of the local model before sending them 
to the central server or to insert hidden backdoors into the lobal model [48]. Research 
performed in [49] demonstrates that the model poisoning attacks are much more efficient 
than data poisoning attacks in FL systems. Furthermore, in FL system, the aggregator is not 
familiar with the modes of local updates, making it incompetent to detect anomalies and 
verify the correctness of local updates. The performance of model poisoning requires 
sophisticated techniques and high computational resources.   

The aim of model poisoning attacks is to provoke the global ML model to miss-classify a set 
of data without being perceived, thus with high confidence. Threats of model poisoning 
attacks on FL, introduced by a single malicious agent as well as strategies to perform this kind 
of attack are analyzed in [50]. Additionally, [49] and [51] explore model poisoning attacks 
by sending a poisoned subset of updates to the server in every given iteration. The poisoned 
updates can be introduced to the global model by hidden backdoors. The work in [48] 
demonstrates that even a single-shot attack could be adequate to insert a backdoor to a 
model. The method developed in [52] uses Generative Adversarial Network (GAN) models 
to generate model poisoning attacks. Specifically, malicious participants pretend to be 
benign, while utilizing the GAN architecture to generate training data with incorrect label to 
damage the other clients of FL system. Current methods that defend systems from poisoning 
attacks are not entirely applicable in FL systems. To mitigate those attacks from FL, promising 
approach would be anomaly detection in the central server.  

2.2.2.2 Inference attacks 
Inference attacks are another type of threats that can occur on FL systems. In those attacks, 
adversaries do not attempt to violate the model itself. However, they aim either to lead the 
model to produce wrong results or gather details about the model characteristics, which can 
be achieved due to the communication channels in the FL settings. The adversaries could 
use the uploaded model parameters to partially disclose information about the training data 
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of each FL client (or node). Specifically, the attacker can use the model updates to infer 
private information, like membership, class representatives, and the attributes of a training 
subset. These kinds of attacks can be grouped into two categories, the white-box attacks, in 
which the adversary has full access to the FL model, and the black-box attacks, in which the 
attacker can only obtain the predicted output.  

Membership inference attacks [53] intends to reveal information by examining if specific 
data samples exist on the private training set of a single client or of any client. For this purpose, 
shadow models are built, creating a similar dataset to the original one. Attackers in FL systems 
can perform both active and passive membership inference attacks [54]. In the case of 
passive attacks, the adversary monitors the model updates and executes inference without 
altering the local training or the global aggregation procedure. On the other side, in the 
more powerful case of active attacks, the attackers can tamper with the training protocol, 
thus sharing malicious updates and forcing the FL to disclose more information about FL 
client’s local data.  

Additionally, other inference attacks that make FL systems vulnerable, are property inference 
attacks and model inversion attacks. Property inference or reconstruction attacks have as 
goal to define specific sensitive properties’ values given that the attacker knows all the non-
sensitive attributes that describe the classes of the FL model [55]. The attackers can conclude 
characteristic about participant’s private training data thought the inference of sensitive 
attributes from the observations of local model gradients at different training rounds. In 
model inversion attacks, the training data is reconstructed using the FL model updates [56]. 
This kind of attacks raised a lot of concerns about privacy. In recent years, the research 
community has started dealing with the development of GAN models with regards to the 
inversion task to better extract appropriate knowledge about attacks [57], [58].   

2.2.2.3 Network attacks 
A FL system can be considered a network, which, therefore, is vulnerable to different network 
attacks. Networks are vulnerable to different kinds of attacks, by which adversaries aim to 
gain access to the system and carry out actions related to their malicious intentions. In this 
section the most well-known network attacks are analyzed.  

In a Byzantine attack the malicious participants have complete control of their 
authenticated devices and perform arbitrarily behavior to disrupt the network. Generally, in 
a byzantine attack, the adversarial device cannot be distinguished from the benign ones. 
Other cybersecurity attacks include sybil attacks, where the attacker simulates multiple 
participants or several false identities with the aim of accessing the system and adding more 
powerful attacks on it. The severity of sybil attacks increases when the malicious actor 
manages to control more devices.   

Denial-of-Service (DoS) [59] is a type of attack, in which the malicious actor makes the whole 
network or some devices unavailable for the users. This is achieved by flooding the 
computing or memory resources of the targeted machine until normal traffic cannot be 
processed; therefore, the user access to the machine is denied. DoS attack is one of the most 
frequently occurring cases of network intrusion. Distributed denial of service (DDoS) attack 
aims to disrupt the normal traffic of a network by overwhelming the network itself or the 
surrounding infrastructure with fraudulent internet traffic from multiple sources. Probe is 
another type of attack, in which the hacker scans a machine or a device and gathers 
network information to identify vulnerabilities or weak points that can be used to harm the 
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system [60]. Remote to Local (R2L) is a type of attack, in which a remote user sends packets 
through the internet to a machine or a device, in which she/he does not have access [61]. 
The attacker aims to reveal the network vulnerabilities and take advantages of the privileges 
that a local user would have. The User to Root (U2R) type refers to an attack, in which the 
attacker imitates a normal user, while attempting to gain root access and super user 
privileges to the system [62].  

Yet another type of attack are backdoors, with which the malicious users can avoid normal 
security requirements and authentication procedures without being discovered, aiming to 
access a target network system. Via these attacks, the attacker can reach the resources of 
the system, like servers or participants, and change the settings and properties. Botnet is a 
type of cyberattack, which is accomplished by a group of malware-injected devices 
controlled remotely by the attacker. These attacks are more sophisticated than others, due 
to their ability to scale up to cause greater damage to the system. Finally, Man in the middle 
attacks happen when attackers interrupt traffic within the network and secretly relay it -
possibly altered- between the communicating parties, which believe that they are in a 
private communication. This attack can occur when malicious actors find a way to deceive 
the communication protocols, even if they are highly secured. 

2.3 How can ML contribute to cybersecurity in on-
device FL  

The presence of attackers in an FL system degrades the training procedure, which introduces 
security risks on the learning outcomes. Therefore, the detection of malicious nodes as well 
as the poisoned model updates is of high importance in FL settings. However, it is common, 
that the attackers pretend to be benign nodes among the system, making the detection of 
them a challenging procedure. In recent years, the research community has expressed an 
intense interest in defense mechanisms to mitigate poisoning attacks, and thus, to reinforce 
the security of FL settings.  

Some of the defense techniques exploit analytics and statistics to recognize abnormalities in 
events that do not follow an expected pattern. To achieve this, a profile of normal behavior 
is needed to detect attacks as a diversion from the normality. In FL systems, data and model 
poisoning attacks can be detected by different anomaly detection methods. For instance, 
Krum method [51] uses Euclidian Distance to identify malicious users based on the fact that 
their parameter updates remarkably vary from others. Additionally, the method in [63] 
detects the abnormal clients’ updates at the server. The authors in [64] attempt to handle 
the adversarial attacks on FL by introducing a spectral anomaly detection with a variational 
autoencoders framework, which is used by the central server to identify and remove the 
malicious model updates based on their low-dimensional embeddings. Furthermore, [65] 
presents two defense mechanisms against local poisoning attacks, the loss function based 
rejection (LFR) and the error rate based rejection (ERR).  

Recently, FoolsGold [66] was designed to detect sybil poisoning attacks by identifying 
malicious clients through calculation of the similarities between different updates. Various 
backdoor attacks in FL systems can be detected by the FederatedReverse method [67], 
which contains four parts, namely reverse engineering, global reverse trigger generation, 
outlier detection, and model repair. FederatedReverse also manages to restrict the influence 
of backdoor attacks via the model repair component.   
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A defence mechanism in FL settings, which mitigates poisoning attacks, but also provides 
privacy preserving, is a challenging issue and not yet well studied. MLGuard [68] is a privacy 
preserving distributed ML framework that simultaneously protects the learning procedure 
from the malicious nodes. The MLGuard allows the collaboration of two servers and multiple 
mobile users to train a common machine learning model, which provides privacy 
preservation as well as a defense mechanism against poisoning attacks. To accomplish this, 
the servers exploit a novel poisoning attack mitigation method to identify if node’s updates 
are trustworthy or not. Specifically, the detection of malicious node is based on the similarity 
score of each node, so the servers reject those nodes with the lowest similarity score. 
Additionally, the strong privacy preserving character of MLGuard derives from an additive 
secret sharing mechanism, permitting the devices to secretly share their model updates to 
the servers.     

Additionally, the research work in [69] presents a scheme for anomalous update detection 
in both IID and non-IID data, while the privacy of each FL client is protected without 
degrading the detection performance. In this method, the detection tasks are assigned to 
the clients, using the private data to evaluate the performance of the updates. Then, the 
aggregation of updates on the server is done by adjusting the weights based on the 
evaluation results. Finally, differential privacy is integrated to the detection tasks to protect 
clients’ privacy. 
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3 Cybersecurity needs towards IoT-NGIN 
Living Labs  

The Use Cases (UCs) which will be validated in the LLs have been analysed under the AI 
perspective in Deliverable document D3.1 “Enhancing deep learning / reinforcement 
learning” [70]. Leveraging this analysis, the following subsections provide cybersecurity-
specific analysis of the UCs, for which ML model training via FL techniques has been specified. 

3.1 Human-Centred Twin Smart Cities Living Lab 
In the framework of the Human-Centred Twin Smart Cities Living Lab, the IoT-NGIN framework 
will be validated against three use cases, namely UC#1 “Traffic Flow Prediction & Parking 
Prediction”, UC#2 “Crowd management” and UC#3 “Co-commuting solutions based on 
social networks”. Based on D3.1, UC#1 will deploy Federated Learning for the training of the 
Traffic Flow Prediction and Parking Prediction AI services, while the rest will rely on other 
training techniques. The following subsections provide the background information for the 
UC needed for understanding the FL related cybersecurity needs of the UC, present the 
cybersecurity tools against on-device FL which will be validated, as well as the UC 
requirements from such tools.  

3.1.1 Preconditions per application 
The preconditions per UC application of the Human-Centred Twin Smart Cities Living Lab 
have been analyzed under Artificial Intelligence (AI) perspective in D3.1, section 3.1.1. The 
preconditions of UC#1 which are of interest to the cybersecurity tools against on-device FL 
attacks can be outlined as follows. 

a) In order to model and train distributed AI models on traffic flow and parking prediction, 
weather data (and how that affects road & traffic conditions) and road data (number 
of cars, velocity, fluctuation) will be used. The predictive model will also consume 
historical data and public transportation information.  

b) Traffic and parking prediction ML models will be federated at the edge cloud. 
c) As IoT devices are installed in accessible public places and have network 

connectivity, their safe network configuration and operation must be ensured. 
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3.1.2 Mapping to IoT-NGIN FL-related cybersecurity tools 
 

GAN based dataset 
generation 

Malicious Attack 
Detector (MAD) 

IoT vulnerability 
crawler  

MTD network of 
honeypots 

    

- - Detection of 
vulnerabilities in IoT 
devices (cameras, 
radars) and 
edge/cloud nodes 

- 

    

    

3.1.3 Use Case Requirements analysis 
Table 1: Requirements analysis for Use case #1 “Traffic Flow Prediction & Parking Prediction“. 

Living Lab Human-Centred Twin Smart Cities Living Lab 

Use Case Traffic Flow Prediction & Parking Prediction 

FL service Traffic Flow Prediction Parking Prediction 

GAN based 
dataset 

generation 

Dataset type N/A 

Attacks covered N/A 

Data size N/A 

Malicious Attack 
Detector (MAD) 

Data types N/A 

Data size N/A 

Data 
communication 

protocols 

N/A 

Data availability N/A 

IoT vulnerability 
crawler 

IoT devices Multispectral & Visual Cameras 

Radars 

Weather stations 
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Sensors on Robo-buses & City Streets 

Deployment 
type 

Edge/cloud 

MTD network of 
honeypots 

Service types 
mimicked 

Ν/Α 

Applications 
mimicked 

N/A 

 

3.2 Smart Agriculture IoT Living Lab 
In the Smart Agriculture IoT Living Lab, the IoT-NGIN solution will be validated against UC#4 
“Crop diseases prediction, Smart irrigation and precision aerial spraying” and UC#5 “Sensor 
aided crop harvesting”. According to the AI-driven analysis of them, UC#4 will train its Crop 
diseases prediction AI service in a FL system. In this subsection, an analysis of UC#4 under the 
Smart Agriculture Living Lab is provided under the perspective of the cybersecurity tools 
against on-device FL; including the preconditions, then mapping of those preconditions to 
the cybersecurity tools and identifying relevant use case requirements.  

3.2.1 Preconditions per application 
The preconditions identified as relevant for cybersecurity against on-device FL for the “Crop 
diseases prediction, Smart irrigation and precision aerial spraying” use case are identified as 
follows: 

a) Crop diseases prediction is based on images and real-time video analysis of the crop 
and the leaves captured from visual and multi-spectral cameras located on semi-
autonomous drones flying over the orchard. 

b) Crop diseases’ prediction also considers measurements acquired via SYN SynField4 
precision agriculture IoT nodes, integrating a variety of sensor modules. 

c) Real-time video analysis takes place either locally (on the drone), based on already 
trained ML models, or remotely (at the edge) based on federated ML. 

d) Both SynField devices and drones will communicate with an edge server. So, the 
network vulnerabilities at device, edge or cloud level must be eliminated.  

e) The training process of the ML prediction models must be protected against 
cyberattacks, which could highly impact the according predictions.   

f) IoT-NGIN will leverage existing datasets available for Living Lab experimentation, to 
the extent possible. Alternatively, publicly available or synthetic datasets will be used. 

 
4 https://www.synfield.gr/about/. 
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3.2.2 Mapping to IoT-NGIN FL-related cybersecurity tools 
 

GAN based dataset 
generation 

Malicious Attack 
Detector (MAD) 

IoT vulnerability 
crawler  

MTD network of 
honeypots 

    

Generation of 
datasets including 
network-level attacks 

Detection of network 
level attacks, as well 
as data/model 
poisoning attacks  

Detection of 
vulnerabilities in IoT 
devices (SynField, 
drones) and 
edge/cloud nodes 

Mimicking of 
vulnerable 
SynField nodes 

    

3.2.3 Use Case Requirements analysis 
In this section, the requirements of UC#4 are drawn in Table 2 for each of the FL-related 
cybersecurity components of IoT-NGIN. 

Table 2: Requirements analysis for Use case #4 “Crop diseases prediction, Smart irrigation and 
precision aerial spraying“. 

Living Lab Smart Agriculture IoT Living Lab 

Use Case Crop diseases prediction. Smart irrigation and 
precision aerial spraying 

FL service Crop diseases prediction 

GAN based 
dataset 

generation 

Dataset type CSV 

Attacks covered Network-level attacks, Data & Model poisoning 
attacks 

Data size To be defined 

Malicious Attack 
Detector (MAD) 

Data types JSON  

Data size To be defined 

Data 
communication 

protocols 

HTTP 

MQTT 

Data availability Request only 

IoT devices SynField devices, drones 
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IoT vulnerability 
crawler 

Deployment 
type 

Edge/cloud 

MTD network of 
honeypots 

Service types 
mimicked 

(indicative) Web server, Virtual Network Computer 
(VNC) 

Applications 
mimicked 

(indicative) Smart Agriculture app dashboard, 
decoy database, Smart Agriculture app API 

 

3.3 Industry 4.0 Living Lab 
The Industry 4.0 Living Lab will validate the IoT-NGIN framework in real-life applications via 3 
use cases in both BOSCH facilities in Barcelona and ABB facilities in Pitäjänmäki, Helsinki, 
namely UC#6 “Human-centred safety in a self-aware indoor factory environment”, UC#7 
“Human-centred Augmented Reality assisted build-to-order assembly” and UC#8 “Digital 
powertrain and condition monitoring”. All three use cases will use Federated Learning 
framework in training their AI models, according to D3.1. 

3.3.1 Preconditions per application 
The preconditions identified as relevant for cybersecurity against on-device FL for the 
“Human-centred safety in a self-aware indoor factory environment” use case are identified 
as follows: 

a) Edge computing resources will be used to support a set of AI functions that will process 
the real-time location of the Automated Guided Vehicles (AGVs), based on the real-
time stream coming from the safety cameras. The AI functions will determine a 
potential collision between AGVs, or between a worker and an AGV and will issue an 
early warning. 

b) The AI models that will be used will be trained at the edge devices, in a federated 
learning set up among edge devices in the same factory. 

c) The cameras installed in the factory for collecting images of the AGV are installed in 
accessible positions and communicate with the edge server via LAN or Internet 
connection, so any network vulnerabilities must be early identified. 

The “Human-centred Augmented Reality assisted build-to-order assembly” Use Case 
underlines the following points, which are of interest to IoT-NGIN FL related cybersecurity 
tools. 

a) This UC aims to assist human workers in the assembly line with the use of Augmented 
Reality (AR). Machine learning and computer vision techniques will be used to detect 
product defects and differentiate between different components and modules. 

b) IoT-NGIN will be able to recognize the components and the stage of the assembly 
process using ML models, which will be trained locally at edge servers and federated 
to produce an aggregate model. 
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d) The cameras installed in the factory for collecting images during the assembly process 
are installed in accessible positions and communicate with the edge server via LAN 
or Internet connection, so any network vulnerabilities must be early identified. 

Moreover, for UC#8 “Digital powertrain and condition monitoring”, the following 
preconditions are of interest to FL-related IoT-NGIN tools. 

a) Condition monitoring and predictive maintenance of powertrains and drive units will 
be based on ML models, which will be generated using federated machine learning. 

b) Parameter tuning and optimization (e.g. in terms of energy consumption) of drive units 
will rely on ML models which will be generated via federated learning. 

c) The IoT devices which will act as data sources, such as smart sensors and heat 
cameras will be installed in accessible positions and will communicate with edge 
devices to provide them their collected data. As such, network vulnerabilities should 
be early detected. 

3.3.2 Mapping to IoT-NGIN FL-related cybersecurity tools 
 

GAN based dataset 
generation 

Malicious Attack 
Detector (MAD) 

IoT vulnerability 
crawler  

MTD network of 
honeypots 

    

- - Detection of 
vulnerabilities in IoT 
devices and 
edge/cloud nodes 

- 

    

 

3.3.3 Use Case Requirements analysis 
In this section, the requirements per use case are presented for each of the FL-related 
cybersecurity component of IoT-NGIN in Table 3 to Table 5, respectively. 
Table 3: Requirements analysis for Use case #7 “Human-centred safety in a self-aware indoor factory 

environment“. 

Living Lab Industry 4.0 Living Lab 

Use Case Human-centred safety in a self-aware indoor 
factory environment 

FL service Collision Detection AGV Route Planning 

Dataset type N/A 
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GAN based 
dataset 

generation 

Attacks covered N/A 

Data size N/A 

Malicious Attack 
Detector (MAD) 

Data types N/A 

Data size N/A 

Data 
communication 

protocols 

N/A 

Data availability N/A 

IoT vulnerability 
crawler 

IoT devices Cameras 

Ultra-Wide Band (UWB) sensors 

AGVs 

Deployment 
type 

Edge/cloud 

MTD network of 
honeypots 

Service types 
mimicked 

Ν/Α 

Applications 
mimicked 

N/A 

 
Table 4: Requirements analysis for Use case #8 “Human-centred Augmented Reality assisted build-

to-order assembly “ 

Living Lab Industry 4.0 Living Lab 

Use Case Human-centred Augmented Reality assisted build-
to-order assembly 

FL service (AR) Object detection and classification 

GAN based 
dataset 

generation 

Dataset type N/A 

Attacks covered N/A 

Data size N/A 

Malicious Attack 
Detector (MAD) 

Data types N/A 

Data size N/A 
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Data 
communication 

protocols 

N/A 

Data availability N/A 

IoT vulnerability 
crawler 

IoT devices Cameras, Ultra-Wide Band (UWB) sensors, AGVs 

Deployment 
type 

Edge/cloud 

MTD network of 
honeypots 

Service types 
mimicked 

Ν/Α 

Applications 
mimicked 

N/A 
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Table 5: Requirements analysis for Use case #9 “Digital powertrain and condition monitoring“ 

Living Lab Industry 4.0 Living Lab 

Use Case Digital powertrain and condition monitoring 

FL service Predictive maintenance 
of powertrains 

Energy consumption 
optimization 

GAN based 
dataset 

generation 

Dataset type N/A 

Attacks covered N/A 

Data size N/A 

Malicious Attack 
Detector (MAD) 

Data types N/A 

Data size N/A 

Data 
communication 

protocols 

N/A 

Data availability N/A 

IoT vulnerability 
crawler 

IoT devices Variable speed drive, smart sensor, heat camera 

Deployment 
type 

Edge/cloud 

MTD network of 
honeypots 

Service types 
mimicked 

Ν/Α 

Applications 
mimicked 

N/A 

 

3.4 Energy Grid Active Monitoring/Control Living 
Lab 

The Energy Grid Active Monitoring/Control Living Lab will validate the IoT-NGIN framework in 
two use cases, namely UC#9 “Move from Reacting to Acting in Smart Grid Monitoring & 
Control” and UC#10 “Driver-friendly dispatchable EV charging”. UC#9 will exploit FL in 
training consumption and/or generation prediction AI services, while UC#10 will use FL for 
developing the “Forecasting of energy demand” AI service.  
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3.4.1 Preconditions per application 
Under the IoT cybersecurity perspective, the following preconditions are taken into account 
for UC#9: 

a) Anomaly detection ML models will be trained using FL techniques to identify grid 
health issues early, to the extent possible, allowing tracking the health of the grid and 
indicating that maintenance is required before obvious performance degradation or 
even failure. 

b) The cybersecurity of the model training process is mandatory for the Critical 
Infrastructure of Energy, securing reliability and effectiveness of the ML models. 

c) Given the integration of various platforms and numerous diverse devices, most of 
them exposed in public places (e.g. smart meters), eliminating device vulnerabilities 
is crucial for the UC. 

d) Network-level cybersecurity is also of interest to the use case, to early detect and/or 
avoid hacking activity in the energy network, to the extent possible. 

The preconditions identified as relevant for cybersecurity against on-device FL for the “Driver-
friendly dispatchable EV charging” use case are identified as follows: 

a) Data from geographically dispersed charging stations, electric vehicles and smart 
meters will be used to train ML models, able to forecast the energy demand for the 
EV charges. 

b) The ML models will be trained via federated learning tools to exploit knowledge from 
various edge servers, which could belong to different vendors, so they would be 
unwilling to disclose any data. 

c) As the charging stations, the electric vehicles and smart meters communicate with an 
edge or cloud server, IoT vulnerabilities should be early detected. 

d) The cybersecurity of ML model training must be ensured. 
e) Network-level cybersecurity will thus be enforced via anomaly detection ML models, 

providing inference over synthetic network datasets. 

3.4.2 Mapping to IoT-NGIN FL-related cybersecurity tools 
UC#9 and UC#10 will exploit the IoT-NGIN tools towards addressing FL attacks as shown in 
the next table. 

GAN based dataset 
generation 

Malicious Attack 
Detector (MAD) 

IoT vulnerability 
crawler  

MTD network of 
honeypots 

    

Generation of 
datasets including 
network-level attacks 

Detection of network 
level attacks in the 
smart grid and across 
the network of 
charging stations; 
Detection of 
data/model 
poisoning attacks in 

Detection of 
vulnerabilities in IoT 
devices (e.g. smart 
meters, Power quality 
analysers (PQA), 
Phasor Measurement 
Units (PMUs), charging 
stations, electric 

N/A 
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anomaly detection 
ML models for smart 
grid status monitoring 

 

vehicles) and 
edge/cloud nodes 

    

3.4.3 Use Case Requirements analysis 
The UC#9 requirements for each of the IoT cybersecurity components of IoT-NGIN are drawn 
in Table 6. 

Table 6: Requirements analysis for Use Case #9 “Move from Reacting to Acting in Smart Grid 
Monitoring & Control “. 

Living Lab Energy Grid Active Monitoring/Control Living Lab 

Use Case Move from Reacting to Acting in Smart Grid 
Monitoring & Control 

FL service Anomaly detection in smart grid operation 

GAN based 
dataset 

generation 

Dataset type CSV 

Attacks covered Network-level attacks 

Data size To be defined 

Malicious Attack 
Detector (MAD) 

Data types JSON  

Data size To be defined 

Data 
communication 

protocols 

MQTT 

Data availability Real-time 

IoT vulnerability 
crawler 

IoT devices Power quality analysers 

Deployment 
type 

Edge/cloud 

MTD network of 
honeypots 

Service types 
mimicked 

N/A 

Applications 
mimicked 

N/A 
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The UC#10-specific requirements are drawn in Table 7 for each of the FL-related 
cybersecurity components of IoT-NGIN. 

Table 7: Requirements analysis for Use Case #10 “Driver-friendly dispatchable EV charging“. 

Living Lab Energy Grid Active Monitoring/Control Living Lab 

Use Case Driver-friendly dispatchable EV charging 

FL service Forecasting of energy demand 

GAN based 
dataset 

generation 

Dataset type CSV 

Attacks covered Network-level attacks 

Data size To be defined 

Malicious Attack 
Detector (MAD) 

Data types JSON  

Data size To be defined 

Data 
communication 

protocols 

HTTP 

MQTT 

Data availability Real-time 

IoT vulnerability 
crawler 

IoT devices Charging stations, Electric vehicle OBD devices, 
Near real-time smart meters 

Deployment 
type 

Edge/cloud 

MTD network of 
honeypots 

Service types 
mimicked 

N/A 

Applications 
mimicked 

N/A 
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4 IoT-NGIN methodology to IoT-driven 
cybersecurity in FL 

As presented in section 2, IoT systems may suffer from various cybersecurity attacks. In 
addition to device or network vulnerabilities, risks may be posed by advancing technologies, 
powered by the increasing use of AI, which expand the attack surface of IoT systems and 
feed even more sophisticated attackers. IoT-NGIN proposes a cyber-threat modelling 
approach, which mostly aligns to ENISA’s threat modelling methodology for AI [71]: 

1. Identification of security objectives: The security properties of the IoT system are 
identified. These could refer to protecting data injection, model training or inference 
processes, to ensuring network or communication security, etc. 

2. Identification of the system functions: The IoT system and its components’ processes 
should be identified, highlighting the interactions between them, as well as with third-
party systems, in order to ensure proper IoT system function. 

3. Asset identification: Assessment of hardware and software components, the security 
of which should be protected. These could include IoT devices, data, processes, ML 
models and artifacts, as well as tools necessary for system operation. 

4. Threat identification: The cybersecurity threats are identified as states or setups which 
result in the system assets failing to meet the security objectives. 

5. Vulnerability identification: Extensively monitor the IoT system properties, which may 
enable the realization of the identified threats, based on state-of-the-art 
cyberattacks. 

6. Threat detection: Cybersecurity threats are detected, based on evidence by already 
realized attacks, as well as on more advanced techniques, which may identify new 
threats which may be attributed to zero-day vulnerabilities. 

7. Threat monitoring and continuous feedback: Cybersecurity attack patterns are 
monitored and analyzed, in order to provide feedback to the previous threat 
modelling steps. This may include allowing attackers’ access in controlled 
environments for tracing attackers’ footprint. 

The implementation of the cyberthreat modelling methodology in IoT-NGIN is depicted in 
Figure 3. First, the security objective has been identified as securing the operation of on-
device FL systems. Then, the use cases per LL are analyzed from the cybersecurity 
perspective, in order to identify both the use cases lifecycle, including their processes and 
interactions. In addition, the IoT devices and services participating in each ML/FL process are 
identified as assets of each use case. Threat identification is based on state-of-the-art analysis 
of relevant attacks, including open repositories, such as MITRE ATT&CK5. Within IoT-NGIN 
scope, data and model poisoning attacks, as well as network-level attacks are identified as 
necessary to be tackled. Common network-level vulnerabilities are identified in literature and 
vulnerability scanning is performed to detect any such vulnerabilities in IoT-NGIN FL settings. 
IoT-NGIN proceeds with ML-based anomaly detection to identify potential threats that have 
been materialized in the FL systems. Last, but not least, IoT-NGIN applies threat monitoring, 
by deploying honeypots mimicking vulnerable services or applications in controlled 
environments. This allows better understanding of attacks, analyzing their network traffic, and 

 
5 https://attack.mitre.org 
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thus, providing valuable feedback to the threat and vulnerability identification processes, as 
well as towards improving the threat detection process. 

 

 
Figure 3: Cyber-threat modelling approach; for each node, implementation hints in IoT-NGIN are 

provided. 

 

In addition to the desk research and analysis required for accomplishing the identification 
steps, IoT-NGIN provides a set of tools which support the threat detection and monitoring 
processes for on-device FL settings.  

First, IoT-NGIN provides the Generative Adversarial Network (GAN) based IoT attack dataset 
generator component, which generates high-value synthetic datasets of attacks, using a 
small portion of real data and preserving the utility and fidelity of real datasets. The GAN 
architecture consists of two components, namely the Generator and the Discriminator. The 
generator tries to generate new realistic data, as close to the input dataset as possible. Then, 
the discriminator tries to tell generated from real input data. As both components try to 
improve themselves, while the GAN is running, at the end the generator will be able to 
generate realistic datasets, while the discriminator will no longer be able to identify the 
synthetic against the real data. In IoT-NGIN, GANs are exploited in generating datasets 
implying data and model poisoning attacks, as well as network level attacks for IoT systems 
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participating in FL configurations. Such synthetic datasets can be used to compensate for 
the unavailability of appropriate training datasets for ML anomaly detection models. 

 
Figure 4: Malicious Attack Detector deployment in FL system. 

 

Moreover, IoT-NGIN cybersecurity tools include the Malicious Attack Detector (MAD) 
component. It refers to ML-based anomaly detection module, able to identify attacks in on-
device FL. The types of attacks or anomalies identified depend on the training dataset, which 
will rely on both real and synthetic data. Considering the FL system of Figure 4, a MAD 
instance can be placed in each FL node, either on the edge nodes participating in FL as 
contributors of their local ML model updates or on the Aggregator node, which calculates 
the global (aggregated) model and resides at edge or cloud resources. 

The IoT vulnerabilities crawler is also part of the cybersecurity tools of IoT-NGIN for the 
distributed IoT systems, which may implement FL configurations. It is a distributed service 
which scans both IoT devices and services against a group of vulnerabilities organized in 
service oriented plugins. The crawler is useful to performing vulnerability assessment of IoT 
systems, as well as to providing useful feedback for improving their security, as well as to 
further analyzing cyber-threats or attacks related to the identified vulnerabilities in the ioT 
systems under investigation. 

Last, but not least, the Moving Target Defence (MTD) network of Honeypots of IoT-NGIN allows 
exploration of attackers’ behavior, exploiting IoT systems’ vulnerabilities. Honeypots are 
widely used in network security. A honeypot is a decoy computer system that appears 
attractive to an attacker and can be used to collect information on threat behavior and 
vectors. MTD dynamically changes the attack surface to continuously increase complexity 
and confuse the attacker, thus preventing the system vulnerabilities from being exploited. 
The MTD network of Honeypots of IoT-NGIN can be used to mimick vulnerabilities identified 
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by the IoT vulnerabilities crawler. Then, it can provide useful feedback to the vulnerability and 
threat modelling, as well as threat detection processes. 

 

As a result, IoT-NGIN provides valuable tools for preserving cybersecurity in IoT systems. In the 
next sections, the initial versions of the GAN based IoT attack dataset generator and the IoT 
vulnerabilities crawler are presented. 
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5 State-of-the-art GAN-based approaches for 
synthetic dataset generation 

Throughout this section, the GAN-based approaches for the generation of synthetic Intrusion 
Detection System (IDS) Dataset, developed over the IoT-NGIN project is going to be 
described. Firstly, an initial overview of GAN models is given, following by the analysis of the 
state-of-the-art GAN-based models for tabular data generation, which are examined over 
the project. Afterwards, the evaluation metrics that are applied on synthetic tabular data 
are detailed described.  

5.1 GAN models overview 
Generative Adversarial Networks (GANs) are a type of Neural Network architecture for 
generative modeling. GANs were first introduced by Goodfellow et al. [72] in 2014. GAN 
models are used for unsupervised learning, based on a two-player game theoretical 
scenario to learn the distribution and the patterns of the training data, in such a way that the 
model can generate new data that preserve the characteristics of the training data. Later 
developments in GANs improved speed and training performance. Arjovsky et al. introduced 
the Wasserstein model [73], which is an improved GAN model that leverages the Wasserstein-
1 metric to define a more sophisticated loss function with Gulrajani et al. introducing gradient 
penalty on Wasserstein GAN [74] to address the side effects of weight clipping during training. 
In various applications, mainly focusing on generating images [75], [76], [77], [78] GANs have 
shown remarkable results. Regarding the generation of adversarial malicious examples, 
GANs have been tried out in some methods. In [79] and [80], the authors generate malicious 
traffic records using GANs, while those type of models are used in [81] to synthesize malware 
examples. 

5.1.1 Vanilla GAN 
A Vanilla GAN model consists of two independent sub-models, the Generator G and its 
adversary, the Discriminator D. The generative model G understands the data distribution 
p(g) of the real data space x. Then, considering an input noise variable, the Generator G 
generates new adversarial examples G(z) that have the same distribution of x. The Generator 
G is trained to maximize the probability that the Discriminator D could correctly predict 
generated as real samples, while the Discriminator D is trained to distinguish if the given 
sample is real or generated by the Generator G. 

The mathematical expression of the Vanilla GAN derives from the cross-entropy between the 
real and generated distributions, and is the following: 

 

 

In equation (1), discriminator D(x) tries to maximize the quantity 𝑉(𝐺, 𝐷)	for any given 
generator G(z), while G(z) is the generator’s output when given z. 𝔼)~+!"#"()) and 𝔼.~+$(.) 
correspond to expected values over all real data instances and over all generated fake 

 min
"
max
#

𝑉(𝐷, 𝐺) = 𝔼$~&!"#"($)[log	 𝐷(𝑥)] + 𝔼)~&$())[log	(1 − 𝐷(𝐺(𝑧)))] (1) 
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instances, respectively. The global optimum for this task is when 𝑝/0"0 =	𝑝1 and this 
corresponds to the global minimum of the training criterion. To avoid overfitting when training 
finite datasets, the Discriminator D must be optimized simultaneously with the Generator G. 
Practically, it is possible that the equation (1) could not provide adequate gradients for G to 
be trained sufficient. During the start of the learning process, the Discriminator D may reject 
high confidence samples created by a poor Generator G, because they are different from 
the training data. This can lead to saturation of 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)). To address that, Generator 
G can be trained to maximize 𝑙𝑜𝑔𝐷(𝐺(𝑧)) instead of minimizing	𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)). 

5.1.2 Wasserstein GAN (WGAN) 
A modification of Vanilla GAN is the Wasserstein GAN (WGAN) [73], that aims to train the 
Generator and the Discriminator to better approximate the distribution of the real data and 
improve the training process. Firstly, a meaningful loss function, namely Wasserstein-1 
distance, is applied, which is correlated with the quality of the generated samples. The 
Wasserstein-1 distance measures the distance between probability distributions. Additionally, 
the Discriminator of WGAN does not contain a sigmoid activation at the last layer, resulting 
to logits. The Wasserstein-1 distance, as it is described in equation (2), is applied directly to 
logits, forcing the logit distributions to be similar. The output of the discriminator loss is a score, 
which indicates the realness or fakeness of the generated sample. The Lipschitz function is 
used to constrain the optimization problem, by clipping the weights of the discriminator 
function. Lastly, the RMSProp optimizer is used. The Wasserstein-1 metric, also called Earth 
Mover’s distance is defined as follows: 

 

 

where ||𝑥 − 𝑦|| is the cost function, 𝑝2	, 𝑝1 are the probability distributions and 𝛱(𝑝2 , 𝑝1) denotes 
the set of all joint distributions 𝛾(𝑥, 𝑦). The infinite number of joint distributions in 𝛱A𝑝2 , 𝑝1B makes 
the Wasserstein-1 distance intractable. Thus, the authors in [73] apply Kantorovich-Rubinstein 
duality. Hence, Wasserstein-1 distance takes the following form: 

 

 

 

where the supremum corresponds to all the 1-Lipschitz functions 𝑓: 𝑋 → ℝ. Merging this 
function with a GAN, the result is as follows: 

 

 

 

where the functions {𝑓%}%∈5 are K-Lipschitz. 

The WGAN model performs a more stable training process, that is less sensitive to the 
architecture of the model and the selection of hyperparameters. Moreover, the mode 
collapse phenomenon, a typical GAN issue in which the Generator is able to produce limited 
varieties of the trained samples, is reduced. The most significant benefit of WGAN is the 
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continuously estimation of Wasserstein-1 distances, by training the Discriminator till optimality. 
In contrast, weight clipping is not a good way to enforce Lipschitz constraint. The role of this 
constraint is to prevent 𝑓 from arbitrarily enhancing small differences and to assure that the 
𝑓 result of two similar samples will be similar as well. If the clipping parameter is large, then 
the time needed for the weights to reach their limit increase. If the clipping is small, this may 
result to vanishing gradients problem, in which a deep NN cannot propagate important 
gradient information from the output of the model back to starting layers. That is the reason 
why authors in [74] proposed the use of gradient penalty instead of weight clipping. 

5.1.3 WGAN-GP 
Wasserstein GAN with Gradient Penalty (WGAN-GP) [74] was introduced shortly after the 
WGAN algorithm. The improvement of this work lies on the gradient penalty that is used to 
enforce Lipschitz constraint, instead the weight clipping of the WGAN. Particularly, the 
WGAN-GP penalizes the model when the gradient norm moves away from the target norm 
value of 1. The application of gradient penalty requires one more modification in the 
architecture. Specifically, the batch normalization is not used in the Discriminator, since the 
batch normalization introduces correlation between the samples of the same batch. 
However, the gradient penalty is calculated for each individual sample and not for the entire 
batch, making the batch normalization not a suitable technique. Other normalization 
techniques, which does not correlate the samples can be used, such as layer normalization. 
The WGAN-GP demonstrates strong performance as well as stability in different applications.  

The loss function with Wasserstein distance and gradient penalty applied, is defined by the 
equation: 

 

where λ is the penalty coefficient. 

 

5.2 GAN models for IDS 
The ability of GANs to learn data distribution and then synthesize data based on this 
distribution can bring valuable effects in many fields. GAN models have shown great 
possibilities in the generation of synthetic images [75] and text [82]. Recently, extensive 
research has been performed in the application of GAN models in cybersecurity field. 
Specifically, GAN-based models can be used in different tasks in in this field, such as malware 
detection [83], generation of adversarial malware attacks [84] as well as in IDS. In this 
chapter, an analysis of GAN-based models for generation of adversarial attacks trained and 
validated at real-world network datasets is provided.   

5.2.1 DoS-WGAN 
DoS-WGAN [84] is a GAN-based architecture that utilizes the Wasserstein generative 
adversarial networks (WGAN) with gradient penalty technology with aim to generate DoS 
attacks that evade Network Intrusion Detection System (NIDS). The algorithm synthesizes a 
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set of eigenvalues of traffic, preserving the characteristics of DoS attacks. Output of this 
model can reduce the detection rate of a network traffic classifier.  

The DoS-GAN model is trained and evaluated at DoS attacks of KDD’99 [85] dataset. The 
architecture is composed by a Generator, Convertor and Discriminator. The Generator is 
trained to make Discriminator incapable to distinguish the generated data from the real. The 
Generator products a set of 41-dimensional values. The Convertor integrates the property 
values of DoS records with the created ones, creating a forged set of values for network 
traffic. Then, the discriminator receives the forged and the normal network traffics and 
attempts to distinguish them. The generated data are fed to a NIDS, in which the detection 
rate drops to 47.6 % from 97.3 %.    

5.2.2 IDSGAN 
IDSGAN [79] is a GAN-based framework, having as goal to generate adversarial malicious 
traffic examples, that are able to deceive and evade detection process of the defense 
systems. The architecture of IDSGAN methods consists of a Generator, a black-box IDS and 
a Discriminator. The training and evaluation of IDSGAN models is performed at NSL-KDD 
dataset, which their characteristics were considered during the preprocessing of the 
dataset.  

For the training of IDSGAN, the NSL-KDD dataset is split to normal and malicious traffic. The 
adversarial malicious attacks are generated by the Generator, based on the original 
malicious traffic records. Then, those adversarial attacks and the original normal traffic are 
fed to the black-box IDS, which aims to detect attacks. Machine learning algorithms are used 
for the implementation of black-box IDS component of IDSGAN method. Subsequently, the 
Discriminator is trained to simulates the black-box IDS from the predicted labels and the 
original labels. Feedback from the Discriminator is given to the training procedure of the 
Generator. The Generator and the Discriminator are designed and developed on basis of 
Wasserstein GAN [73].  

During the generation of adversarial examples, the attack function of the traffic is not 
invalidated since the functional and nonfunctional features are considered. The IDSGAN 
shows good performance in synthesizing adversarial malicious attacks of different attacks. 
Additionally, the authors of IDSGAN performed experiments, that demonstrate the wide 
feasibility and flexibility of IDSGAN framework.   

5.2.3 SynGAN 
SynGAN [86] is another framework that generates adversarial network attacks based on GAN 
models. This model synthesizes malicious packet flow mutations from real attack traffic, that 
can be used to improve NIDS attack detection rates. SynGAN model contains the Generator, 
the Discriminator and the Evaluator and it applies GP-WGAN algorithm on order to generate 
network Distributed Denial of Service (DDoS) attacks.  

The Generator tries to generate adversarial examples similar to real attacks. Afterwards, the 
Discriminator attempts to distinguish the generated by the real samples and provides 
feedback to the Generator to improve the quality of generated samples. When the training 
is finished, only the Generator is used to generate adversarial DDoS attacks. In the end, the 
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Evaluator tries to discern the generated from the real attack record using appropriate quality 
benchmark.   

The developed framework is evaluated at two IDS datasets, which are NSL-KDD and 
CICIDS2017 [87]. The quality of generation procedure is measured by benchmark based on 
root mean square error. The SynGAN model is able to generate similar adversarial attacks to 
the original attacks.  

5.3 GAN Models for Tabular Data Generation 
Over the past years, potential use of GANs have been explored for tabular data generation 
since they offer great flexibility to model data distributions in contrast with traditional 
statistical techniques. Specifically, several algorithms such as TableGAN [88], CTGAN [89] and 
CopulaGAN [90] proved that GANs outperform classical methods for tabular data synthetic 
generation. Additionally, suitable quantitative and qualitative methods to evaluate those 
trainable GAN models are needed. 

Several GAN models have been used to handle tabular data. Kunar et al. introduced CTAB-
GAN [91], a conditional table GAN that can model diverse data types with complex 
distributions. In [92], Passenger Name Records (PNRs) data are synthesized utilizing a Cramer 
GAN, categorical feature embedding and a Cross-Net architecture. The authors in [93], use 
GANs to generate continuous time series on Electronic Health Records (EHR) data while in 
[94] MedGAN, which combines an autoencoder with a GAN, is proposed to generate high-
dimensional discrete variables from EHR data. TableGAN [88], consists of a convolutional 
Discriminator and a de-convolutional Generator and a Classifier to increase the semantic 
integrity of the synthetic data. In [89], CTGAN is proposed which uses a conditional generator 
to synthesize tabular data. CopulaGAN [90], a variation of the CTGAN model which utilizes 
Cumulative Distribution Function (CDF) based trans-formation to facilitate the CTGAN model 
training. 

Giving the table Treal with real data, the task of synthetic data generation results to a 
synthetic table Tsyn. The T is partitioned into training set Ttrain and test set Ttest. A GAN model 
is trained at Ttrain. The data generator G learns the data distribution of each column in a 
table T and then it is used to generate a synthetic data of the table Tsyn. A successful data 
generator G for tabular data should be able to address the challenges associated with the 
nature of real-world tabular data.  

It is common, that the T contains mixed data types of numerical and categorical columns. 
The numerical columns of table can have either discrete or continues values. Thus, the 
Generator G should be trained to simultaneously learn and generate a mix of data types. 
Additionally, the shape distribution of each column may differ, following usually non-
Gaussian and multimodal distributions, where the min-max transformation causes vanishing 
gradient problems. In categorical columns of real-world tabular data, the imbalance 
problem often occurs since some classes have more instances than others. Imbalanced data 
leads to mode collapse as well as to inadequate training of the minor classes. Furthermore, 
sparse one-hot-encoded vectors can cause issues at the training procedure of the 
Discriminator D since it learns to distinguish real from fake data from the distribution’s rareness 
rather to the realness of the value. Different GAN models have been created in order to solve 
some or all of the above aforementioned issues. TGAN [95] is constructed to work on any 
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tabular dataset, while MedGAN [94] tries to generate simultaneously discrete and continuous 
samples. 

5.3.1 TableGAN 
TableGAN [88] is a GAN-based architecture which synthesizes fake tabular data with similar 
statistical properties to the original table. Privacy concerns motivate the authors to develop 
this model to prevent information leakage. The discriminator D and the generator G of the 
TableGAN are convolutional neural networks (CNN). The architecture of TableGAN is based 
on the deep convolutional GAN (DCGAN) [75], which is one of the most popular models for 
image synthesis.  

Another architectural component of TableGAN is the classifier C, which is involved in the 
training process and aims to increase the semantic integrity of generated records. The 
classifier C has the same architecture as the discriminator D, while it is trained based on the 
ground-truth labels of the real table. C learns the correlation between true labels and the 
features of the table and predicts the labels of the synthetic data. Thus, C educates the 
generator G if the generated record is semantically correct. 

5.3.2 CTGAN 
Conditional Tabular GAN (CTGAN) [89] is a GAN-based architecture, designed to synthesize 
tabular data. The key improvements of CTGAN try to overcome the challenges of modelling 
tabular data using GAN architecture. In particular, the architecture of CTGAN deals with 
non-Gaussian and multimodal distribution by exploiting a mode-specific normalization, 
which converts continuous values of arbitrary distribution into a bounded vector, a 
representation suitable for neural networks. Previous models, such as TableGAN [88], 
normalize continuous values to [-1, 1] using min-max normalization techniques. In CTGAN, the 
variational Gaussian mixture model (VGM) [96] is used for each continuous column 
independently.  

Additionally, a conditional generator and training-by-sampling is implemented to overcome 
the data imbalance challenge of discrete columns. The data is sampled in a way that all the 
categories of discrete columns are evenly occurred during the training procedure. A cond 
vector allows the conditioning on a value of a specific column via one-hot-encoding. The 
conditional generator G takes as inputs random noise as well as the cond vector, while it is 
forced to mimic the desired condition. The training of the model is done using the WGAN loss 
with gradient penalty [74]. The output of conditional generator is evaluated by the critic, 
computing the distance between the learned and real conditional distribution. 

5.3.3 CopulaGAN 
CopulaGAN model [90] is a variation of the CTGAN, which is introduced in SDV opensource 
library. It exploits the Cumulative Distribution Function (CDF) based transformation, that is 
applied via the GaussianCopula. Particularly, the CopulaGAN uses those alternatives of 
CTGAN in order to learn easier the data. Based on probability theory, copulas are used to 
describe the intercorrelation between random variables. 
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During the training procedure, CopulaGAN tries to learn the data types and the format of 
the training data. The non-numerical and null data are transformed using a Reversible Data 
Transformation (RDT). Due to this transformation, a fully numerical representation occurs from 
which the model can learn the probability distributions of each table column. Additionally, 
the CopulaGAN attempts to learn the correlation between the columns of the table. 

5.4 Evaluation Metrics for Tabular Data Generation 
Recent advances of generative modelling identified the need for suitable quantitative and 
qualitative methods to evaluate trainable models. Reliable evaluation metrics are important 
not only to rate GAN models but also to identify possible errors in the generated data. 
Specifically in cases where people face difficulties distinguishing the quality of synthetic data, 
such as medical images, the requirement for trusted metrics is essential [97].  

Evaluating a GAN model is not a straightforward procedure since various metrics can lead 
to different outcomes. Specifically, a good performance in one evaluation metric cannot 
guarantee good performance in another metric [98]. Additionally, the metrics should be 
chosen with respect to the application that are going to be used for. Inception Score [99], 
Fréchet Inception Distance [100] and Perceptual Path Length [101] are some metrics that 
are introduced for the evaluation of general GAN models.  

The synthetic data would be evaluated against a sufficient number of metrics that are 
suitable for the task of tabular data generation. A combination of those methods can express 
a complete picture about the performance of the generator G of different GAN models. The 
evaluation is performed on the table of real data Treal as well as on the table of synthetic 
data Tsyn, which are generated from the trained generator G. Metrics can be categorized 
into two subcategories: Visual, and Machine Learning based.  

5.4.1 Visual evaluation 
Visual representation of the generated data is a powerful method to evaluate the 
performance of the generator G, by analyzing if G is able to maintain the properties of the 
real data. Based on this, humans can easily verify results and recognize similar patterns 
between real and synthetic data. Additionally, the visual analysis of results provides 
information that cannot be covered from the quantitative metrics. The visual evaluation can 
be based on Distribution, Cumulative Sums, and Column Correlation.  

The Distribution plot of each column for real and synthetic data can be a quick sanity check, 
although it does not reveal any hidden relation. This representation can point out if the 
statistical properties of the generated and real data are similar to each other. 

The Cumulative Sum of each column for real and generated data can be visualized to 
indicate the similarity between the distributions per column. This visualization can present a 
useful understanding for both categorical and continuous columns. However, this 
representation cannot provide any insight about the relations between columns.  

Another evaluation method can be based on the Correlation table, which shows the 
association between each column of the table. Comparing the correlation matrix of the real 
and synthetic data can indicate if the generator manages to appropriately model the 
relationship between the columns of the table.  
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5.4.2 Machine Learning-Based Metrics 
This family of metrics exploits Machine Learning algorithms to evaluate the quality of the 
generated data. They are able to provide insight knowledge about the relations that Treal 
and Tsyn have. Particularly, GANs for tabular data generation task are evaluated by the 
detection metrics as well as Machine Learning efficacy metrics as they are described in [102]. 

The Detection Metrics evaluate how difficult is to differentiate the generated from the real 
data. Specifically, those metrics are based on Machine Learning models, which predict if the 
input data is synthetic or real. For this reason, a flag is associated to each data record, 
indicating if it is real or generated. Afterwards, the data with the flags are shuffled and the 
Machine Learning models are cross-validated, attempting to predict the flag. Finally, the 
result of those metrics equal to 1 minus the average ROC AUC score of all cross-validation 
splits. The Machine Learning models that can be used in those metrics are Logistic Regression 
or SVD classifier. 

The Machine Learning Efficacy Metrics indicate if it is possible to replace the real with 
generated data to solve problems using Machine Learning models. In particular, a model is 
trained on Tsyn, and then, it is tested on Treal. In case of classification problems, Decision 
Tree, AdaBoost, or MLP classifier can be used, while the performance of those models is 
evaluated based on accuracy and F1 score. For regression tasks, Linear Regression or MLP 
regression may be utilized as machine learning models, and the evaluation is performed by 
R2. The average performance of different models can be used as metric for the evaluation 
of G.  

As it is mentioned above, those metrics are occurred by solving Machine Learning problems. 
Therefore, they can only be applied on datasets that contain a target column, which should 
be predicted based on the rest of the data. The target column could contain true labels or 
ground truth values for the classification and regression task, respectively. 

5.5 Intrusion Detection System (IDS) Datasets 
In this chapter, an analysis of the most well-known available IDS datasets is provided, 
including the KDD’99 [85] , the NSL-KDD [103]  and the UNSW-NB15 [104].  

5.5.1 KDD’99 
KDD’99 [85]  is a very common IDS dataset, which have been extensively used in research, 
especially for intrusion detection in network traffic. The dataset contains 41 features, and it 
has 5 classes, which are Normal, Denial of Service (DoS), Probe, Remote to Local (R2L) and 
User to Root (U2R). The KDD’99 includes 4,898,430 and 311,029 records in training and testing 
set respectively, making it the largest IDS dataset. Training and testing sets are highly 
imbalanced since the DoS class has many more records than the second most frequent 
class, that is Normal.  Another characteristic of KDD’99 is that the testing set includes a higher 
amount of R2L records than the training set. However, the most critical issue of this dataset is 
the large number of duplications records, specifically for DoS class. This can lead to unstable 
and inconsistent training procedure of machine learning algorithms.  
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5.5.2 NSL-KDD 
The NSL-KDD [103]  is an Intrusion Detection System dataset, which is an improved version of 
its predecessor, the KDD’99 [85] dataset, which suffers from a large number of duplicate 
records. Specifically, the NSL-KDD dataset does not contain redundant records in the train 
and test sets. Therefore, classifiers that would be trained and tested at those datasets would 
not be biased based on the most frequent records. Another advantage of NSL-KDD over the 
KDD’99 is the reasonable amount of data in the train and test sets, providing the opportunity 
to perform experiments on the complete sets. The NSL-KDD is one of the most well-known 
publicly available datasets since it is used by many researchers to develop efficient and 
accurate Intrusion Detection Systems. The labeled attacks of the NSL-KDD dataset can be 
grouped in four main types, namely Denial of Service (DoS), Probe, User to Root (U2R), and 
Remote to Local (R2L).  

5.5.3 UNSW-NB15 
The UNSW-NB15 [104] is a relatively new dataset, published in 2015. The dataset has 49 
features and ten classes, included some modern attacks. The features of UNSW-NB15 are 
grouped in five parts, which are Basic, Flow, Time, Content and Additional features. The 
classes are Normal, Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, 
Shellcode, and Worms. The classes of UNSW-NB15 are also imbalanced, with Normal class to 
have most records, following by records of Generic and Exploits class.   
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6 IoT-NGIN GAN-based dataset generator 
Throughout this section, the procedures that takes place over the IoT-NGIN project to design, 
develop and evaluate the GAN-based data generation models, are going to be described. 
Firstly, an analysis of GAN-based dataset generators regarding the technical design aspects 
is provided, including feature engineering, data preprocessing, and the generation of 
adversarial DoS attacks. Then, a detailed overview of hands-on experiments for GAN-based 
model on IDS data generation are presented, containing visual evaluation as well as the 
Machine Learning Metrics of CTGAN, CopulaGAN and TableGAN. Finally, installation 
guidelines provide all the needed information on how to properly install the IoT-NGIN GAN-
based dataset generation component, combined with user guidelines on how to 
successfully run and evaluate the models. 

6.1 Technical design 
This section describes the processes, which are been considered during the design and 
implementation of robust GAN-based models to generate high quality DoS attacks. 
Specifically, feature engineering and data preprocessing procedures are analyzed as well 
as the reasons that certain decisions are made. Lastly, information about the data 
generation procedure is given.  

6.1.1 Feature engineering 
The generation of meaningful synthetic IDS data requires the exploitation of appropriate 
features.  The processes of using domain knowledge to extract those needed features from 
the NSL-KDD dataset are presented in this section. Specifically, this decision making requires 
an analysis of the dataset as well as a deep understanding of the limitations and 
requirements for adversarial attacks generation procedure.  

Therefore, the types of NSL-KDD attacks are presented, following by a statistical analysis of 
the dataset. Then, the properties of NSL-KDD features are described. Based on those 
properties and the attacks’ principles, the features are divided to functional and non-
functional, making the last ones appropriate inputs to the generation models. 

6.1.1.1 Types of attacks  
The attacks of the NDL-KDD dataset can be categorized in four main types, which are Denial 
of Service (DoS), Probe, User to Root (U2R), and Remote to Local (R2L), which have been 
described in Section 2.2.2.3. Table 1 illustrates the type and the labeled attacks of the NSL-
KDD dataset.  
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Table 8: Types of attacks in the NSL-KDD dataset. 

Type Labeled Attack 

DoS 
neptune, back, land, pod, smurf, teardrop, 

mailbomb, apache2, processtable, udpstorm, 
worm 

Probe ipsweep, nmap, portsweep, satan, mscan, saint 

R2L 

ftp_write, guess_passwd, imap, multihop, phf, spy, 
warezclient, warezmaster, sendmail, named, 
snmpgetattack, snmpguess, xlock, xsnoop, 

httptunnel 

U2L buffer_overflow, loadmodule, perl, rootkit, ps, 
sqlattack, xterm 

 

6.1.1.2 Statistical analysis of dataset 
The NSL-KDD dataset [103] contains 148,514 traffic records of normal activities and attacks. 
The dataset includes the train set KDDTrain+ and the test set KDDTest+. The training and the 
testing datasets do not have the same distribution, while the testing dataset contains some 
attacks that are not included in the train dataset. 

From analysis of the NSL-KDD dataset, it is observed that there are 77,052 normal traffics, 
which is more than half of the total records. Regarding the attack records, DoS type is the 
most frequent with 53,386 instances, Probe type has 14,077 instances, while there are a few 
traffic records for R2L and U2R attacks, 3880 and 119 instances, respectively. Figure 5 
illustrates the distribution of records, normal and attack types, in the NSL-KDD dataset. 

DoS is one of the most common types of attack, and it frequently occurs in everyday life. This 
characteristic of DoS attacks is reflected in the NSL-KDD dataset, in which this category 
contains the majority of attack records. Additionally, the detection of DoS attacks is a crucial 
challenge that needs thorough investigation.  
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Figure 5: Number of each category for NSL-KDD dataset. 

 

6.1.1.3 Features of NSL-KDD dataset 
Each traffic record of the NSL-KDD dataset has 41 features, nine of them have categorical 
values, while the rest of the features are in discrete or in continuous values. The categorical 
features of NSL-KDD are mentioned in Table 9.  

Table 9: Categorical features of NSL-KDD dataset. 

Categorical  
Features 

protocol_type, Service, Flag, land, 
logged_in, root_shell, is_host_login, 

is_guest_login, su_attempted 

 

The NSL-KDD features can be broken down into four categories, according to the type and 
property of the features. A short description of the categories is given below, while the Table 
11 contains the features of each category.  

• Intrinsic features (9): includes necessary information of the record, such as protocol, 
service, and duration.  

• Content features (13): comprise information about the content, such as the login 
activities. Those features demonstrate if there are behaviors related to attacks.  

• Time-based features (9): contains the number of connections to the same destination 
host or service as the current connection in the past two seconds.  

• Host-based features (10): checks the 100 past connections, which have the same 
destination host or service with the current connection. 
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Table 10: The four groups of features in the NSL-KDD dataset. 

Feature category NSL-KDD features 

Intrinsic duration, protocol_type, service, flag, src_bytes, dst_bytes, land, 
wrong_fragment, urgent 

Content 

hot, num_failed_logins, logged_in, num_compromised, 
root_shell, su_attempted, num_root, num_file_creations, 

num_shells, num_access_files, num_outbound_cmds, 
is_host_login, is_guest_login 

Time-based count, srv_count, serror_rate, srv_serror_rate, rerror_rate, 
srv_rerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate 

Host-based 

dst_host_count, dst_host_srv_count, dst_host_same_srv_rate, 
dst_host_diff_srv_rate, dst_host_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, 
dst_host_srv_serror_rate, dst_host_rerror_rate, 

dst_host_srv_rerror_rate 

 

6.1.1.4 Constraints for the Generating Adversarial Examples 
The generated tabular data should represent attacks that have evading IDS as their purpose; 
however, in order to achieve this, the generation process should take account and maintain 
the functional characteristic of each attack category [79]. Based on attack principles, each 
category of attacks has its functional and nonfunctional features. The functional features 
describe the basic function of the attack, while the nonfunctional represent the secondary 
characteristics of the attack. The attack properties remain undistributed when the functional 
features do not change, and only the nonfunctional features are modified. Thus, to achieve 
reliable and valid generated attack records, the functional features should be unchanged, 
while the nonfunctional features can be modified. Therefore, the GAN models should be 
trained and then generate only the non-functional features, taking into account the 
examined attack category. Table 3 illustrates the functional features of each attack 
category of the NSL-KDD dataset, as it is discussed in [105].  

Table 11: The functional features of each attack category. 

Attack 
Category Intrinsic Content Time-Based  

Traffic 
Host-Based  

Traffic 
DoS x  x  

Probe x  x x 
U2R x x   
R2L x x   
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6.1.2 Data preprocessing  
An essential step in the ML cycle is data preprocessing, which refers to the techniques of 
preparing the raw data to be used for building and training ML models. Specifically, data 
preprocessing may contain cleaning, filtering, organization or transforming procedures. To 
build robust IoT-NGIN GAN-based generator, data preprocessing techniques are performed 
at NSL-KDD dataset.  

Firstly, data cleaning is performed, mainly regarding the process of fixing incorrect values in 
the features of the dataset. The columns names of the features are converted to lower case 
and spaces are removed. Furthermore, the “su_attempted” feature of NSL-KDD should be 
binary, however after data exploration, it is observed that this feature has 3 values, namely 
0.0, 1.0 and 2.0. Therefore, the last value is replaced to ‘0.0’ for both train and test datasets.   

The next step is related to the organization of the data. The presented GAN models are 
focused on the application of different GAN models for the generation of synthetic DoS 
attacks. Thus, the traffic records of the NSL-KDD dataset are divided into normal and attack 
classes based on the ‘class’ column, while the attacks are separated to four categories: DoS, 
Probe, R2L, and U2R. The records of DoS attack are selected for the training and evaluation 
GANs. Considering the constraints for the generation of adversarial attacks, the features of 
each DoS record of NSL-KDD are split into functional and nonfunctional based on the Table 
11. The nonfunctional are used as the training set of GAN models, while the functional ones 
remain unmodified at the generated samples.  

To improve the quality of the GAN-based generators, further data organization techniques 
are performed. Specifically, the nonfunctional features with categorical values are identified 
since the training of GANs requires this knowledge to model the data appropriately. 
Additionally, the distribution of each feature is determined since the training of CopulaGAN 
is improved by providing the distribution of features that is not Gaussian.  

6.1.3 Generation of tabular data 
Experiments are designed to investigate the general properties and performance of the 
different GAN models for the task of generation of synthetic IDS data. In particular, the 
CTGAN [89], CopulaGAN [90], and TableGAN [88] are trained at the NSL-KDD dataset, taking 
into account the analysis and the preprocessing steps, which are described in subsections 
6.1.1 and 6.1.2. For our experiments, we use the GAN models, which are provided by the 
open-source synthetic data generation ecosystem SDV–The Synthetic Data Vault [106] and 
Synthetic Data Gym (SDGym) [107]. Each model is trained with a batch size of 500 and for 
100 epochs. The learning rates for the generator and discriminator of all models are both 
0.0002. Additionally, the discriminator steps of CTGAN and CopulaGAN are set to 5. The 
training inputs to GAN models are the nonfunctional features of DoS attacks. Consequently, 
the trained models are able to generate the nonfunctional features, which afterwards are 
coupled with the functional ones to create meaningful DoS records.  

Then, the synthetic datasets generated by the trained GAN models are evaluated using the 
metrics, which are described in Section 5.4 of this deliverable. The Distribution and 
Cumulative Sum plots are created using the Table Evaluator [108] library, while the Machine 
Learning-based metrics are calculated based on the Single Table Metrics of the SDV library 
[102].  
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6.2 Hands-on experiments  
In this subsection, visual evaluation, and machine learning-based metrics, related to the 
performance of generated DoS attacks, are provided. 

6.2.1 Visual evaluation  
The performance of GAN models for the generation of DoS attack records can be 
demonstrated visually by cumulative sum and distribution plots. Indicatively, the evaluation 
plots of two discrete features and two continuous features are displayed in order to 
summarize the quality of synthetic data.  Figure 6 and Figure 7 show the plots of discrete 
features, namely “num_compromised” and “hot”. It is observed that both CTGAN and 
CopulaGAN outperform TableGAN in the case of discrete values. Cumulative sum and 
distribution plots of CTGAN and CopulaGAN indicate that the generated discrete features 
of data present similar behavior with the real one. On the other hand, the corresponding 
plots of TableGAN show that this method cannot model the behavior of discrete features. 
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Figure 6: Cumulative Sums and Distributions for discrete feature “num_compromised”. Real data are 
illustrated in blue, while synthetic are illustrated in orange color. 
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Figure 7: Cumulative Sums and Distributions for discrete feature “hot”. Real data are illustrated in 
blue, while synthetic are illustrated in orange color. 

 
Continuous features  
Figure 8 and Figure 9 illustrate the corresponding diagrams for continuous features. In those 
cases, the TableGAN achieves slightly better performance than CTAGN and CopulaGAN. 
However, as it is depicted in Figure 9, all GAN methods suffer when modeling continuous 
features with sparse data. 
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Figure 8: Cumulative Sums and Distributions for continuous feature “dst_host_rerror_rate”. Real data 
are illustrated in blue, while synthetic are illustrated in orange color. 
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Figure 9: Cumulative Sums and Distributions for continuous feature “dst_host_srv_diff_host_rate”. Real 

data are illustrated in blue, while synthetic are illustrated in orange color. 

 
Correlation matrices 
Figure 10 illustrates the column wise correlation of real data as well as the generated one 
from CTGAN, CopulaGAN, and TableGAN. The columns with features that contain zero 
values are eliminated from this representation. Ideally, the correlation matrix of generated 
data should be as similar as possible to the real data correlation table.  Therefore, the 
correlation matrix of generated data is compared to the correlations of real data and the 
methods, that succeed to maintain the real data correlation, are considered as successful. 
Generally, all the models are able to adequately capture the correlations between features. 
Although, as it is observed, TableGAN faces difficulties in capturing some of the correlations. 
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Real data CTGAN 

  
 

CopulaGAN TableGAN 

  
Figure 10: Correlation matrices, indicating the associations per column of the real dataset and each 

of the synthesizers. 

6.2.2 Machine Learning-Based Metrics 
The Machine Learning-Based metrics of the three models are demonstrated in Table 12. It is 
observed that for all the models, the Detection Metric indicates that the Logistic Regression 
Classifier finds it moderately difficult to distinguish the real from the generated data. 
Therefore, the real and the generated data are distinguishable to one degree. Finally, 
regarding the Machine Learning Efficacy Metrics, it seems that all the models indicate similar 
performance, showing that it is possible to replace the real with synthetic data to solve 
Machine Learning problems. 
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Table 12: Detection and Machine Learning Efficacy Metrics for CTGAN, CopulaGAN and TableGAN. 

 Detection 
Metric Machine Learning Efficacy Metrics 

 Logistic  
Regression 

Decision 
Tree AdaBoost 

Logistic  
Regression 
classifier 

MLP 
classifier Average 

CTGAN 0.74 0.97 0.96 0.84 0.96 0.93 

CopulaGAN 0.75 0.97 0.95 0.92 0.96 0.95 

TableGAN 0.76 0.95 0.94 0.92 0.97 0.94 

 

6.2.3 Comparative performance analysis of GAN-based 
models 

Based on a thorough examination of models’ performance with respect to various aspects, 
the Table 13 is generated. Regarding the ability of methods to model discrete features, it is 
observed that CTGAN and CopulaGAN show much better performance than TableGAN, 
which is incapable to perform this task. On the other hand, TableGAN indicates the strongest 
ability to capture the statistical properties and then generate realistic continuous features 
among the other models. CopulaGAN seems that is capable, to one extent, to model 
continuous features, while CTGAN presents slightly poor behavior. Both of CTGAN and 
CopulaGAN display a limited ability to model sparse continuous values.  

Regarding the performance of GAN models on ML-based metrics, all of them indicate similar 
behavior. The Logistic Regression classifier has almost the same moderately difficulty to 
differentiate the generated from the real data. Additionally, the generated IDS data can 
replace the real one to solve Machine Learning problems. To conclude, considering the 
aforementioned, the CopulaGAN seems to have the best in-total performance among the 
others, mainly based on its ability to satisfactorily model both discrete and continuous values.  

Table 13: Comparison table of models’ performance. 

 CTGAN CopulaGAN TableGAN 

Discrete features   x 

Continuous features -   

Detection metric - - - 

ML Efficacy metrics    

In total    
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6.3 Installation guidelines 
This subsection describes the processes to install the developed GAN-based components. It 
should be mentioned, that to build and train CTGAN and CopulaGAN models, the open-
source Synthetic Data Vault (SDV) library [106] is used, which is a synthetic data generation 
ecosystem of libraries, providing the means to learn tabular data and then to generate 
synthetic data with the same statistical properties as the original one.  For the development 
of TableGAN, the Synthetic Data Gym (SDGym) [107] is exploited, which is a framework to 
benchmark the performance of data generators based on SDV ecosystem.  

The visual evaluation of trained models is performed based on Table Evaluator [53] library, 
while the Machine Learning-based metrics are calculated based on the Single Table Metrics 
of the SDV library [102].  The code and the installation procedures are available on the 
project Gitlab repository, accessible at https://gitlab.com/h2020-iot-ngin, and a brief 
description is given here.   

The developed methods can be installed by the following command:  

git clone https://gitlab.com/h2020-iot-
ngin/enhancing_iot_cybersecurity_and_data_privacy/gan-based-data-
generators/ids-data-generator.git  

 
A folder “ids-data-generator” is created, containing the following subfolders: 

• CTGAN_copulaGAN: the code to train CTGAN and CopulaGAN 
• data: the NSL-KDD data 
• evaluation: the code to evaluate CTGAN, CopulaGAN and TableGAN 
• sdgym: a modified version of SDGym repo [107], including model save function and 

some other minor changes 
• tableGAN: the code to train tableGAN 
• utils: developed functions and the modified Table Evaluator code, which initially is 

cloned by the repo6 and adjusted to the evaluation needs of models  
 
After the execution of each model training and evaluation script, the following files will also 
be created: 

• models: the trained models 
• results: plots of cumulative sums, distributions, and correlation matrices for the three 

models 
• synthetic_dataset: one .csv file of synthetic DoS attacks for each model 

 
To avoid having conflicts with other software installed in the system, it is recommended to 
create two different conda environment7 for each project. The creation of the two different 
conda environments as well as the running guidelines for each component are provided 
below.  
 

CTGAN_copulaGAN component 

 
6 https://github.com/Baukebrenninkmeijer/table-evaluator  
7 https://docs.conda.io/projects/conda/en/latest/index.html  
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Create a conda environment 
cd CTGAN_copulaGAN 
conda create -n sdv python=3.7.9 
conda activate sdv 
pip install -r requirements.txt 

 
The training of the model is done by executing the following commands: 
python CTGAN_train.py  # CTGAN model training 
python copulaGAN_train.py # CopulaGAN model training 

 
Evaluation of models: 
cd ../evaluation 
python CTGAN_evaluation.py # CTAGAN model evaluation 
python copulaGAN_evaluation.py  # copulaGAN model evaluation 

 

TableGAN components  
Create a different conda environment, based on the requirements of SDGym framework: 
conda deactivate 
cd ../tableGAN 
conda create -n sdgym python=3.7.9 
conda activate sdgym 
pip install -r requirements.txt 

 
Training of TableGAN model: 
python tableGAN_train.py 

 
To evaluate the TableGAN model, the sdv conda environment should be activated: 
conda deactivate  
conda activate sdv 
python tableGAN_evaluation.py 

 

Access the outcomes of the training and evaluations procedures by: 
cd ../models  # the trained models 
cd ../evaluation  # visual evaluation plots 
cd ../synthetic_dataset  # synthetic DoS attacks 
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7 IoT-NGIN IoT vulnerability crawler 
According to ENISA, a security vulnerability is “a weakness an adversary could take 
advantage of to compromise the confidentiality, availability, or integrity of a resource” [40]. 
Tightly coupled with the notion of security threats that are defined as “any circumstance or 
event with the potential to adversely impact organizational operations (including mission, 
functions, image, or reputation), organizational assets, individuals, other organizations, or the 
Nation through an information system via unauthorized access, destruction, disclosure, or 
modification of information, and/or denial of service” [109] and attack defined as “any kind 
of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy information 
system resources or the information itself” [110], the management of vulnerabilities is a 
proactive rather than a reactive task, since there are no explicit hints of their existence; 
instead, active and targeted vulnerability scanning should be pursued in order to identify 
and classify the existing vulnerabilities of a system. Indeed, from a process perspective, 
vulnerability management should be performed in a step-wise manner, ENISA identifying 5 
relevant steps, as per Table 14. 

 
Table 14: Vulnerability management process [40]. 

Step Descripition 

Preparation Define the scope of the vulnerability management process. 

Vulnerability 
Scanning 

Vulnerability scanners are automated tools that scan a system for 
known security vulnerabilities providing a report with all the identified 
vulnerabilities sorted based on their severity. Known vulnerability 
scanners are Nexpose, Nessus and OpenVAS. 

Identification, 
Classification and 
Evaluation of the 
Vulnerabilities 

The vulnerability scanner provides a report of the identified 
vulnerabilities. 

Remediating 
Actions 

The asset owner determines which of the vulnerabilities will be 
mitigated. 

Rescan Once the remediating actions are completed, a rescan is performed 
to verify their effectiveness. 

 

The vulnerability management steps of ENISA imply thoughtful and targeted vulnerability 
management. However, in a dynamic environment such as an IoT network of devices and 
services dispersed in the cloud, fog, near and far edge continuum, vulnerability 
management faces multiple additional challenges, including the uncertainty about the 
number or characteristics of the existing devices, the type of exposed services, etc. IoT-NGIN 
aims to tackle these challenges by designing and implementing a dynamic vulnerability 
crawler able to scan for vulnerabilities the IoT-NGIN-supported IoT devices and services under 
three different modalities: 

• On demand, 
• On first appearance, 
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• On a time-scheduled basis. 

In the following paragraphs, the technical specification and high-level design of this 
vulnerability crawler are presented. 

7.1 High-level architecture and specification 
The aim of the vulnerability crawler is to scan devices and services in order to identify possibly 
vulnerable services executed in either. To tackle with the highly dynamic nature of IoT 
networks where variability refers both to the type of services and to the number of devices 
and services that need to be supported, a dynamic, modular architecture has been chosen, 
as depicted in Figure 11. 

 

 
Figure 11: High-level architecture of the vulnerability crawler. 

 

Five core subcomponents have been determined, collectively interworking to achieve the 
functionality of the vulnerability crawler as a whole, as per Table 15. Note that each 
subcomponent has been designed as a stateless microservice, the necessary state 
management being operated by a dedicated DB. The adopted microservices design is 
compliant to the state-of-the-art microservices-oriented architectures definition [111], which 
matches the cloud-native principles and requirements [112], effectively granting the 
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vulnerability crawler with resilience, manageability, observability, adaptability, predictability 
and scalability characteristics [113]. 

Table 15: Subcomponents of the vulnerability crawler. 

Sub 
component Description Input  Output 

Device 
Manager 

Gathers and maintains 
information about 
devices and services 
known to the 
vulnerability crawler 
framework 

Device information 
from the Device 
Indexing component 
(WP4) 

Device information 
to the Scanning 
Scheduler 

Scanning 
Scheduler 

Schedules vulnerability 
scans, either on 
demand, or following a 
schedule, effectively 
enabling time-driven IoT 
services 

Device information 
from the Device 
Manager. Can also be 
self-initiated, when 
dealing with 
scheduled scans 

Scanning jobs to 
the Scanning 
Controller 

Scanning 
Controller 

Orchestrates the 
spawning of vulnerability 
scanning jobs against 
the devices 

Scanning jobs from the 
Scanning scheduler. 
List of supported 
plugins from the Plugin 
manager 

Plugin-specific scan 
directives to the 
job-spawning 
framework (ArgoCD 
[114]). Vulnerability 
scan results to the 
network of 
honeypots (WP5). 

Plugin 
Manager 

Maintains a list of 
scanning plugins, each 
one scanning a device 
or service for a particular 
grouped set of 
vulnerabilities 

List of plugins from the 
plugin repository. The 
plugin repository may 
be mounted as a 
volume containing 
plugin descriptors or a 
DB containing plugin 
descriptors 

List of available 
plugins to the 
scanning controller 

Scanning 
Executor 

Performs a scan against 
a device or service, 
against a particular 
grouped set of 
vulnerabilities, as 
managed by a scan 
plugin 

Plugin-specific scan 
directives to the job-
spawning framework. 
Information from 
external vulnerability 
DBs and associated 
services 

Vulnerability scan 
results to the 
scanning controller 

 

Whenever a new device gets admitted in the IoT-NGIN platform (e.g. registered and indexed 
in IoT-NGIN under the framework of the device indexing service documented in deliverable 
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D4.2 [115]), it publishes the device details to a publish subscribe broker (FIWARE Orion Context 
Broker, see D4.2 [115] and [116] for details) and gets communicated to the Device Manager, 
acting as a subscriber to the aforementioned broker. The device details contain information 
on the device details as per the FIWARE IoT Agent API [117] including its IP address. This 
information gets stored into the internal DB of the Device Manager and gets transferred to 
the Scanning Scheduler, so that a new scan pipeline may be scheduled.  

The Scanning Scheduler, in turn, checks whether this device is known and whether it has 
been recently scanned. If the device is not known or if it is known but has not been scanned 
recently, it schedules a vulnerability scan against it. Otherwise, a scan gets scheduled for a 
(configurable) future timeslot. In any case when it is time to perform a scan against a device 
(or service), the scanning scheduler forwards the target device to the Scanning Controller. 
The latter communicates with the Plugin Manager in order to get the list of available and 
active vulnerability scanning plugins. Each plugin should be considered as a descriptor 
document presenting the plugin details, accompanied with the plugin source code. Figure 
12, below presents a tentative, indicative description of a plugin descriptor document. 

 
apiVersion: iot-ngin.eu/v1 
kind: VulnerabityScannerPlugin 
metadata: 
  name: {plugin name} 
  description: {plugin description} 
  version: {plugin version} 
  url: {URL of the plugin homepage, if any.} 
  target-device-class: {The device class for which the plugin is targeted to} 
plugin: 
  service: {Service relevant to vulnerability} 
  ports: [{List of ports to scan. May also be a range of ports}] 
  timeout: {Time in ms before a connection gets characterized as timed out} 
  vulnerability-services: [{List of vuln. search API endpoints to search}] 
  vulnerability-services-keys: [{List of API keys to use with the external  
                                  vulnerability databases}] 
  workspace-type: {Location type of the plugin, may be “volume”, or “remote”} 
  workspace-chroot: {The home directory of the plugin} 
  flavour: {Programming langugage of the plugin} 
  command: {The command to run to execute the scan} 

Figure 12: Tentative vulnerability scanning plugin descriptor document. 

 

Once having access to the list of available vulnerability scanning plugins, the scanning 
controller will communicate with ArgoCD, instructing it to launch a set of Scanning Executors, 
one for each plugin that is available. Each one of the spawned executors will be also fed 
with the device details to scan for vulnerabilities and with the corresponding scanning plugin 
descriptor (possibly also code, depending on the workspace-type of the plugin; if the 
workspace-type of the plugin corresponds to a git repository, then the code will 
automatically be downloaded from that repo, into workspace-chroot). Upon spawning, 
each scanning executor will start scanning the target device for vulnerabilities considering 
the descriptor-defined service, against the ports defined in the ports descriptor field. Finally, 
depending on the flavour of the plugin (runtime required for the plugin to be executed), a 
command gets executed to start the vulnerability scanning, at service level, i.e. identify 
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whether there are some expected services running behind the designated ports, which 
service version is running etc. Upon scanning completion, the relevant results will be used as 
filters to public vulnerability databases, in order to understand whether the running services 
are known to be vulnerable and, if yes, what are the details of the relevant vulnerabilities 
(e.g. severity level). When the scanning and the vulnerability lookup both get completed, 
the results are sent back to the Scanning Controller which, in turn, interfaces with the network 
of honeypots, so that a relevant honeypot may be spawned and configured, if such one 
exists.  

The adopted design allows IoT-NGIN to scale and exploit at the maximum extend the 
available computational resources at edge level, effectively basing its operation on 
numerous, independent, short-lived scanning tasks. In any case, multiple vulnerability 
screening processes against multiple devices should be able to be executed, at any given 
moment.  

More concrete technical details on the Vulnerability Crawler framework will be provided in 
the continuation of this deliverable, D5.2, due in Q3 2022. 

7.2 Installation guidelines 
The vulnerability crawler will be available for installation using two different modalities for use 
in Kubernetes environments, namely i) using standard Kubernetes manifests and ii) using the 
well-known Kubernetes applications package manager Helm [118]. More details will be 
provided on the component’s gitlab repository available at https://gitlab.com/h2020-iot-
ngin/enhancing_iot_cybersecurity_and_data_privacy/vulnerability-crawler and in the 
continuation of this deliverable, D5.2, due in Q3 2022.  
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8 Conclusions 
The present report has addressed the risks derived from IoT vulnerabilities and cyber attacks 
in the IoT domain, focusing on systems which perform federated learning for training their ML 
models. To this end, the results of the desk analysis of IoT and FL related vulnerabilities and 
attacks have been briefly presented and considered in identifying cybersecurity needs for 
the use cases against which the IoT-NGIN framework will be validated in the LLs. 

Moreover, IoT-NGIN has addressed the need for strategic management of cyberthreats for 
corporations adopting or developing smart IoT solutions. To this end, the report presents the 
cyberthreat modelling methodology proposed by IoT-NGIN and explains how it is 
implemented in IoT-NGIN. Specifically, IoT-NGIN contributes with four cybersecurity tools to 
threat modelling and management, namely the GAN based IoT attack dataset generator, 
MAD, the IoT vulnerabilities crawler and the MTD Network of Honeypots.  

The report includes the initial version of the GAN based IoT attack dataset generator, 
featuring technical design and specifications, as well as initial implementation. Extensive 
comparative analysis of GAN methods and tools for synthetic dataset generation has 
presented and considered as the basis for the IoT-NGIN generator. The first version of the tool 
supports generation of synthetic tabular IDS datasets. Future extension will include 
generation of datasets incorporating data and model poisoning attacks in FL systems. 

Moreover, the initial version of the IoT vulnerabilities crawler has been presented. This includes 
technical design and specifications, while the initial implementation is part of our future work. 

In addition, the next steps of IoT-NGIN activities towards IoT cybersecurity include finalization 
of the technical design and specifications of all four cybersecurity tools, as well as their 
implementation. The outcomes of this work will be reported in deliverable document D5.2 
“Enhancing IoT Cybersecurity (Update)”, which is due in the third quarter of 2022. The stable 
releases will be made available in the project GitLab page as open source, allowing further 
development and experimentation by third parties. 
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