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Executive Summary 
This document consists of the Deliverable “D3.2: Enhancing Confidentiality preserving 

federated ML” of the European H2020-ICT-2018-20 project “IoT-NGIN: Next Generation IoT as 

part of Next Generation Internet”. D3.2 includes all the mandatory state-of-the-art Federated 

Learning tools, methods and algorithms along with the essential privacy-preserving 

characteristics. In addition, it presents the main achievements of IoT-NGIN towards the 

privacy-preserving Federated Learning tools. The keystones of this document are 
summarized as follows: 

1. Extensive analysis of the current state-of-the-art regarding FL tools, methods, 

algorithms and frameworks; 

2. Thorough investigation of open-source Federated Learning frameworks and libraries; 

3. Extensive analysis on privacy-preserving techniques and specifically on Differential 

Privacy, Secure Multi-Party Computation and Homomorphic Encryption; 

4. Definition of the Privacy-Preserving Federated Learning as a Service (PPFLaaS) 

concept; 

5. Presentation of three Federated Learning frameworks that are well suited for the IoT-

NGIN scope, namely Flower, PySyft together with PyGrid and TensorFlow Federated; 

6. Design of the privacy-preserving FL framework architecture, integrating Private 

Aggregation of Teacher Ensembles (PATE) technique with Flower Federated Learning 

framework, for the IoT-NGIN project; 

7. Presentation of the developments towards the first version of the IoT-NGIN Privacy-

Preserving Federated Learning framework, including porting of PATE in Keras and 
experimentation with the Flower Federated Learning framework.  

The scope of this deliverable is to analyse the different Federated Learning techniques and 

methodologies through the lens of privacy-preserving and focus on the ML modelling to 

propose a federated ML module that will provide the IoT-NGIN ML framework with the 

required confidentiality-preserving features.  
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1 Introduction 
Artificial Intelligence (AI) plays a growing role in Internet of Things (IoT) applications. One can 

say that the main added value of AI is its ability to produce insights, to automatically identify 

patterns and to detect anomalies on data collected or generated using IoT sensors and 

other devices. Machine Learning (ML), as a specific subset of AI that trains machines on how 

to learn from data, has efficiently contributed to many aspects, both for businesses and 

consumers, including proactive intervention, tailored experiences and intelligent 

automation. ML is almost everywhere nowadays, from small wearable devices and 

smartphones to powerful super-computers ensuring fast and accurate data analysis. 

Moreover, IoT devices generate a great amount of data every day and thus, raise significant 
concerns about privacy and ownership of the collected or generated data.  

Traditional cloud computing applications need the data to be uploaded and processed on 

a central server giving data access to third parties. This raises privacy and data ownership 

concerns. Furthermore, IoT devices are already capable of processing a vast amount of data 

due to their powerful hardware specifications making it possible for local data processing 

and analysis. Thus, edge computing is witnessing great interest especially after the 

emergence of 5G. 

Nevertheless, data privacy is the most fundamental objective regarding data access and 

processing. This has led to the elaboration of strict data privacy legislations such as the 

Consumer Privacy Bill of Rights in the U.S. and the European Commission’s General Data 

Protection Regulation (GDPR). For example, Articles 5 and 6 of the GDPR state that data 

collection and storage should be restricted to only what is user-consented and decidedly 
indispensable for processing.  

To address privacy issues, Google [1] introduced Federated Learning (FL), a specific 

approach in edge computing. Federated Learning is able to overcome the privacy 

concerns that emerge in a central cloud-based architecture by enabling an on-device 

collaborative training of a machine learning model without sharing any data over the 

network. This is achieved by initializing the training of a global machine learning model on a 

central server for a few iterations to obtain some initial weights. These model weights are then 

sent to the participants (data owners), which use their own resources to locally train the 

machine learning model. After training, each client sends its own updated weights to the 

server, which is responsible to aggregate the weights from all the different clients and 

produce a new global model. This process is repeated for several iterations until the global 

model reaches a certain desired accuracy level or reaches the limit number of iterations. 

Federated Learning aims to train an ML privately by sharing model parameters (weights of 

the model) than sharing the data itself. This feature enables machine learning models to run 

on local and private data. However, model sharing can also potentially reveal sensitive 

information. Therefore, FL needs additional privacy-preserving techniques to enable fully 

private machine learning model sharing and training. Differential Privacy (DP), Secure 

Multiparty Computation and Homomorphic Encryption (HE) constitute the most popular 
privacy-preserving techniques for FL systems. 

Considering the above, IoT-NGIN provides Federated Learning frameworks with enhanced 

privacy-preserving characteristics for the Machine Learning as a Service (MLaaS) platform. 

Specifically, one of IoT-NGINs’ main objectives is to design and develop privacy-preserving 
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FL frameworks which shall include certain methodologies to ensure confidential data 
isolation.  

The present document entitled “D3.2: Enhancing Confidentiality preserving federated ML” is 

a technical report which includes the state-of-the-art regarding Federated Learning with 

enhanced privacy-preserving techniques. Additionally, it presents the Federated Learning 

tools and methods that are designed and developed during the IoT-NGIN project lifecycle. 

1.1 Intended Audience 

The intended audience includes ML engineers and developers which may find this report 

intuitive for their research efforts as well as ML service providers who aim to enhance their 

services with privacy-preserving techniques. This deliverable focuses to the utmost extent, on 

privacy-preserving Federated Learning and its usability through the inter-connected tools in 

the IoT-NGINs’ MLaaS platform. More specifically, this document provides an extensive 

analysis of the state-of-art FL tools, algorithms, privacy-preserving techniques and application 
scenarios. Thus, anyone who wants to engage with FL can take advantage of this document. 

Moreover, IoT-NGINs’ vision for edge computing through Federated Learning methods could 

potentially define new methodologies, services and tools, which enhance already 
implemented solutions and raise awareness about privacy. 

Finally, this report is useful internally, to the project partners and especially Work Package 

(WP) 3 and WP5. Useful feedback could be also received from the Advisory Board, including 

both technical and impact creation comments. 

1.2 Relations to other activities 

This deliverable primarily relates to Task 3.1 as the privacy-preserving FL frameworks which 

task 3.3 will provide, will feed future activities towards building the Machine Learning as a 

Service (MLaaS) platform of the IoT-NGIN project. Additionally, the FL components will be 

included in the Digital twin System which is defined in Task 5.5. The tools which are described 

in this document will support the deployment of Task 5.2 and especially, shall be able to easily 

integrate the tool from Task 5.2, namely MAD (Malicious Attack Detector). Furthermore, the 

tools described here will provide assistance -if needed- to the Open Calls. Last, but not least, 

the document provides useful feedback to the future integration and validation activities, as 
well as to the preparation of the trials in the Living Labs (LLs) in WP7. 

1.3 Document overview 

The rest of the document is divided into the following sections: 

 Section 2 provides an extended literature review of Federated Learning, presenting 

teh definition and challenges of the FL approach, as well as analyzing state-of-the-art 

techniques, frameworks and algorithms. 

 Section 3 addresses privacy preservation in Federated Learning, presenting state-of-

the-art techniques and conducting a comprehensive comparative analysis of them. 

 Section 4 presents the IoT-NGIN approach towards enhancing FL with privacy-

preserving techniques, introducing the Privacy-Preserving FL as a Service of IoT-NGIN, 
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the privacy-preserving FL frameworks that will be supported by IoT-NGIN, as well as the 

privacy-preserving enhancements over existing FL frameworks introduced by the 

project. 
 Section 5 draws conclusions and next steps. 
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2 Federated Learning Background 
FL as a new breed of Artificial Intelligence aims to build upon decentralized data and train 

machine learning models on the edge while avoiding data disclosure. Thus, as opposed to 

traditional approaches, FL intrinsically enhances privacy and security as the data is never 

accessed or processed on central servers. Thus, decoupling the training process from the 

data sources.  FL approaches are preferred in cases where security and privacy are the key 

concerns or when the participants are not always available, or their network connectivity is 
unstable. 

Conventional machine learning methods demand the data for training to be located on 

one machine or on a central server. Those methods collect a great amount of data from 

various devices (smartphones, laptops, IoT devices) and transfer them to a high-end central 

server or a super strong computer, for training. However, data owners are not often willing to 

share their data, because it is sensitive information, which is subject to the GDPR rules. Thus, 

applying ML models on data without revealing the data itself is a major task, which many 

researchers have tried to address during recent years. In particular, Google [2]–[5] 

introduced Federated Learning, which extends further, traditional distributed machine 

learning approaches. Actually, FL emerged as an extended subset of distributed learning. 

The main difference between Federated Learning and traditional distributed learning lies in 

the fact that distributed learning aims to parallelize computing resources to train a machine 

learning model on centralized data, whereas Federated Learning aims at training a shared 
machine learning model on local datasets.  

 

Figure 1: A federated application for next-word prediction on mobile phones. Local data remain local 

during training to preserve privacy. Each mobile device may communicate periodically or for a short 

time with the central server [6]. 

Initially, FL solutions train a machine learning model on a central server. Afterwards, the server 

shares this model to the participating devices for local training, thus without revealing any 

data. Then, the updated model parameters are sent back to the central server and the 

global model is updated by averaging the results from each participant. This task is repeated 

until the final model is produced. Figure 1 presents a federated learning application which 

trains a machine learning model to predict the next word while the user is typing. FL methods 
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are capable of training robust and resilient machine learning models based on model 
sharing rather than data sharing over a network.  

FL approaches can be applied in several application scenarios, where data privacy is 

essential, listing from cross-organizational scenarios such as health care institutes to cross-

devices like smartphones, wearable and IoT devices with millions of participants. Due to the 

growing computational capabilities of smartphones, wearable and IoT devices, it is 

increasingly attractive to store data locally and perform machine learning on the edge. 

Some other examples of Federated Learning applications include sentiment learning and 
analysis, predicting health events from wearable devices and so on.  

Nevertheless, federated learning poses some limitations. To begin with, some machine 

learning models are quite large to run on low-end devices. Furthermore, there can be great 

data heterogeneity, meaning that data among users may be not relevant or of different 

characteristics. Normally, before applying machine learning models on datasets, data pre-

processing is needed which includes data cleaning, data augmentation (in case of limited 

available data), removing misleading data entries. In the case of Federated Learning, data 

preprocessing is not applicable since it is manual work but for sure, some pre-process 

automation may be feasible. Most machine learning models are supervised, meaning that 

data labelling is essential. This can be a drawback for some applications and thus, federated 
learning is better suited for unsupervised learning applications. 

2.1 Federated Learning Challenges 

Federated Learning is an active and ongoing area of research. In recent years many surveys 

and reviews listed almost every challenge in Federated Learning systems [7], [8], [9]. In this 

chapter, an extended analysis is given which accompanies two tables. Table 1 lists the main 

known challenges so the reader can use it as a relevant dictionary. The first challenge relates 

to Communication which can be a bottleneck for FL systems that includes hundreds or 

millions of devices. Another core challenge that FL developers face Is the system 

heterogeneity of the devices since their hardware resources can be significantly different to 

each other and also their connection capabilities as well. Usually, the participated devices 

may drop out during training because of low battery or other difficulties that may emerge. A 

data-related challenge is the statistical heterogeneity issue that typically exists among 

participants. The main reason comes from the fact that devices may preserve locally or 

collect, data of different distributions. Finally, privacy and security are really important 
challenges to tackle and a strong open research field in Federated Learning.  

Table 1: Summary of main challenges in Federated Learning systems. 

Challenge 

Category 

Challenge Main Idea 

Communication 

Model Updates Size 

Reduction – 

Compression 

Schemes 

Reduce the size of the model updates that are 

exchanged between the clients and the server 
by compressing them 
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Communication 

Frequency Reduction 

Decrease the communication frequency by 

reducing the number of parameters or 

performing aggregation periodically or over-

the-air computation meaning that whole or 

parts of the aggregation are carried out over-

the-air by clients 

Change 

Communication Type 

The server and the clients can communicate in 

a synchronous or asynchronous way 

Systems 
Heterogeneity 

Resource 
Management 

How to efficiently manage the limited 

resources on client devices to maximize 
performance 

Client Management Increasing the number of clients that 

participate during the training is a critical step 
towards maximizing performance 

Fault Tolerance  Fault tolerance is the problem of client 

dropout. A dropout that may occur at any 
moment and under any circumstances 

Client Selection 
Based on Reliability 

In cross-device applications, there can be 

millions of clients where some of them may be 

unreliable 

Statistical 

Heterogeneity 

Non-IID Data This challenge is because of the inherent 

heterogeneity in the local data 

Model Heterogeneity Model heterogeneity results when a 
participant designs its own training model 

Bias Mitigation The presence of Bias in Machine Learning 

models may lead to discrimination and 
unpleasant situations 

Privacy/Security 

Byzantine attacks Attacks that aim to deteriorate the model’s 
performance or cause a failure during training 

Privacy-preserving Privacy-preserving techniques such as 

Differential Privacy, Homomorphic Encryption 

and Multi-party Computation should be 

employed in Federated Learning systems 
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Secure Aggregation Refers to the challenge of computing the sum 

of the local gradients updates from many 
participants without revealing information 

 

 

Table 2: Summary of some major approaches that address Federated learning challenges. 

Approach Challenge Category Core Idea 

[10] Communication An online Federated distillation where each 

device sees the mean model output of all 

other devices and periodically measures the 

difference using cross-entropy that becomes 

the student’s loss legularizer, obtaining the 

knowledge of the other devices during the 
distributed training process 

[11] Communication To decrease communication costs. Clients 

quantize their locally computed gradients 
and send the result to the central server 

[12] Communication Introduce the Sparse Ternary Compression, a 

framework which relies on top-k gradient 

sparsification with a novel mechanism to 

enable downstream and also, ternarization 

and optimal Golomb encoding of the weight 
updates 

[13] Communication In-Edge AI framework is proposed to enable 

collaborative devices exchanging learning 

parameters in a more sophisticated way 
leading to communication reduction 

[14] Systems Heterogeneity Authors propose α double Deep Q-Network 

(DQN) approach that assists the model owner 

to i) decide amounts of energy recharged to 

the workers and ii) choose channels, i.e., the 

default channel or the special channels, for 

the global model transmissions to maximize 

the number of successful transmissions while 

minimizing the energy cost and the channel 

cost 
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[15] Systems Heterogeneity Present an algorithm to determine and 

analyse, the frequency of global aggregation 

so that the available resource is most 
efficiently used 

[16] Systems Heterogeneity Authors propose SAFA, a semi-asynchronous 

FL protocol, to address the problems in 

federated learning such as low round 

efficiency and poor convergence rate in 

extreme conditions, e.g., clients dropping 
offline frequently 

[17] Systems Heterogeneity A Deep Q-Learning approach that enables 

the server to learn and find optimal decisions 

without any a priori knowledge on client 
devices 

[18] Statistical Heterogeneity This approach proposes FedMD, a federated 

learning framework that enables participants 

to independently design their models. The key 

element of FedMD is that it translates 
knowledge between participants 

[19] Statistical Heterogeneity Presents FAVOR, an experience-driven 

control framework that chooses the clients to 

participate in each round of federated 

learning to counterbalance the bias 

introduced by non-IID data and to speed up 

convergence. More specifically, the 

mechanism is based on a Deep Q-learning 

method that learns to select a subset of 

devices in each communication round to 

maximize a reward that encourages the 

increase of validation accuracy and 

penalizes the use of more communication 
rounds 

[20] Statistical Heterogeneity This approach proposes the use of a new 

federated aggregation scheme that 

converges even when devices may be 

inactive or return incomplete updates while 

relaxing the restrictions regarding client 

participation in FL settings and allowing 

devices to follow more flexible participation 

patterns 
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[21] Statistical Heterogeneity In this work, an algorithm for the adaptation 

of the learning rate for deep learning 

stochastic gradient descent that avoids the 
need for validation set use, is proposed 

[22] Privacy/Security To increase attack stealth, the authors 

propose an alternating minimization strategy, 

which alternately optimizes for the training 
loss and the adversarial objective 

[23] Privacy/Security The paper presents a Byzantine resilience 

method that forces the vector output 

selected by the server to point, on average, 
to the same direction as the gradient  

[24] Privacy/Security Authors present a collaborative and privacy-

preserving machine teaching paradigm with 

multiple distributed teachers, to improve 

robustness of the federated training process 

against local data corruption 

[25] Privacy/Security Clients train a general model on the task and 

then adapt this general model to each user’s 

private domain while simultaneously, learns a 

private model for each user. Then, each user 

combines these models using a mixture of 
experts (MoE) [26]  

 

The most important drawback until now has been the hardness of reducing communication 

overheads during training. To address the huge amount of data available for training and 

make Federated Learning more generic, researchers have made effective efforts towards 

improving model updates during training, reducing communication costs for each training 
round and developing finer communication schemes.  

In network theory, two types of communications exist in a server and client network, the 

downstream and the upstream, where downstream communication refers to the model 

sharing from the server to each client and upstream towards the opposite direction. The 

authors in [27] present the FederatedAveraging algorithm which is based on iterative model 

averaging which reduces heavily the communication rounds. In [28] the authors propose 

FedCS, a novel Federated Learning protocol that tackles the difficulties which emerge, when 

mobile devices of different data resources, wireless channel conditions and computational 

capabilities participate in a Federated Learning setup. FedCS framework integrates the 

available clients to the maximum extent in each training round by managing them based 

on their resource conditions. The approach in [29] utilizes a two-stream model with Maximum 
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Mean Discrepancy (MMD) [30] constraint during each training iteration which forces the 

local two-stream model to accumulate knowledge from other devices. This method brings a 

communication cost reduction without affecting the final performance of the training. 

2.2 Federated Learning vs Distributed Learning 

Federated Learning is a step beyond the traditional distributed machine learning (Figure 2) 

that exploits data parallelism. Rather than portioning a centralized dataset to random nodes, 

Federated Learning performs the training in the data owned by each participant (FL clients), 

as shown in Figure 3. The main added value is that the data itself is never shared over the 

network. Federated Learning is far more distributed than conventional distributed machine 

learning.  

 

Figure 2: Traditional distributed machine learning. There is a central Computational cluster, and the 

architecture is based on data exchange. 

The authors in [26] list the core differences between distributed machine learning and 

federated learning as follows: 

 Contribution from many clients: Federated Learning should support a large pool of 

participants and must be scalable. 

 Varying quantity of data owned by each participant: Some clients may have a few 

samples for training and others may have thousands.  

 Common differences in data distributions among participants: Local data is different 

for each participant; thus, the model trained by each client represents non-IID 

(independent, identically distributed) data. 

 High communication latency between participants and the aggregator server: 

Updates are commonly shared over the network introducing significant latency 

between communication rounds. 

 Unstable communication between clients and aggregating service - client devices 

are likely to become unavailable during training due to their mobility, battery 

Unlike the traditional distributed learning systems, FL systems do not preserve control over 

participants’ devices.  
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Figure 3: Federated Learning. The model is shared, and the training is performed on the edge nodes. 

Federated Learning biggest advantages over conventional distributed machine learning 
techniques are listed below, so FL: 

 Decreases by far, the risk of unauthorized data access, since data are not transmitted 

over the network. 

 Takes advantage of privacy-preserving techniques as they can more easily be 

integrated into the processing chain compared to distributed learning. 

 Needs fewer resources than conventional distributed machine learning. 

 Enables multiple participants to build a robust and resilient machine learning model 

that on the one hand and on the other does not share data, thus allowing them to 

face critical issues in terms of privacy and security. 

 Can be applied to heterogeneous datasets of different sizes. 
 Can be asynchronous and does not rely only on powerful devices. 

 

2.3 A Categorization of Federated Learning  

Federated Learning is a model-centric task which trains collaboratively, a shared model on 

decentralized data. Each client preserves data locally and private, meaning that clients 

cannot access or alter the data of other clients. Federated Learning can be divided into two 

main categories, Cross-device, and Cross-silo. Moreover, federated learning may be 

classified into horizontally federated learning, vertically federated learning and federated 

transfer learning based on how data is distributed among various parties in the feature and 
sample space [32]. 

2.3.1 Cross-Silo Federated Learning 

In Cross-Silo [31], [32] Federated Learning, clients can be different organizations in various 

domains such as healthcare and financial. Data is held locally and remains decentralized 

throughout the learning procedure. In each training round all clients do participate in the 
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learning process compared to Cross-device Federated Learning, where typically, a fraction 

of clients participates in each round. In addition, each client stores its own independent data 

locally. In Cross-Silo systems there is a limited number of clients, typically 2-100 and each client 

holds a unique identity or name that allow the system to access it specifically. The main issue 
in Cross-Silo Federated Learning settings might be computation or communication specific.  

 

 

Figure 4: Cross-Silo Federated Learning in Healthcare domain, [33]. 

A Cross-Silo Federated Learning architecture example is presented in Figure 4. Cross-Silo 

Federated Learning enables the use of more consistent, powerful, and scalable tools due to 
the nature of the participants which typically have quite enough resources. 

2.3.2 Cross-Device Federated Learning 

A Cross-Device [4], [26], [32] Federated Learning system typically includes many clients, 

sometimes even millions. Similar to Cross-Silo, Cross-Device Federated Learning is applied on 

decentralized local data and in each training round, the central server aggregates the 

updated model parameters to compute the global model. Communication is often the 

primary issue because Cross-Device Federated Learning uses Wi-Fi or slower connection 

protocols. Another challenge to address is that Cross-Device is often unreliable because 

many clients fail or dropout (battery issue, network connectivity, etc.) and therefore may not 
be able to contribute to the learning process.  
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Figure 5: Architecture overview of cross-device Federated Learning, [34]. 

In Figure 5, a basic Architecture overview for Cross-Device Federated Learning is presented. 

In Cross-Device Federated Learning, the number of training rounds can vary from one device 

to another while the final model may be deployed to thousands, or even more clients and 

devices may have either white-box or black-box access to the final model. Therefore, it is 

important to preserve privacy in between the training rounds and especially from the 

intermediate training state until the final model. Participant devices need to trust the central 

server for privacy-preserving during the training but also must trust the server to form cohorts 
of clients. 

2.3.3 Horizontal Federated Learning 

In conventional machine learning scenarios, the data and the training are all done in a 

centralized manner while the data is often obtained from data centres. Horizontal Federated 

Learning (Figure 6) can be related up to a point, with distributed machine learning. The main 

difference is that the data used in Federated Learning is local instead of owned by the 
central server. The basic steps in a Horizontal Federated Learning scenario are as follows: 

 Participants download the latest model from server A. 

 Each participant trains the model independently on their own local data and uploads 

the model updates to the central server, once the training is done. 

 Server A returns the model to every participant. 
 And finally, each participant updates its own model. 



H2020 -957246    -   IoT-NGIN  

 
D3.2 - ENHANCING CONFIDENTIALITY PRESERVING FEDERATED ML 

 

26 of 84 

 

 

Figure 6: Horizontal Federated Learning, [32]. 

In Horizontal Federated Learning, datasets share the same feature space but consist of 

different samples. This means, that datasets share the same feature description (e.g., age, 

name, height, etc.) but preserve different sample entities. Horizontal Federated Learning has 

been employed by many researchers and in various use case scenarios. In [35], the authors 

propose a Hierarchical Heterogeneous Horizontal Federated Learning (HHHFL) approach to 

train a machine learning model over heterogeneous Electroencephalography (EEG) data, 

while preserving data privacy for each participant. In [36], the presented approach employs 

horizontal Federated Learning for training a reinforcement learning model and introduces 

the Federated REINFORCE Client Contribution Evaluation (F-RCCE). Authors in [37], present a 

Blockchain-Empowered Decentralized Horizontal Federated Learning (BE-DHFL) framework 
for 5G-enabled Unmanned Aerial Vehicles (UAVs).  

2.3.4 Vertical Federated Learning 

Vertical Federated Learning or Heterogeneous Federated Learning is applicable to the 

cases where two datasets share the same identities but preserve different sets of features. 

Vertical Federated Learning (Figure 7) allows multiple parties that own different attributes of 

the same data entities to jointly train a machine learning model. For example, vertical 

Federated Learning can be used between insurers and online retailers where both of them 

have lots of overlapped users, but each one preserves its own feature space and labels. 

 

Figure 7: Vertical Federated Learning, [32]. 
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Vertical Federated Learning is often used when there is an increased user space overlap in 

datasets among different organizations. Moreover, vertical Federated Learning allows the 

aggregation of the split features of shared entities without interfering with the privacy 

preservation requirements. Many machine learning models are built in a vertical Federated 

Learning way. In [38], the Pivot tool is proposed for privacy-preserving vertical decision tree 

training and prediction. Pivot ensures information is private except when participants want 

to release their data. Authors in [39] present a quasi-Newton method for vertical Federated 

Learning that reduces communication cost and is used for logistic regression using additively 

homomorphic encryption to meet also the necessary privacy requirements. Other 

approaches [40], [41], use Split Neural Networks (SplitNNs) to perform machine learning on 

vertically distributed datasets in a two-party scheme. More specific, SplitNNs map the data 

into an abstract, shareable representation which allows information from multiple sources to 

be combined for learning without exposing raw data. Most proposed methods for Vertical 

federated learning are built upon a two-party setup. To overcome this limitation, authors in 

[42], proposed the Multi-participant Multi-class Vertical Federated Learning (MMVFL) 

framework for multi-class VFL scenarios which includes multiple parties. MMVFL learns a 

separate model for each participant, instead of a single global model to enable 

personalized learning. To enhance privacy-preserving, authors in [43], propose a vertical 

Federated Learning framework based on Private Set Union (PSU), a protocol that can 

securely align data entities and allows every party to keep sensitive information private while 

training the model. A vertical Federated Learning system typically assumes honest-but-

curious clients. To facilitate secure computations between two parties in a Vertical 

Federated Learning setup, sometimes a Semi-honest Third Party (STPV) is introduced. By the 

end of the learning procedure, each party holds only the relevant model parameters, but 

this means that at inference time, these two parties must collaborate to generate the output. 

In [45], a vertical Federated Learning architecture for logistic regression that removes the role 

of the third-party coordinator is presented which reduces the complexity of the system and 
enables faster and more private training.  

2.3.5 Federated Transfer Learning 

Federated Transfer Learning (FTL) was introduced in [45] to address the scattered nature of 

the data across different parties which cannot easily be involved in a learning process due 

to privacy or other limitations. A simple architecture overview is presented in Figure 8. FTL 

enables knowledge sharing without revealing sensitive information. Federated Transfer 

learning aims to build an effective model for a use case scenario that holds limited data, or 

data with limited labelling or the resources are small. FTL can be utilized in various scenarios. 

For example, in [46], the authors present FedHealth, a Federated transfer learning framework 

for wearable healthcare to tackle data privacy and data availability. FTL can bridge the 

gap between machine learning and information privacy to address the limitations presented 
above.  
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Figure 8. Federated Transfer Learning, [31] 

Authors in [47], propose a deep neural network to train on multiple devices where the data 

input are covariance matrices of electroencephalographic (EEG) signals for adaptive 
analysis. 

2.4 Applications in Federated Learning 

Several applications have been proposed that employ FL in various domains such as mobile 

phones, IoT devices, industry, and healthcare. Some approaches improve predictions on 

keyboards or emojis within an FL setting environment exploiting ML models that take 

advantage of a small amount of user-generated preceding text. The application in [48] 

learns a predictor in a large-scale smartphone network based on users’ text data. In [49] the 

authors propose a character-level Recurrent Neural Network (RNN) to learn out-of-

vocabulary (OOV) words to expand the vocabulary of a virtual keyboard for mobile phones 

without exporting the sensitive text to servers. Other approaches such as [50] use FL to solve 

out-of-domain issues with continuously running embedded speech-based models such as 

wake word detectors for voice assistants. Yang et. al. in [51] use FL in a global-scale setting 

to train, evaluate and deploy an ML model to improve virtual keyboard search suggestion 

quality avoiding any data disclosure. In [52] a word-level RNN is used to predict emojis by 

pretraining the model using a language modelling task.  

With respect to federated learning in IoT environments, there are three main challenges to 

consider, device, statistical and model heterogeneity. Device heterogeneity refers to 

different usage environments and different resources of each IoT participant. That includes 

differences in hardware (CPU, GPU), network conditions and battery availability. Regarding 

statistical heterogeneity, there are big differences in user patterns and the environmental 

characteristics of each participant. Thus, in IoT environments data distributions are highly 

skewed, which may lead to nondivergence during training. Model heterogeneity refers to 

the fact that not every model architecture can fit on every IoT device. As a consequence, 

the model architectures from different participants are of various shapes making it really 

difficult to perform aggregation methods in FL settings. Therefore, recent FL studies have 

shown that there is a need for personalized federated learning. Some FL applications, cope 

with these difficulties in IoT networks and try to learn users’ preferences in smart home 

environments to address privacy leakage due to cyber threats or physical hazards. Matchi 

et. al in [53] propose a federated learning framework to train machine learning models 

locally, combined with a secure data aggregation protocol. In [54] the authors present a 
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federated multi-task learning framework to automatically learn customized context-aware 

control policies from the observed behavioural patterns of users in smart home environments 

in a privacy-preserving manner. Chen et al. [46] presented a method which focuses on 

personalized training. Initially, the proposed method trains a global ML model in a federated 

manner and then transfer it to each device for further personalized training. This process 

creates a training overhead and that is why the authors fine-tune only parameters of 

specified layers of the network instead of retraining the whole model.  Similar in [55], the 

proposed framework, applies federated transfer learning and divides the deep learning 

models into two subcategories, the base, and the personalization layers. Were base layers 

act as shared layers which are trained using the traditional federated learning method. In 

contrast, the personalization layers are trained locally thus, personal information is strongly 
accounted during training while privacy is preserved. 

FL is quite strong in data privacy protection and has emerged as a promising solution in 

various industrial applications. Industry 4.0 enhances the operational efficiency of the entire 

manufacturing process by integrating multiple disruptive technologies such as the Internet 

of Things, Edge Computing and Artificial Intelligence. For example, authors in [56], proposed 

an inference Federated framework namely Federated Region-Learning (FRL) for urban 

sensing. FRL considers the regional specifications during the distribution of training samples to 

improve inference accuracy. Federated Learning is also applied in Flying Ad-hoc Networking 

[57]. A federated on-device learning for jamming attack detection security architecture for 

FANET. 

Federated Learning is suitable also for Healthcare applications. For instance, hospitals are 

organizations that private data of patients, that should remain local. FL architecture 

presented in [2] can reduce privacy leakage and implement private learning between the 

different organizations. Additionally, FL can also be used on IoT networks to ensure privacy, 

enabling on-device machine learning solutions without the need to store private data from 

end devices to a central server. 

Nowadays, to achieve good results during ML model training, a great amount of data is 

needed. In addition to this, IoT devices can perform a series of tasks due to powerful 

hardware specifications, breaking the computational barrier of the previous years. All these 

advancements in IoT devices raise a privacy question. Malicious adversaries can 

compromise the privacy of IoT devices by tracing the vulnerabilities to manipulate ML model 

outputs or to get access to sensitive data. To an extent, federated learning solves privacy 
concerns however, additional security measures are essential.  

2.5 Federated Learning Frameworks 

Several open-source Federated Learning frameworks have been developed to apply 

distributed learning on decentralized data but also to enhance privacy and security.  Google 

proposed TensorFlow Federated [58] an open-source framework for machine learning and 

other computations on decentralized data. Another open-source federated learning 

framework is PySyft, which was introduced by OpenMined [59]. PySyft is suitable for research 

in FL and allows the users to perform private and secure Deep learning. PySyft is also 

integrated into PyGrid [4], a peer-to-peer platform for federated learning and data privacy, 

which can be used for private statistical analysis on the private dataset as well as for 

performing FL across multiple organization’s datasets. WeBank’s AI department introduced 

FATE (Federated AI Technology Enabler) [60] an open-source framework which supports FL 
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architectures and secure computation of various machine learning algorithms. FATE is an 

industrial-grade framework mostly oriented toward enterprise solutions. Authors in [61] 

presented Flower, a friendly open-source federated learning framework which is ML 

framework agnostic and provides higher-level abstractions to enable researchers to 

experiment and implement on top of a reliable stack. Another promising open-source 

Federated Learning framework is Sherpa.ai which is presented in [62] and incorporates 

federated learning with differential privacy. Sherpa.ai results as a combination of machine 

learning applications in a federated manner with differential privacy guidelines. FedML [63] 

is an open-source federated learning framework and benchmarking tool for federated 

machine learning. FedML supports three computing paradigms: on-device training for edge 

devices, distributed computing, and single-machine simulation. FedML promotes diverse 

algorithmic research due to the generic API design and the comprehensive reference 

baseline implementations. Another well-known open-source federated learning framework 

is the PaddleFL [64]. In PaddleFL researchers can easily replicate and compare different 

federated learning algorithms while they can easily be deployed in large scale scenarios. 

Leaf [65] is a modular benchmarking framework for federated learning with applications 

including Federated Learning, multi-task learning, meta-learning, and on-device learning. 

OpenFL [66], is another open-source federated learning framework for training ML algorithms 

using the data-private collaborative learning paradigm of FL. OpenFL works with machine 

learning pipelines built on top of TensorFlow and PyTorch and is easily customizable to support 

other machine learning and deep learning frameworks. In the following sub-sections, a more 

extended analysis is given for each framework. In section 3.2, a thorough comparative 
analysis on these federated learning frameworks is presented towards the scope of IoT-NGIN. 

2.5.1.1 TensorFlow Federated (TFF) 

TFF [58] is an extensible, federated learning framework for conducting federated learning 

research by simulating federated computations on realistic proxy datasets. TensorFlow 

federated includes TensorFlow privacy, a python library for applying privacy techniques in 

machine learning model training. Additionally, there are many helpful tutorials for image 

classification and text analysis while it is easily integrated with existing TensorFlow machine 

learning models. TFF provides two different APIs, the federated learning, and the federated 

core. The Federated Learning API offers a set of high-level interfaces while the federated 

core API offers a set of low-level interfaces for customized federated algorithms 

implementation, performing computations that involve multiple participants. In Figure 9, an 

architecture overview of TFF is presented. TFF implements FedAvg and Federated Stochastic 

Gradient Descent (FedSGD) algorithms. FedAvg in TFF uses three main aggregate 
operations:  

 Sum – which sums clients’ values and publishes the result at the central server 

 Mean – which computes the weighted mean of clients’ values and publishes the result 

at the central server 

 Differentially private – which computes a Gaussian or a Laplacian noise base on the 
values, then add this noise to the data and publishes the result at the central server 

Regarding the drawbacks of TFF, to begin with, it doesn’t support federated mode, meaning 

that it simply cannot run a real-life experiment or for commercial reasons. Another issue is 

that vertical and hybrid data splitting is not supported. Regarding privacy-preserving 

mechanisms, TFF privacy includes Private Aggregation of Teacher Ensembles (PATE) which 
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will is thoroughly presented in section 3.1.4. Yet, TFF is supported by a big community with 
many contributors. 

 

Figure 9: Architecture Overview of TensorFlow Federated (TFF), [67]. 

2.5.1.2 PySyft + PyGrid 

PySyft is an open-source federated learning tool for secure deep learning with an MIT license. 

PySyft decouples private data from model training by applying differential privacy and 

Secure multi-party (MPC) mechanisms. It is one of the most prominent federated learning 

frameworks since it has the biggest support community. PySyft is more of a simulation than 

an actual production-ready solution therefore is well-suited for research purposes and 

prototyping. Some of the main features of PySyft are the following: 

 It is compatible with existing Deep Learning frameworks such as TensorFlow and 

PyTorch.  

 PySyft provides a low-level Federated Learning implementation that facilitates the 

development and debugging of the projects 

 PySyft privacy mechanisms focus on secure - MPC through Homomorphic encryption, 

therefore, enabling computations on ciphertexts, which is a great advantage for 
developing Federated Learning applications  

Along with PySyft, in the OpenMined ecosystem the following projects are included: 

 PyGrid – A peer to peer network of data owners and data scientists who can 

collectively train models using PySyft 

 KotlinSyft – Is an Android-based tool that gives the opportunity to train and apply 

inference of PySyft models 

 SwiftSyft – It is KotlinSyfts’ correspondence for iOS devices 

 Syft.js – It is a web interface component for the above-mentioned components 

The main shortcoming of PySyft is that it functions properly only in simulation mode and to 

support federated mode it needs to be incorporated with PyGrid. 
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2.5.1.3 FATE 

FATE (Federated AI Technology Enabler) [60], is an open-source project initiated by WeBank’s 

AI Department and intended to provide a secure computing framework to support 

federated machine learning applications mainly for regression analysis and decision trees 

while it also provides transfer learning. FATE is designed for industrial applications and some 
major characteristics are listed as follows: 

 The framework includes frequently used horizontal and vertical federated algorithms 

for data engineering and machine learning. Additionally, provides a workflow engine 

to develop customizable full-lifecycle machine learning tasks 

 Provides a self-developed distributed computing, transmission, and storage engine for 

large-scale applications.  

 Exposes a high-level interface driven by custom scripts and supports many FL 

algorithms.  

 To ensure security, FATE supports Multi-party Computation mechanisms and 

encryption methods such as RSA, Paillier and homomorphic encryption.  
 FATE supports simulation and federated mode using Kubernetes clusterization. 

 

 

Figure 10: Architecture overview of FATE framework [60]. 

 

In Figure 10, an overview of FATE’s architecture is presented. Following, the four independent 
platforms are listed: 

 FATE-Cloud includes a cloud manager which is responsible for federated site 

management, and FATE Manager, a site client management terminal. It provides 

registration and management of federated sites, automated cluster deployment and 

upgrades, cluster monitoring, and permission control and other core functions. 
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 FATE-Board is a visualization tool for federated learning modelling, designed to deep 

explore models and understand models easily and effectively. 

 FATE-Flow is actually FATE’s workflow. It schedules and manages the lifecycle to build 

an end-to-end pipeline of federated-learning production services. 

 FATE-Serving is a high-performance and scalable online federated-learning model-

serving service that supports vertical federated learning cases. 

Overall, FATE is a well designed and developed Federated Learning framework with great 

possibilities, especially for production. Nonetheless, it is highly resource-demanding therefore 

is not well suited for IoT devices and edge computing. Another major drawback of FATE is 

that currently, it does not support full deep learning model training. But the biggest drawback 

is that there isn’t any English based detailed documentation for FATE’s custom language 
(DSL) which makes it difficult to use it.  

2.5.1.4 Flower 

Flower [61] is an open-source federated learning framework which supports heterogeneous 

environments consisting of a few IoT devices and mobile phones while it is able to scale up 

to thousands of clients. Flower’s architecture design assists engineers to integrate workflows 

from existing ML applications regardless of the ML/DL framework (PyTorch, TensorFlow, etc.) 

that they rely on with minimum performance overhead. In addition, facilitates research 

approaches due to its flexibility and interoperability. Flower is developed to meet some 
design goals which are listed as follows: 

 ML framework-agnostic – This is a strong positive characteristic because ML 

frameworks are evolving rapidly and therefore possible alternations on running 

Federated Learning applications could lead to severe software crashes. Flower is 

compatible with almost any machine learning framework. 

 Client agnostic – The fact is that typically, there is great structural heterogeneity 

among participants devices. Structural heterogeneity, can be a crucial drawback 

and to address that, Flower preserves interoperability with different operating systems, 

programming languages and hardware characteristics 

 Expandable – Most Federated Learning frameworks lack expandability and this does 

not provide flexibility to upcoming research efforts. Flower aims to be expandable so 

that it can enable research and adopt recently proposed methods 

 Accessible – Most Federated Learning frameworks tend to increase rapidly the 

engineering overhead in cases where ML applications need customization in order to 

run in a federated manner. Flower enables users to easily federate existing ML 

pipelines. 

 Scalable – In real-world scenarios cross-device Federated Learning would encounter 
many clients. Flower is capable of scaling to a large number of clients. 

In Figure 11, Flower’s core framework architecture is presented. Flower’s core framework is 

designed for being able to scale when workload increases. As the figure shows, Flower is 

divided into two, Server and Clients. The server-side includes three main components, the 

Federated Learning loop, the RPC server (the connection server) which is responsible also for 

sending and receiving Flower Protocol messages, and a Strategy which is user-customizable. 

Clients initially connect to the RPC server while the Federated Learning loops is the core 

federated learning process; basically, it acts as an orchestrator during the entire learning 
process. 
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Figure 11: Flower core framework architecture, [61]. 

 

Strategy 

Strategy is the main idea of Flower. As it was mentioned above, one of Flower’s goals is to 

enable flexibility for researchers and application developers/engineers to orchestrate their 

pipelines in the way they want. This is achieved through a plug-in architecture which 

ensembles user-defined decisions to the abstract base class Strategy. The default strategy in 
Flower is the FedAvg but it is rather easy for users to implement their own. 

Flower among others is one of the most well-suited for the IoT-NGIN platform because of its 

flexibility, customizability, interoperability, and easiness of use. 

2.5.1.5 Sherpa.ai 

Sherpa.ai is an open-source federated learning framework and was introduced in [62]. 

Sherpa.ai consists of seven different modules that encapsulate the functionalities for each 

key element in an FL setting, as shown in Figure 12, which are the following: 

 data_base – this module is in charge of reading the data according to the chosen 

database 

 data_distribution – in this module, the federated distribution of the data among 

participants takes place 

 private – this module includes several interfaces such as the node interface which 

represents the client’s key element and other ones for altering the federated data 

distribution 

 learning_approach – this module defines software’s structure to develop federated 

aggregation operators 

 model – this module defines the machine learning model 

 differential_privacy – this module is in charge of guaranteeing differential privacy to 

the participants 
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Figure 12: Overview of the Sherpa.ai module architecture, [62]. 

 

Sherpa.ai has strong privacy-preserving characteristics and it is easy to use but on the other 

hand, it lacks features that are essential in IoT-NGIN such as it can run only in simulation mode, 
and it has limited applicable scenarios.  

2.5.1.6 FedML 

FedML [63], is an open-source library and benchmark tool for Federated Learning projects 

which provides an end-to-end toolkit to support Federated Learning development and a 

legitimate performance comparison tool under diverse computing configurations. FedML’s 
main design elements are as follows: 

 FedML supports three different computing environments 

o on-device training for edge computing (mobile phones, IoT devices, etc.) 

o distributed computing with federated learning principles 

o single-machine simulation 

 FedML presents a worker/client-oriented programming scheme to enable diverse 

network topologies, flexible information exchange and many training flows 

 FedML provides standardized Federated Learning algorithms which help users to 

decrease the learning curve and also, to have a comparison baseline for newly 

developer algorithms 

 FedML provides also standardized benchmarks with specific evaluation metrics, many 
synthetic and real non-IID datasets for comparison purposes 

The architecture overview of FedML is presented in Figure 13 and consists of two key 

components, FedML-API and FedML-core which represents high-level API and low-level API, 
respectively. 
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Figure 13: Architecture Overview of FedML and its components, [63]. 

FedML-core consists of two separate components, the distributed communication, and the 

training engine where distributed communication component is in charge of workers/clients 

low-level communication. FedML-API is built on top of FedML-core, and it is suitable for 

implementing new algorithms in a federated manner by adopting the client-oriented 

programming interface. In addition, FedML-API proposes a Machine learning system 

practice that separates the development of models, datasets and algorithms which 

facilitates reuse of implementations. FedML provides specific sub-tools (FedML-Mobile, 

FedML-IoT) for different real-world scenarios. The major drawback of using FedML is that 
currently doesn’t provide privacy-preserving mechanisms.  
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2.5.1.7 PaddleFL 

PaddleFL [64], is an open-source Federated Learning framework that can process 

horizontally and vertically portioned data. PaddleFL can be deployed in large scale clusters 

and supports several Federated Learning strategies targeting various application scenarios 
included but not limited to Computer Vision and Natural Language Processing.  

 

 

Figure 14: Architecture overview of PaddlePaddle deep learning platform, [64]. 

 

PaddleFL is based on PaddlePaddle (PArallel Distributed Deep LEarning) (Figure 14), which is 

a Deep learning platform. More specifically, it is an industrial platform with advanced 

technologies and includes features that can cover deep learning frameworks, basic model 
libraries, development kits and components. PaddleFL includes two main components: 

 Data-Parallel – Using data parallelism, data owners can define their Federated 

Learning tasks based on common horizontal strategies like FedAvg, etc. 

 Federated Learning with MPC – Enables secure training and prediction on vertical and 

horizontal datasets while supporting transfer Federated Learning 

One of the most significant drawbacks is that PaddleFL uses a little-known Deep Learning 

platform (PaddlePaddle) with limited contribution from the community and has poor 
documentation. 

2.5.1.8 LEAF 

LEAF [65], is an open-source modular benchmarking Federated Learning framework tool. It 

includes several open-source datasets, an evaluation framework, and a set of Federated 

Learning algorithms implementations. LEAF’s three main characteristics are that: 

 Enables reproducible science 

 Provides granular metrics 
 Is modular 

Like PaddleFL, LEAF has a small contribution team. It mainly focuses on benchmarking 

Federated Learning settings, but it doesn’t provide any benchmarking tool for privacy-
preserving.  
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2.5.1.9 OpenFL 

OpenFL [66], is an open-source framework for training ML models in a Federated Learning 

manner and supports both TensorFlow and PyTorch while it can be easily extended to other 

ML and Deep Learning (DL) frameworks. OpenFL is designed to be project agnostic meaning 

that it can be used for many different application domains, such as healthcare and IoT. 

OpenFL consists of two core components, the Aggregator, and the Collaborator. A 

Collaborator node is a client that contains the dataset which is owned by a participant on 

which the learning model is applied. An Aggregator node is a compute node that receives 

locally tuned model updates from each collaborator and combines them into a new global 
model.  

 

 

Figure 15: High-level workflow of OpenFL, [66]. 

Once OpenFL is installed on all computation nodes in the federated system and every client 

receives the PKI certificate, the workspace is distributed to every node. OpenFL creates a 

valid public key infrastructure certificate, the PKI which is created and signed by a trusted 

authority. Nonetheless, this certificate is not suitable for production tasks. The overall design 

of OpenFL relies on the Federated Learning Plan which is used to describe the configuration 

and workflow of the project. In particular, the FL plan is a YAML file that the tasks and the 

essential parameters required to coordinate and execute a federated task. It defines the 

collaborators, aggregator, connections, models, data, and any other parameters that 

describe how the training will evolve. In Figure 16, the backend (in blue) connects the 

collaborator with the aggregator through a TLS connection using the PKI certificate. 

Aggregator’s backend (in blue) sends remote procedure calls to the collaborator and 
receives model and metric updates for aggregation.  
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Figure 16: A high-level architectural overview of OpenFL with its components, [66]. 

2.6 Federated Learning aggregation algorithms 

Federated Learning enables a set of participants to collaboratively train a model by sharing 

the model parameters rather than the data of each participant and has been largely 

researched in the literature with the aim of optimizing the distributed training process and 

costs. Federated Learning aggregation algorithms are the key mechanisms for updating the 

global model on the central server on each communication round or periodically. The 

federatedAveraging Algorithm (FedAvg) is a pioneering work for global model aggregation. 
In the next sub-sections, FedAvg along with some alternatives are presented. 

2.6.1 The FederatedAveraging Algorithm 

Federated Averaging (FedAvg) was introduced in [2] and is a global model aggregation 

algorithm which is executed in the central server once it receives the updated model weights 

from the clients. It uses simple gradient methods (SGD) which can be applied easily to a 

federated learning setup. Nevertheless, FedAvg performs more local computation and less 

communication compared to SGD. Moreover, FedAvg reduces the communication cost by 

choosing a fraction of clients on each training round and computing the SGD for these 

clients. FedAvg aims to minimize the objective of the global model 𝑤, which is the sum of the 

weighted average of the devices’ loss: 

 

 

 

 

 min
𝑤

𝐹(𝑤), 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑤) ≔  ∑ 𝑝𝑘

𝑛

𝑘=1

𝐹𝑘(𝑤) 

 

(1) 
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where n is the total number of devices,  𝐹𝑘(𝑤) is the local objective function for the  𝑘𝑡ℎ 

device, while 𝑝𝑘 ≥ 0, specifying the relative impact of each device and ∑ 𝑝
𝑘𝑘  = 1. The authors 

in [68] analyze FedAvg in-depth and demonstrate how partial client participation does not 

affect the learning process.  

2.6.2 FedAvg alternatives 

In this sub-section, some FedAvg alternatives are presented. Each Federated Learning 

aggregation algorithm tries to tackle a specific challenge as listed in section 2.1. Authors in 

[69] proposed FedProx, an algorithm which tries to address statistical heterogeneity across 

client devices. FedProx poses better results on non-identically distributed data while it 

provides more robust convergence than FedAvg. The main addition in FedProx is the 

introduction of a proximal term on each client device to improve the stability of the method, 

therefore limiting the influence of each local model updates on the global model. Proximal 

term provides a principled way for the server to account for heterogeneity associated with 

partial information. Similar to FedAvg, in FedProx all devices are weighted equally during 

global aggregation while hardware heterogeneity is disregarded. Reisizadeh et. al. in [70] 

presented FedPAQ (Federated Learning Periodic Averaging and Quantization) a federated 

learning aggregation mechanism which tries to reduce communication costs. FedPAQ 

inserts periodic averaging which means that models are trained and updated locally on the 

devices and periodically averaged at the server based on a parameter which corresponds 

to the number of local iterations. Similarly, to FedAvg only a fraction of clients participates in 

each training iteration. Another key feature is that FedPAQ quantizes each nodes’ updates 

before uploading them on the central server. This quantization technique significantly helps 

reducing the communication overhead on the network. Turbo-Aggregate algorithm was 

proposed in [72] to reduce communication costs whilst enhancing security. Turbo-Aggregate 

employs a multi-group circular strategy for model aggregation. In particular, the clients are 

partitioned into several groups, and at each aggregation, model updates are shared in a 

circular manner among the groups. As the authors claim, this leads to the reduction of the 

aggregation overhead. Turbo-Aggregate introduces an additive secret sharing mechanism 

to preserve clients’ data privacy thus enhancing privacy-preserving. Authors in [72] propose 

HierFAVG, an algorithm that allows multiple edge servers to perform partial model 

aggregation and aims at reducing communication costs. HierFAVG is based on a 

hierarchical client-edge-cloud architecture where its server updates its own clients. Global 

aggregation is done on edge-level aggregate models and takes place after a fixed number 

of model aggregations. FedMA [74] aims to address statistical heterogeneity in federated 

learning applications by proposing a layer-wise learning scheme, which includes the match 

and the merging of nodes with similar weights. The novelty in FedMA is that it considers the 

permutation invariance of the neurons in a neural network model before performing the 

aggregation. It further utilizes a Bayesian non-parametric method to facilitate adaptation to 

the global model size. FedMA poses better performance and communication efficiency 

than FedAvg. Nonetheless, the method works only for simple neural network architectures 

such as fully connected feedforward networks. In literature, there are also other approaches 

like [55], [74]–[76] for different aggregation mechanisms which one can refer to if a more 

extended review is needed.  

 



H2020 -957246    -   IoT-NGIN  

 
D3.2 - ENHANCING CONFIDENTIALITY PRESERVING FEDERATED ML 

 

41 of 84 

 

Table 3: A summary of the Federated Learning aggregation mechanisms. 

Federated 

Aggregation 
Method 

Challenge to address Summary 

FedAvg  Statistical 

 

FedAvg is a global model aggregation 

algorithm which is executed in the central 

server once it receives the updated model 

weights from the clients. It uses simple 

gradient methods (SGD). FedAvg reduces 

the communication cost by choosing a 

fraction of clients on each training round 

and computing the SGD for these clients. 

FedProx Statistical FedProx poses better results on non-

identically distributed data while it provides 

more robust convergence than FedAvg. 

Introduces a proximal term on each client 

device to improve the stability of the 

method. In FedProx all devices are 

weighted equally during global 

aggregation while hardware 
heterogeneity is disregarded. 

FedPAQ Communication FedPAQ inserts periodic averaging from 

clients to the server based on a parameter 

which corresponds to the number of local 

iterations. Similarly, to FedAvg only a 

fraction of clients participates in each 

training iteration. FedPAQ, quantizes each 

nodes’ updates before uploading them on 
the central server. 

Turbo-Aggregate Communication and 
Privacy 

Turbo-Aggregate employs a multi-group 

circular strategy for model aggregation. 

Clients are partitioned into several groups, 

and at each aggregation, model updates 

are shared in a circular manner among the 

groups. It introduces an additive secret 

sharing mechanism to preserve clients’ 

data privacy thus enhancing privacy-
preserving. 

HierFAVG Communication HierFAVG allows multiple edge servers to 

perform partial model aggregation and 

aims at reducing communication costs. 

HierFAVG is based on a hierarchical client-

edge-cloud architecture where its server 

updates its own clients. Global aggregation 
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is done on edge-level aggregate models 

and takes place after a fixed number of 

model aggregations. 

FedMA Statistical FedMA inserts a layer-wise learning 

scheme, which includes the match and the 

merging of nodes with similar weights. It also 

considers the permutation invariance of 

the neurons in a neural network model 

before performing the aggregation. It 

further utilizes a Bayesian non-parametric 

method to facilitate adaptation to the 

global model size. FedMA poses better 

performance and communication 

efficiency than FedAvg. 
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3 Privacy-preserving Federated Learning 
While FL is resilient and resolves, up to a point, data governance and ownership issues, it does 

not guarantee security and privacy by design. A lack of encryption can allow adversaries to 

abduct personally identifiable data directly from the processing nodes or interfere with the 

communication process, expose network vulnerabilities, and perform attacks. In addition, 

the decentralized nature of the data complicates data handling and curation. Moreover, in 

the case where algorithms running on the nodes are not encrypted, or the updates are not 

securely aggregated, the possibility of data leakage grows. Additionally, the algorithms can 

be tampered with, reconstructed, or get stolen (parameter inference), which can be strictly 

forbidden for most applications. Federated Learning can be vulnerable to various backdoor 

threats (bug injection, inference & model attacks) on different processing steps. Therefore, 

additional measures are essential to protect data from adversarial attack strategies such as 

data poisoning and model poisoning attacks. In Table 4, three major attacks against the 

dataset with their description and a basic example for each case, are listed while in Table 5, 

algorithmic-based attacks are presented. 

 

Table 4: Various attacks against the data in a Federated Learning system. 

Attacks against 
the dataset 

Description Example 

Re-identification 

Attack  
Recover an individual’s identity 

by exploiting similarities to other 

datasets and exposing the data 
characteristics. 

 

Exploiting similarities between data 

distributions and actual values from 

other datasets in which the same 
individual is contained. 

Dataset 

reconstruction 
attack 

Determine an individual’s 

characteristics from the training 

process without accessing the 
data itself. 

Using multiple statistical information 

(probabilities, distributions, etc.) to 

get data points that correspond to 
a single individual. 

Tracing attack Trace an individual to determine 

if it is present in the dataset or not 
without exposing their identity. 

Exploiting repeated, slightly varying 

dataset queries to extract 

individual information and model 
the output. 
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Table 5. Major attacks against algorithms that run in a Federated Learning system 

Attacks against the 
algorithm 

Description Example 

Adversarial attack Manipulation of the input to an 

algorithm with the goal of altering 

it, most often in a way that makes 

the manipulation of the input 

data impossible to detect by 
humans. 

Compromising the 

computation result by 

introducing malicious 

training examples (model 

poisoning). 

Model-

inversion/reconstruction 

attack 

Derivation of information about 

the dataset stored within the 

algorithm’s weights by observing 
the algorithm’s behaviour. 

Using generative 

algorithms to recreate 

parts of the training data 

based on algorithm 
parameters. 

 

In general, the goal of an adversary during data poisoning is to alter the data according to 

their preferences. This can be done by ingesting a mixture of clean and false data into the 

training flow. For example, in [77], the result of an image classification learning task can be 

vulnerable to a data poisoning attempt by a mislabeling or a false-labelling operation. Wang 

refers to different defence mechanisms from simple data management to more 

sophisticated and robust approaches. Data sanitization is a rather basic defence while 

pruning (removing neurons in a network) seems more reliable. Nonetheless, the pruning 

technique raises concerns regarding privacy-preserving in Federated Learning. In [78]-[80], 

some legitimate defences for these attacks are proposed, although backdoor attacks 

become stronger and more adjective. Model poisoning attack refers to partial or fully model 

replacement during training. Authors in [81], [82] describe possible attacks and argue about 

various defences (SMP, DP etc.). Generative Adversarial Networks (GANs) [83] can be one 

of the most vicious threats in Federated Learning. The authors in [84] exploit defences against 

GAN-based attacks and present the Anti-GAN framework to prevent adversaries from 

learning the real distribution of the training data. On the other hand, GANs in [85] are utilized 

as a defence mechanism against adversarial attacks in Federated Learning systems. As a 

conclusion, FL is vulnerable to various attacks and great attention must be given to the 

defence mechanisms and tools, otherwise, it will not be possible for an FL system to fulfil its 

privacy-preserving objectives. 

3.1 State-of-the-art approaches in privacy-

preserving Federated Learning 

Although FL enables on-device machine learning, it does not guarantee security and 

privacy. The fact that the private data are not shared with the central server is for sure an 
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advantage, yet there are ways to extract private information from the data. After the shared 

model is trained on the user’s device based on its own private data, the trained parameters 

(model weights) are sent to the central server and through an aggregation mechanism, the 

global model is composed. During the model transfer, it is possible for an adversary to extract 

information about the private data from those trained parameters. For example, in [86] the 

authors indicate that it is possible to extract sensitive text patterns, e.g., the credit card 

number, from a recurrent neural network that is trained on users’ data.  Therefore, additional 

mechanisms are required to protect data disclosure from attack strategies, which are subject 

to privacy-preserving methods in FL. The major approaches that can be employed in FL for 

data protection are differential privacy, homomorphic encryption, and secure multiparty 

computation.  

Differential Privacy (DP) is a method that randomizes part of the mechanism’s behaviour to 

provide privacy [87], [88]. The motivation behind adding randomness (either Laplacian or 

Gaussian) into a learning algorithm is to make it impossible to reveal data patterns or insights 

that correspond either to the model and the learned parameters or to the training data. 

Therefore, the DP provides privacy against a wide range of attacks (e.g., differencing 

attacks, linkage attacks) [89]. The method of introducing noise to the data can result in great 

privacy but may compromise accuracy. Therefore, there is a trade-off between applying 

differential privacy and achieving a high level of model accuracy. However, the authors in 
[89] present a method, which applies privacy-preserving without sacrificing accuracy. 

Another privacy-preserving technique is the Secure Multiparty Computation (SMC), a well-

defined cryptographic-based technique that allows a number of mutually suspicious parties 

to jointly compute a function before training a model while preserving the privacy of the 

input data [32], [90]. In the case of ML applications, the function can be the model’s loss 

function at training, or it could be the model itself during inference. The challenge of applying 

SMC on a large-scale distributed system is the communication overhead, which increases 

significantly with the number of participating parties.  

Homomorphic encryption [91] secures the learning process by applying computations (e.g., 

addition) on encrypted data. Specifically, an encryption scheme is characterized as 

homomorphic, when standard operations can be applied directly to the cypher data, in 

such a way that the decrypted result is equivalent to performing analogous operations to 

the original encrypted data [92], [93]. For machine learning methods, homomorphic 

encryption can be applied when training or inference are performed directly on encrypted 

data (cyphertexts). In scenarios, where large mathematical functions are implemented to 

cypher text space, a major bottleneck of homomorphic encryption emerges. The properties 

of homomorphic encryption schemes confront several limitations, related to encryption 

performance. 

Alternative hybrid approaches that combine SMC with DP and account dishonest 

participants exist.  In [94], authors confront the inference risk of SMC and the low accuracy 

that DP presents due to the noise injection by combining them. Furthermore, they propose a 

tunable trust parameter attribute by additively HE which considers many trust scenarios. 

HybridAlpha method [95] establishes a multi-input functional encryption (public-key 

cryptosystem) scheme to prevent inference attacks on SMC. HybridAlpha introduces a 

trusted third party to derive public keys to parties who intend to encrypt their data before 

training. Wang [96] presented HDP: a differential private framework for Vertical federated 

learning (cross-silo). HDP-VFL does not rely on HE or on third-party collaborators to assure data 
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privacy therefore, it is easy to implement and rather fast.  Chain-PPFL [97] can achieve 

privacy-preserving without compromising the model accuracy using SMC and DP in a “trust-

but-curious” way. The proposed communication mechanism constructs a serial chain frame 

which transfers masked information between participants. In addition, Chain-PPFL does not 

require encryption or obfuscation before transmitting information because it uses the P2P 

encrypted secure transmitted channel, thus requiring less resources. Authors in [98] present a 

fully decentralized federated learning process (BlockFlow) as a more resilient approach 

against adversarial and inference attacks. BlockFlow adopts blockchains as computational 

platforms and opposite to other methods does not require a central trusted part. Unlike other 

methods, there is no need for a centralized test dataset and different parties share DP models 

with each other.  

3.1.1 Differential Privacy (DP) 

Differential privacy provides strong guarantees for privacy by introducing randomness in the 

data, especially when the adversary has arbitrary external knowledge regarding the data. 

On the other hand, without considering randomness, adversaries could retrieve insights 

regarding the parameters that are required for the learning and convergence procedures 

on datasets or get the probabilities in which the learning algorithms will choose parameters 

within a set of possible learning parameters for a specific dataset. The use of differential 

private techniques eliminates such constraints. Generally, differential privacy may be divided 

into Local Differential Privacy (LDP) [99]–[101], and global differential privacy (GDP) [102]. 

LDP is a state-of-the-art approach which allows statistical computations while simultaneously 

protecting each individual user’s privacy. No trust limitations to a central authority or a third 

party are necessary since noise is added to the individual inputs locally. For instance, 

consider the local nodes in the diagram posted in Figure 17.  Noise distributions are added in 

each one of these nodes, ending up to the untrusted aggregator. Local differential privacy 

ensures that no trusted party is required since the individuals are responsible for adding noise 

to their own data before they share it.  

 

Figure 17: Local Differential Privacy. 
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In global differential privacy techniques, a central aggregator exists (i.e., a trusted curator) 

which has access to the raw data. In particular, each user sends their data to the aggregator 

node without adding noise. The aggregator then considers the input data and transforms it 

with a differentially private mechanism, by adding noise, either Laplacian or Gaussian. When 

an untrusted querier makes a specific query on the trusted aggregator node, an answer shall 

be provided, however, this answer is mathematically impossible to be reverse-engineered, 

and consequently it is impossible to know the precise answer about the private raw data. 

Generally, global private systems are more accurate, since all the analysis is implemented 

on “clean” (i.e. noise-free) data, and only a small amount of noise is added at the end of 

the process. However, the efficiency of global privacy models lies in the users’ amount of 

trust in the trusted curator. Figure 18 overviews the general scheme of a global differential 

privacy example. 

 

Figure 18: Global Differential Privacy. 

Abadi et. al. [87] introduced a Differentially Private Stochastic Gradient Descent (DP-SGD) 

algorithm which aims to control the effect of the training data during the optimization 

operation (GD). For each step, the DP-SGD algorithm computes the gradient for a random 

set of data, calculates the clipped 𝑙2 norm of each gradient computes the average, adds 

noise to preserve privacy and takes a step in the opposite direction of this SGD. Xu et. al. in 

[103] introduced an asynchronous decentralized parallel SGD with DP for FL which effectively 

reduces communication cost and does not rely on a central server thus, each computing 

node only communicates with its neighbours. Nevertheless, executing DP-SGD adds a 

significant runtime overhead. Subramani et. al. in [104] indicate some improvements such as 

vectorization, just-in-time compilation (accelerated linear algebra), and static graph 

optimization reducing the overhead up to fifty times. Differential privacy in principle needs 

many clients to be effective and normally many clients are present in cross-device FL 

scenarios. Nevertheless, it is noticeable that clients tend to dropout after participating in 

even one training round, which creates a robustness problem. Authors in [105], propose an 

enhanced robust DP mechanism for Federated Learning to address user dropouts as well as 

distributed noise generation and user-level privacy for differential privacy in Federated 

Learning.  
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3.1.2 Homomorphic Encryption (HE) 

An encryption scheme is considered “homomorphic” if standard mathematical operations 

can be applied directly to the cypher text, in such a way that the decrypted result is 

equivalent to performing analogous operations to the original unencrypted data [92], [93]. 

For instance, on the diagram that is illustrated in Figure 19, we examine the sum operator on 

two values A and B. Starting from the private data, we encrypt each of these values with a 

key named P. Then, we consider the sum operator on the encrypted A and B values. This 

encrypted sum is able to be decrypted with the key P, and the result is equivalent to the 

original sum of the non-encrypted A, B values/ parameters [106]. However, in multiple 

scenarios, where larger mathematical computations/ functions are required to be 

implemented within the cypher text space, the remarkable properties of homomorphic 

encryption schemes confront several limitations, related to the encryption performance.  

 

 

Figure 19: Homomorphic Encryption Example. 

In this direction, multiple techniques have been proposed in the literature that overcomes 

these limitations by adopting statistical techniques to be compliant with homomorphic 

computation properties, and by quantifying reasonable approximations in those situations 

where a traditional approach cannot be implemented homomorphically [107]. 

[108] indicates that more than 80% of the training iteration time is spent on 

encryption/decryption when standard HE is used. CryptoNets [109] replaces the activation 

function of the neural network with the lowest-degree non-linear polynomial function to 

make homomorphic encryption feasible. The authors in [110] adopt a scale-invariant 

method through bootstrapping (ciphertext refreshing technique) and propose the use of 

discretized neural networks. Scale invariance within the network means that what happens 

in neuron’s level does not depend on the size of the neural network. Therefore, facilitates the 
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use of Fully-HE for deep neural networks. On contrary, due to the discretization of the network, 

Bourse’s approach underperforms in accuracy, compared to CryptoNets. The authors in 

[111] present “Faster-CryptoNets”, an optimized method of CryptoNets, for efficient 

encrypted inference towards a HE-enabled neural network model, achieving significant 

speed improvement whilst proposing a quantized polynomial approximation to the 

activation function. Jukevar in [112] presents Gazelle, a low latency framework for secure 

neural network inference which uses HE with garbled circuits and linear algebra kernels. 

Gazelle is constructed by three components, the Gazelle Homomorphic Layer (GHL), the 

Gazelle Linear Algebra Kernels (GLAK) and the Gazelle Network Inference (GNI). Gazelle 

utilizes innovative calculation techniques on HE, leading to accelerated HE operations.   

3.1.3 Secure Multiparty Computation (SMC) 

Secure Multiparty Computation (SMC) is a well-defined cryptographic technique that 

enables distributed parties to jointly compute an arbitrary function without revealing their 

own private input and output pairs [32], [90]. SMC models provide security verification in well-

defined simulation frameworks that guarantee complete zero-proof knowledge[113]. 

Specifically, using universally verifiable Zero-Knowledge Proofs (ZKPs) ensure computation 

integrity, and prove that the encrypted data are within the appropriate/given ranges. 

Nevertheless, in multiple scenarios, this desired property requires complex computations 

which are not very efficient. Additionally, several use-cases consider as acceptable the 

disclosure of partial knowledge under the constraint that pre-defined security guarantees 

are provided. For instance, the authors in [114] present an SMC framework for training 

machine learning models for linear regression, logistic regression and neural network training 

using the stochastic gradient descent method, with two servers and semi-honest 

assumptions. Additionally, in [115], the authors investigate the usage of Multi-Party 

Computation (MPC) protocols for machine learning model training, by encrypting sensitive 

attributes. Using this strategy, they demonstrate how an outcome-based fair model can be 

trained and verified without being subject to revealing its sensitive attributes. Consequently, 

the above-mentioned state-of-the-art approaches guarantee privacy even in the scenario 

of having semi-honest or malicious assumptions. Yet, in practical systems, algorithms tend to 

be simpler and more pragmatic while preserving the necessary accuracy. 

3.1.4 Private Aggregation of Teacher Ensembles 

(PATE) 

A well-known approach is the Private Aggregation of Teacher Ensembles (PATE) strategy 

[116], which presents a teachers-student scheme. Teachers are basically, the unpublished 

models trained on disjoint partitioned datasets with sensitive data. In Figure 20, PATE’s general 

architecture is presented.  

https://www.sciencedirect.com/topics/computer-science/cryptographic-primitive
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Figure 20: Approach diagram: an ensemble of teachers is trained on disjoint subsets of the sensitive 

data and a student model is trained on public data labelled using the ensemble [116]. 

 

A student cannot directly access the teacher’s data or parameters and learn to predict, 

based on public non-sensitive data, an output which relies on noisy voting among all the 

teachers. A student model is trained in a semi-supervised way with GANs [82]. GAN 

framework consists of two machine learning models, a generator which produces samples 

from the data distribution and a discriminator which is trained to distinguish fake samples 

(produced by generator) with samples of the real data distribution.  It is important to limit 

students’ access to its teachers and essential to maintaining privacy, thus DP (Differential 

Privacy) is exploited. In general, DP is defined using pairs of adjacent inputs and PATE 

introduces a function to compute the privacy loss and the privacy loss random variable 

based on DP. To preserve privacy, the privacy cost of each outcome queried by the student 

should be bound. The total cost of training the student derives by exploiting the strong 

composition theorem [117]. To keep track more efficiently of the privacy cost, PATE exploits 

moments accountant, a technique which bounds the privacy cost when the topmost vote 

has a large quorum. Oppositely to typical machine learning techniques, PATE partitions the 

data in disjoint sets and trains a specific model for each set. Then, an aggregated teacher 

queries each teacher for a prediction and aggregates the output to a single prediction. This 

aggregation mechanism guarantees privacy. Nevertheless, if two classes have close vote 

counts, the disagreement may reveal private information. Therefore, PATE introduces 

random Laplacian noise (LNMax) to the vote counts and outputs the noisiest votes from the 

teacher’s aggregator. To this matter, Papernot in [117] indicates an improvement in the 

teacher aggregator mechanism. Instead of using LNMax Papernot applies GNMax, a 

Gaussian based noise distribution which is more concentrated than the Laplace distribution. 

This modification improves aggregation’s utility when the number of teachers is large whilst 

reducing the amount of noise needed to achieve the desired privacy cost per student query. 

GNMax relies on the Rényi Differential Privacy or RDP [119]. Papernot accounts for the close 

relation between RDP and moments accountant and proposes RDP as a more natural 

analysis framework when Gaussian noise is applied.  
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Figure 21: PATE, a detailed overview of the aggregation mechanism which shows that differential 

privacy does not change the label of an output, [120]. 

In Figure 21, a detailed overview of how the aggregation mechanism works is presented 

while it is clear that preserving privacy using PATE does not affect the training process and 

results. 

 

3.2 Comparison of Federated Learning frameworks 

considering privacy preservation 

Considering the extensive analysis presented in sections 2 and 3, for the FL methods/tools 

and the privacy-preserving approaches, respectively, comparative analysis for Federated 

Learning frameworks is conducted and presented in this subsection. The comparison refers 

to the FL frameworks analyzed in section 2.5 and for which the main benefits and drawbacks 

are briefly presented in Table 6. 

 

Table 6: Main pros and cons of the Federated Learning frameworks. 

FL Framework Main Pros Main Cons 

FATE  1. Production Ready  

2. High-Level interface   

3. Provides many FL algorithms  

4.  Containerized - Kubernetes 
support 

1. It does not establish any 
differential privacy algorithms   

2. Its high-level interface relies too 

much on a poorly documented 

domain-specific language    

3. Does not have a core API so 

developers must modify the 
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source code of FATE to implement 
custom FL algorithms  

4. Doesn't use GPUs for training  

5. Not well suited for the purposes 
of the IoT-NGIN  

Flower 1. Provides a template API which 

allows users to easily transform ML 
pipelines to FL   

2. Very easy to develop and ML 

framework-agnostic  

3. Supports a great number of 

clients  

4. It is really customizable  

5. Easy integration with privacy-
preserving frameworks (PATE) 

1. It does not have any differential 
privacy algorithms.   

2. It is relatively new and the 
support community is not that big  

3. Doesn’t provide secure 

aggregation 

PySyft & PyGrid 1. Rather easy to use  

2.  It has the largest community of 

contributors among the FL 
frameworks. 

1. PySyft is only for 1 server and 1 

client (Duet) and can run only in 

simulation mode  

2. You need PyGrid in order to 

develop real FL scenarios  

TensorFlow 

Federated 

1. It integrates seamlessly with 

existing TensorFlow ML models  

2. It is easy to use due to its 

familiarity 

1. Until now It can be used only in 

simulation mode because it 

doesn't support the federated 
operation mode  

2. The data used for training 

cannot be loaded from the 

remote worker itself, but must be 

partitioned and transferred 
through the central server 

Sherpa.ai 1. Relatively easy to use because 
of the Jupiter notebooks etc.  

2. Implements FL algorithms and it's 
easy to customize them 

1. Poor Documentation.  

2. Small community with only 

seven contributors  

3. The Project's repository is not 

active (4+ months after the latest 

update)  

4. Can run only in simulation 

mode  

5. Limited applicable scenarios 
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FedML 1. On-device training for edge 

devices including smartphones 
and Internet of Things (IoT)  

2. Distributed computing  

3. Growing community  

4. Multi-GPU training support 

1. No privacy-preserving 

techniques are applied. Only a 

secure aggregation technique is 
implemented.  

2. The multiple available modules 

for different situations might lead 

to drawbacks and create 
overheads 

PaddleFL 1.  Provides a high-level interface 

for some basic and well-known FL 

aggregators and implements a 
differentially private algorithm.  

2. Provides enough privacy-

preserving methods such as DP, 
MPC and secure aggregation 

1.  It is fairly difficult to use it 

because it uses a little-known DL 
platform.  

2. Has poor documentation and 

has a small community—only 12 
contributors.  

3. It is not compatible with other 

frameworks and that is a major 
drawback 

Leaf 1.  Provides some basic Federated 

Learning mechanisms such as the 

Federated Averaging Aggregator  

2. It is modular and adaptive  

3. Enables reproducible science 

1.  It does not provide any 

benchmark for preserving privacy 

in an FL setting  

2. Does not offer as much official 

documentation or tutorials  

3. Limited Federated Learning 

capabilities, it is mainly for 

production purposes 

 

The comparison among the FL frameworks listed in Table 6 is based on the following criteria: 

 Criterion 1: This criterion is based on Basic Federated Learning features. The operating 

system support, the Federated Learning categorization e.g., if it supports cross-silo or 

cross-device setups, which machine learning and deep learning libraries (TensorFlow, 

PyTorch) do the framework supports and if there is a Federated attack simulator. 

 Criterion 2: This includes three computing paradigms; the standalone simulation which 

gives the possibility for a user to apply FL scenarios in simulation; the distributed 

computing capability that shows if an FL framework is capable of performing in a 

distributed environment where participants are different devices; the capability of on-

device training for IoT and other mobile devices which normally have limited 

hardware resources. 

 Criterion 3: If FL frameworks include standardized FL algorithms and configurations like 

Federated Average, FedNAS [119], decentralized Fl, vertical Fl, and split learning [120]. 

 Criterion 4: An essential characteristic for an FL framework is the existence of privacy-

preserving mechanisms and also, what types of privacy-preserving methods are 

supported by the frameworks. In cases where privacy-preserving techniques are not 

presented, the FL framework must give the capability to integrate such mechanisms. 
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 Criterion 5: In order for an FL framework to be flexible and adaptive, documentation, 

tutorials and Community support are significant. 

 Criterion 6: Secure aggregation [121] algorithm implementation to further enhance 

privacy. 

 Criterion 7: Nowadays, training on GPUs especially for Deep Learning tasks is essential. 

Especially for limited hardware resources on devices GPUs have shown remarkable 

computation capabilities compared to CPUs. 

 Criterion 8: All the FL frameworks in comparison are open-sourced but with different 

licenses and therefore of different usage limitations. 

 Criterion 9: More general properties and characteristics of the FL frameworks. To be 

more specific, an FL framework must be easy to use, adaptive, preserve 
interoperability, flexibility, and privacy. 

 

The characteristics of each FL framework against the nine identified criteria are tabulated 

in Table 7 and Table 8. 



H2020 -957246    -   IoT-NGIN  

 
D3.2 - ENHANCING CONFIDENTIALITY PRESERVING FEDERATED ML 

 

55 of 84 

 

Table 7: Federated Learning framework comparison (1/2). 

FL Framework FATE Flower PySyft + PyGrid 
TensorFlow 

Federated 

standalone simulation Yes Yes Yes Yes 

distributed computing Yes Yes Yes Yes 

on-device training (Mobile, IoT) No 
Yes - Depends on the 

Network 
Yes No 

FedAvg Yes Yes Yes Yes 

Decentralized FL No Yes No No 

FedNAS No Yes No No 

Vertical Federated Learning Yes Yes No No 

Split Learning No Yes Yes No 

Privacy-preserving Methods No 
Differential Privacy (PATE) - 

Implemented in IoT-NGIN 

Multi-Party Computation - 

Homomorphic Encryption 

Differential 

Privacy 

DP Noise type No Yes No No 

Adaptive Differential Privacy No No No No 

Subsampling methods to 

increase privacy 
No No No No 

Documentation and Community 

support 

Partial - Mostly in 

Chinese 
Yes, and it's growing rapidly Yes Yes 

Secure Aggregation Yes Future Implementation  No 
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Table 8: Federated Learning framework comparison (2/2). 

FL Framework Sherpa.ai FedML PaddleFL OpenFL 

standalone simulation Yes Yes Yes Yes 

distributed computing No Yes Yes Yes 

on-device training (Mobile, IoT) No Yes No No 

FedAvg Yes Yes Yes Yes 

Decentralized FL No Yes Yes Yes 

FedNAS No Yes No No 

Vertical Federated Learning No Yes Yes Yes 

Split Learning No Yes Yes Yes 

Privacy-preserving Methods 
Differential 

Privacy 
No 

Multi-Party Computation & 

Differential Privacy 

Multi-Party Computation 

& Differential Privacy 

DP Noise type Yes No Yes Yes 

Adaptive Differential Privacy Yes No Yes Yes 

Subsampling methods to 
increase privacy 

Yes No Yes Yes 

Documentation and Community 
support 

Yes Stable Partial Partial but growing 

Secure Aggregation No 
Future 

Implementation 
Yes Yes 
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Based on the tables above, privacy-preserving methods are available for Flower, PySyft & 

PyGrid, TensorFlow Federated, Sherpa.ai, PaddleFL and the relatively new OpenFL; however, 

the exact Privacy-preserving methods supported differ across the FL frameworks. On the 

other hand, Sherpa.ai, PaddleFL and OpenFL do not support on-device training, which would 

be essential under the (far-)edge computing paradigm adopted also in some IoT-NGIN LL 

use cases. Considering these, as well as the support of rest features, Flower, PySyft & PyGrid 

and TensorFlow Federated enhanced with privacy-preserving methods are identified as the 

most suitable candidates for being further analyzed and supported within the IoT-NGIN 
project. 
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4 IoT-NGIN privacy-preserving FL framework 
Based on the analysis and comparison among eight FL frameworks of the previous section, 

there is no single solution that fits everything, in the sense that different frameworks may be 

most appropriate for different use cases. As a result, the design of the IoT-NGIN privacy-

preserving federated learning framework is presented in this section towards providing 

privacy-preserving FL as a service. Indeed, it constitutes a generic approach, which may 

integrate and support multiple diverse FL frameworks. IoT-NGIN has identified three of them, 

namely Flower, PySyft together with PyGrid and TensorFlow Federated, as best candidates 

for covering diverse use cases, as the ones considered for the project validation. The initial 

version of the IoT-NGIN privacy-preserving FL framework incorporates PATE implementation 

in Keras and the Flower framework. Moreover, the high-level architecture design of 

integrating PATE with the Flower FL framework is presented and will be implemented as part 

of the future IoT-NGIN activities. 

 

4.1 Design of IoT-NGIN privacy-preserving FL 

framework 

Different privacy-preserving FL frameworks may be appropriate for different use cases, while 

the Federated Learning setup may be affected by different network structures involving IoT, 

edge or cloud nodes that may act as FL clients or as the FL server (or FL Aggregator). The 

high application and device diversity under the cloud, edge, fog continuum, combined with 

the varying characteristics of different FL frameworks, may highly complicate the ML 

developer’s job in choosing a proper one. 

IoT-NGIN aims to tackle this, by facilitating ML developers to use an appropriate FL technique 

to train their models, without having to delve into the technique’s specifics. IoT-NGIN will 

basically support different FL frameworks, for which it will provide guidance for the user (ML 

developer) on what to choose, assisting, thus, developers’ decision as per the suitable FL 

framework for training their models. The recommended FL framework will be able to be 

deployed on the designated (by the ML developer) nodes via IoT-NGIN’s continuous 

deployment tools. In this way, IoT-NGIN will support privacy-preserving Federated Learning 
as a Service (PPFLaaS). 
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Figure 22: High-level architecture of IoT-NGIN as a Service. 

The PPFLaaS concept of IoT-NGIN can be materialized via the high-level architecture 

presented in Figure 22. As depicted in the figure, PPFLaaS may be accessed through the 

Federated Learning API. This API will be responsible for suggesting the most appropriate 

privacy-preserving FL framework. The selection of the method will be conducted on the basis 

of the requester input, with respect to a set of predefined criteria, similar to the ones 

presented in the comparative analysis of section 3.2. The selected FL framework will be 

deployed on the nodes, also designated by the requester, via IoT-NGIN Continuous 

Deployment tools. Following the edge computing paradigm, FL clients would be deployed 

on edge nodes, while the FL Aggregator would be deployed on an edge or a cloud server. 

4.1.1 FL in IoT-NGIN MLaaS 

IoT-NGIN designs and develops a Machine Learning as a Service (MLaaS) platform that will 

facilitate access to the services and functionalities required to build powerful Machine 

Learning models, covering their complete life cycle (MLOps) and integrating the most 

powerful and recent advances in the state-of-the-art like deep learning, online learning, 
reinforcement learning, polyglot model-sharing and of, course, federated learning.  

Thus, the IoT NGIN MLaaS platform will reduce the complexity that must be addressed 

currently to provision and support the hardware and software components used in the 

development of modern AI-based services, boosting time-to-market and even 

democratizing the access to AI technologies for any company independently of its size. 

One of the main principles guiding the design of the IoT NGIN MLaaS platform is the need to 

seamlessly integrate the new generation of systems resulting from the increasing capabilities 
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and relevance of edge devices following the computing continuum paradigm. In this vision, 

IoT sensors and devices are not anymore just mechanisms to obtain high-quality data or to 

execute certain actions. They have become indeed intelligent nodes with the capacity to 

process at the edge collected information, reducing the amount of information that must 

be uploaded in centralised cloud platforms and opening new use-cases in multiple domains. 

In this sense, Federated Learning is clearly one of the points highlighted in the convergence 

between the new generation of IoT systems based on powerful edge computing devices 

and Artificial Intelligence technologies. Thus, its integration as part of IoT NGIN MLaaS 

platform is a fundamental requirement. 

A complete and detailed specification of IoT-NGIN MLaaS platform is included in deliverable 

D3.1 “Enhancing deep learning / reinforcement learning” [130]. In this document, a high-
level architecture has been proposed resulting in the diagram included in Figure 23. 

 

Figure 23: MLaaS high-level architecture. 

As can be seen, IoT NGIN MLaaS platform design is focused on the provision of a complete 

ML environment that will be tailored to be deployed on edge computing nodes. A central 

cloud platform is considered as a complementary element to allow offloading the 

processing of certain tasks, to download and publish models and data that can be shared 

between several instance of the MLaaS platform. This approach perfectly fits with the 

PPFLaaS concept described in the previous subsection 4.1; the aggregation role will be 

played by the edge node for configurations where IoT devices or Digital Twins are used to 

deploy FL clients, but it will be possible to have a higher level of aggregation between several 

MLaaS instances thanks to the presence of the cloud platform. 
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With respect to the integration of the FL techniques widely described within the present 

document into the overall MLaaS platform, it is especially relevant to highlight the technical 

decisions that have been made from the release of D3.1 in terms of selection of technologies 

since they have a deep impact on this aspect. After concluding the analysis of relevant 

existing open-source solutions that could be used as baseline for the development of the 

MLaaS platform, the consortium made the decision to rely on Kubeflow1, an open-source 

framework to build Machine Learning pipelines including training and serving phases on any 

infrastructure managed with Kubernetes. Kubeflow has a huge an active community and it 

is released with an Apache 2.0 license, so it is a perfect choice in order to maximise the long-

term sustainability of IoT NGIN MLaaS and to maximise its impact and outreach. Figure 27 

presents the Kubeflow platform architecture. 

 

Figure 24: Kubeflow platform architecture. Source: 

https://www.kubeflow.org/docs/started/architecture/ 

As can be seen, Kubeflow relies on Kubernetes to enable the seamless and scalable 

deployment of ML workflows on multiple platforms covering mainstream cloud solutions for 

Infrastructure as a Service (IaaS), Infrastructure as a Service (PaaS) but also on-premises 
configurations.  

One of the most interesting characteristics of Kubeflow from the perspective of a data 

scientist of ML engineer is the possibility to create complex workflows embracing MLOps 

practices that span from experimentation to production phases. Especially in the latest 

stage, Kubeflow includes functionalities to service the model (e.g., KFServing, Seldon Core) 

and to monitor its performance triggering a retraining process if needed. The solution 

supports well-known and widely used frameworks and libraries like TensorFlow, PyTorch, scikit-

                                                
1 https://www.kubeflow.org/ 
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learn or NVIDIA TensorRT. It also integrates off-the-shelf Jupyter notebooks, which are a de-

facto standard for the initial stages of the development of ML models. A deeper analysis of 

Kubeflow will be included in the deliverable D3.3 “Enhanced IoT federated deep learning/ 
reinforcement ML”, due at the end of Q3 2022. 

Regarding the integration of Federated Learning techniques into Kubeflow, there are not 

many available implementations that can be considered. A specific operator for FATE (see 

section 2.5.1.3) has been proposed by the community developed by VMware as open-

source 2. The architecture for this implementation is showed in Figure 25. 

 

Figure 25: Architecture of FATE Kubeflow operator. Source: 

https://github.com/kubeflow/community/blob/master/proposals/fate-operator-proposal.md 

KubeFATE operator includes manifests with components to manage infrastructures 

composed by multiple clusters, to deploy the cluster itself and to deploy a FL job. Although it 

is an interesting implementation, it is not compatible with interesting FL frameworks proposed 

in section 2.5 and its design is not really tailored to the specific needs of hybrid infrastructures 

composed by cloud and edge components. Therefore, it cannot satisfy the needs of IoT 

NGIN MLaaS platform. 

As an alternative, IoT-NGIN will work on a more modular and flexible integration mechanism 

between the relevant FL frameworks and techniques implemented within IoT-NGIN and 

Kubeflow as main background technology for the MLaaS platform. In this sense, the 

integration will be based on the following principles: 

                                                
2 https://github.com/kubeflow/community/blob/master/proposals/fate-operator-proposal.md 

https://github.com/kubeflow/community/blob/master/proposals/fate-operator-proposal.md
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 Creation of Helm charts for a fast and easy deployment on Kubernetes infrastructure 

of FL clients. 

 Creation of new addons and operators for Kubeflow in order to perform the 

aggregator role as part of FL workflows. 
 Particularisation to work with lightweight versions of Kubernetes like MicroK8s or K3s. 

A complete description about the integration will be included in the deliverable D3.3. 

4.2 Privacy-preservation in FL within IoT-NGIN 

Along with the disruptive appearance of AI technologies and IoT utilization in various 

domains, data privacy and security became a critical challenge. Federated Learning tends 

to preserve private data as it does share model parameters rather than the raw data itself. 

In addition, FL plays a crucial role for these technologies to be employed effectively and 

productively. Nonetheless, FL needs additional privacy-preserving techniques and robust 

strategies for finer training, enhancing privacy, and limiting adversarial attacks. In the IoT-

NGIN project, the Private Aggregation of Teachers Ensembles (PATE) strategy is utilized for 

the following reasons: 

 It provides strong differential privacy guarantees independent of the learning 

algorithm. 

 It is flexible and adaptive because it is framework-Agnostic, model-agnostic and 

datatype agnostic. 

 The data partitioning scheme that PATE introduces, guarantees that even if a trained 

model of an FL client has been compromised by a model poisoning attack and the 

model updates are false, the model can still be correctly aggregated because of the 

correct updates from the other clients. That being said, PATE introduces the voting 

system, therefore, if many agree on a value then the few are compromised, or they 

didn’t learn correctly. 

 PATE architecture performs also, as an effective legularizer that produces better-
behaved models. 

PATE is a great strategy to preserve privacy in FL applications. One major shortcoming in PATE 

is that the Student model needs publicly available datasets to be trained, yet sometimes are 

not available. Therefore, in the next steps of the IoT-NGIN project, additional methods will be 
explored similar to [124], towards a more advanced PATE scheme.  

Within IoT-NGIN, PATE was re-implemented in KERAS 2.0 (TensorFlow2.0+) because the 

currently available GitHub TensorFlow Federated repository [125] includes a rather old PATE 

implementation which is developed in TensorFlow 1.0. Therefore, to stay up-to-date and to 

enable integrations in other solutions within the IoT-NGIN FL flows as well as to facilitate future 
research work, PATE implementation in KERAS 2.0 has been considered essential.  

4.2.1 ML model training using PATE  

To test and understand in practice the great advantages of PATE, a sequential ML model for 

classification was implemented and tested on a Suricata dataset collected from the Synelixis 

PfSense platform and showed in Figure 26. Suricata is an independent open-source threat 

detection engine which combines intrusion detection (IDS), intrusion prevention (IPS), 
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network security monitoring (NSM) and PCAP processing. Some key characteristics are the 
following: 

 High-performance and multi-tasking network intrusion detection system (IDS), 

prevention (IPS) and security monitoring engine. 

 Protects networks, collects, and stores information about any incoming signals.  

 Open source - owned by the non-profit foundation Open Information Security 

Foundation (OISF). 

 Suricata attack detector is based on the analysis of signatures and heuristics. 

 

Figure 26: Suricata Logs extracted by Synelixis pfSense platform. 

A crucial step in the ML cycle is data preprocessing, which includes all the essential 

techniques to transform the raw data to a format that will facilitate the building and training 

of ML models. In particular, for intrusion detection datasets, like the Suricata dataset, great 

attention is needed. Considering this work [126] and empirically, data preprocessing steps 
for the Suricata dataset are defined as follows: 

 Cleaning (Removing punctuations like .,!()$#&*%@, remove URLs, remove stop words). 

 Filtering. 

 Organization (test must be lower case, etc.). 
 Transforming procedures (Tokenization, etc.). 

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2200076:2] SURICATA ICMPv4 invalid checksum [Classification: Generic Protocol Command

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2200076:2] SURICATA ICMPv4 invalid checksum [Classification: Generic Protocol Command

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:24+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2200076:2] SURICATA ICMPv4 invalid checksum [Classification: Generic Protocol Command

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2200076:2] SURICATA ICMPv4 invalid checksum [Classification: Generic Protocol Command

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:43:55+00:00 pfsense.services.synelixis.com suricata[82403]: [1:2023472:7] ET POLICY External IP Lookup Domain (myip.opendns .com

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:05+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230003:1] SURICATA TLS invalid handshake message [Classification: Generic Protocol

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command

2020-10-29T11:44:20+00:00 pfsense.services.synelixis.com suricata[83726]: [1:2230010:1] SURICATA TLS invalid record/traffic [Classification: Generic Protocol Command
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Figure 27: Data after Preprocessing steps. 

In Figure 27, the data after the preprocessing transformation is presented. Suricata tool 

classifies incoming requests based on a risk factor of being an adversarial attack. The 

requests take a value from 1 to 3 depending on the risk level. These labels were used as 

ground truths in order to facilitate the evaluation of our example. To train a classification 

algorithm a sequential neural network (Figure 28) is designed and developed in KERAS.  

 

1. Model: "sequential" 
2. _________________________________________________________________ 
3. Layer (type)                 Output Shape              Param #    
4. ================================================================= 
5. dense (Dense)                (None, 512)               10752      
6. _________________________________________________________________ 
7. dense_1 (Dense)              (None, 128)               65664      
8. _________________________________________________________________ 
9. activation (Activation)      (None, 128)               0          
10. _________________________________________________________________ 
11. dense_2 (Dense)              (None, 64)                8256       
12. _________________________________________________________________ 
13. dense_3 (Dense)              (None, 3)                 195        
14. _________________________________________________________________ 
15. activation_1 (Activation)    (None, 3)                 0          
16. =================================================================  

Figure 28: A simple sequential neural network model was developed, and this is the architecture. 

Typically, PATE needs at least 250 teachers to perform well, but due to the limitation of the 

available dataset the paradigm limits the teachers to 100. In the next steps of IoT-NGIN, 

additional experiments with PATE using more teachers and different DL/ML networks will be 

explored.  

 

83.235.169.221:11353,208.67.222.222:53,2,et policy external ip lookup domain myip opendns com in dns lookup,udp

192.168.168.178:37788,208.67.222.222:53,2,et policy external ip lookup domain myip opendns com in dns lookup,udp

192.168.168.238:8,192.168.1.1:0,3,suricata icmpv invalid checksum,icmp

192.168.168.178:60786,208.67.222.222:53,2,et policy external ip lookup domain myip opendns com in dns lookup,udp

83.235.169.221:57953,208.67.222.222:53,2,et policy external ip lookup domain myip opendns com in dns lookup,udp

52.114.158.91:443,192.168.168.139:39204,3,suricata tls invalid handshake message,tcp

52.114.158.91:443,192.168.168.139:39204,3,suricata tls invalid record traffic,tcp

192.168.168.139:39204,52.114.158.91:443,3,suricata tls invalid handshake message,tcp

192.168.168.139:39204,52.114.158.91:443,3,suricata tls invalid record traffic,tcp

131.253.33.219:443,192.168.168.6:65201,3,suricata tls invalid handshake message,tcp

131.253.33.219:443,192.168.168.6:65201,3,suricata tls invalid record traffic,tcp

192.168.168.6:65201,131.253.33.219:443,3,suricata tls invalid handshake message,tcp

192.168.168.6:65201,131.253.33.219:443,3,suricata tls invalid record traffic,tcp

83.235.169.221:33261,208.67.222.222:53,2,et policy external ip lookup domain myip opendns com in dns lookup,udp

192.168.168.178:60125,208.67.222.222:53,2,et policy external ip lookup domain myip opendns com in dns lookup,udp

13.94.251.244:443,192.168.168.178:59542,3,suricata tls invalid handshake message,tcp

13.94.251.244:443,192.168.168.178:59542,3,suricata tls invalid record traffic,tcp

13.94.251.244:443,192.168.168.178:59542,3,suricata tls invalid record type,tcp

192.168.168.178:59542,13.94.251.244:443,3,suricata tls invalid record type,tcp

192.168.168.178:59542,13.94.251.244:443,3,suricata tls invalid handshake message,tcp

192.168.168.178:59542,13.94.251.244:443,3,suricata tls invalid record traffic,tcp

52.114.128.10:443,192.168.168.178:36978,3,suricata tls invalid handshake message,tcp

52.114.128.10:443,192.168.168.178:36978,3,suricata tls invalid record traffic,tcp

192.168.168.178:36978,52.114.128.10:443,3,suricata tls invalid handshake message,tcp

192.168.168.178:36978,52.114.128.10:443,3,suricata tls invalid record traffic,tcp

83.235.169.221:443,192.168.168.59:57546,3,suricata tls invalid handshake message,tcp

83.235.169.221:443,192.168.168.59:57546,3,suricata tls invalid record traffic,tcp
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Figure 29: Aggregated values for Teacher models: Loss and Accuracy diagram over 27 epochs, Final 

Loss: 0.0224 & Accuracy: 0.9922. 

 

The trained Teacher models with PATE resulted in 0.0224 Loss value and 0.9922 Accuracy 

Figure 29, which are some fine results for such a simple neural network. Training using PATE 

enhances privacy. In this example, Teachers are trained on private partitioned data and the 

student on locally collected data, therefore privacy is preserved. In Figure 30, Student model 
metrics are presented, the final Loss equals to 0.03 and the Accuracy to 0.9912. 

 

 

 

Figure 30: Student model Loss and Accuracy diagram over 27 epochs, final Loss: 0.03 & Accuracy: 

0.9912. 
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A Confusion matrix is a table that is used to define the performance of the classification task. 

In this example, the confusion matrices in Figure 31 correspond to a Teacher and the 

Student’s model respectively. 

  

a) b) 

Figure 31. Confusion matrices that show the predicted labels compared to the true labels. a)This 

Confusion matrix relates to a Teacher model and b) to the Student’s model. 

 

In this task, a simple ML model is trained using PATE as the privacy-preserving mechanism. 

Although more trivial Differential Privacy mechanisms can be utilized, PATE provides a more 

sophisticated and effective approach and also, computes the data-dependent differential 
privacy bounds to estimate the cost of training the student model.  

4.2.2 DL model training using Flower 

Another experimentation copes with the Flower FL framework. In particular, a DL model for 

classification on CIFAR10 [127] dataset is trained in a federated manner employing the 

Flower framework and TensorFlow. CIFAR10 is a commonly used dataset for machine learning 

training and computer vision algorithms which includes 50000 32x32 colour training images 

and 10000 test images of 10 different labels (aeroplane, automobile, bird, cat, dog, frog, 

horse, ship, truck) where each label corresponds to 10000 images. The model used is the 

MobileNetV2 [128], a convolutional neural network for image classification that is 53 layers 

deep. In this example, the Adam [129] optimizer is used, a method for stochastic gradient 

optimization. Regarding the loss function, the sparse_categorical_crossentropy is used, which 

is suitable for multi-class classification model training and the metric chosen for model 

evaluation is the accuracy of the training. The example trains the model in a federated setup 
with 10 clients and for 20 epochs.  
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Figure 32: Flower server up and running and waiting for Flower clients to join. 

In Figure 32, the Flower’s server is up and running as well as waiting for Flower clients to join 

and collaboratively train the shared model, Figure 33, shows a client that is training the 

model. Loss is high and accuracy is low because it is the initial step of the learning process. 

 

Figure 33: Flower clients training the shared model. 

Flower does not provide a privacy-preserving mechanism, to the best of authors’ knowledge. 

As the next step of IoT-NGIN work, PATE will be integrated into Flower as a privacy-preserving 
mechanism.  

 

 

4.3 FL Frameworks with Privacy-preserving 

mechanisms in IoT-NGIN 

In the IoT-NGIN project, three FL frameworks (Flower, PySyft + PyGrid and TensorFlow 

Federated) are selected, each one for different network setup (IoT Node, Edge Node, Cloud 

Node) as the ones that may be offered via PPFLaaS. Table 9 tabulates the privacy-preserving 
FL frameworks considered in IoT-NGIN, under the network setup perspective. 
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Table 9: Privacy-preserving FL frameworks under the network setup perspective. 

FL Framework 
Network Category (IoT 
Node, Edge Node, Cloud) 

Connectivity Layers 
Most suited type 
of Learning 

Flower  

IoT Node - Edge Node 
All possible layer 

combinations 

Broad support for 

multiple types of 

Learning 

PySyft + PyGrid 

Cloud - Edge Node 

IoT Node - Edge Node 

or Cloud to Edge 

Node or Cloud to IoT 

Node 

Broad support for 

multiple types of 

Learning but it 

does not initialize 

GPUs for training 

TensorFlow 
Federated 

IoT Node - Edge Node 
All possible layer 

combinations 

Broad support for 

multiple types of 

Learning 

The ML requirements of the LLs use cases have been analyzed in deliverable document D3.1 

“Enhancing deep learning / reinforcement learning” [130], identifying the use cases that 

could employ FL methods in model training. In Table 10, the most suitable privacy-preserving 
FL methods are identified for the LL use cases, based on the already elicited ML requirements. 

Table 10: Mapping privacy-preserving FL tools to IoT-NGIN use cases. 

LL 
Use Case 

Description 
Flower + PATE 

PySyft + PyGrid + 

PATE or DP 

TensorFlow 

Federated + 

PATE or DP 

Twin Smart 

Cities  
Traffic Flow & 

Parking 
Prediction 

 

x   

Twin Smart 
Cities  

Crowd 
Management x   

Smart 

Agriculture 

Crop diseases 

prediction & 

irrigation 
precision 

x x  
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Industry 

4.0 

Human–

centered 

safety in a self-

aware indoor 
factory 

 x x 

Industry 
4.0 

Digital 

powertrain 

and condition 
monitoring 

  x 

Smart 
Energy 

Move from 

reacting to 

acting in smart 

grid 

monitoring 
and control 

x  x 

Smart 

Energy 

Driver-friendly 

dispatchable 
EV charging 

x  x 

 

The FL framework exploitation within the IoT-NGIN project shall address the requirements from 

the LLs. Regarding Smart Cities use cases, the Flower framework is the most suitable because 

it can easily be deployed in multiple-client scenarios like the ones in smart cities because 
both UCs integrate numerous IoT devices.  

4.3.1 Technical Design 

Since Flower does not provide a privacy-preserving mechanism, to the best of authors’ 

knowledge, within IoT-NGIN, PATE will be integrated into Flower as a privacy-preserving 

mechanism. In this section, the architecture of IoT-NGIN’s FL framework (Flower + PATE) is 

described. 

PATE’s design consists of one student and many teachers while Flower is based on a multi-

client to a central server scheme. In this case (Figure 34), data portioning is not needed as in 

the traditional PATE strategy because each IoT Node collects data independently from the 

central server, using IoT sensors or smart devices. The only thing that must be considered is 

the data partition size and the fact that it should be equal. In any case, the training dataset 

of all clients can be cropped to the minimum training data size which exists among all clients. 
This is crucial because PATE is designed to aggregate models of the same dimensions. 
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Figure 34: An Overview of IoT-NGINs’ FL setup: Flower Federated Learning framework with PATE as the 

privacy-preserving mechanism. 

 

Figure 34, shows an overview of the Flower FL framework with PATE being the essential 

privacy-preserving mechanism, on a system with many participants. In this example, IoT 

sensors and smart devices are connected to a Flower client and provide their collected data 

for the training process of the Teacher. In this system, every Flower client includes a teacher 

model, and the Flower Server includes the Student. In Figure 35, a more detailed view of the 

Flower setup is given. This representation shows that an orchestrator is added in the pipeline 

to monitor the whole flow but also, to train the student and to perform Teacher’s 

aggregation. 

 

 

Figure 35: A detailed view of IoT-NGINs’ FL setup: Flower framework with PATE as the privacy-preserving 

mechanism. 
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5 Installation Guide 
The code and the installation procedures are available on the project Gitlab repository, 

accessible at: 

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-

preserving-federated-learning  

A brief description is given also here.  

 

Running the PATE example3 which uses a simple sequential neural network that learns to 

classify Suricata signals can be executed with the following commands: 

1. cd pate-keras 
2. pip install -r requirements.txt 

and then run the following command: 

1. python pate_orchestrator.py -i input_dir -t number_of_teachers -c number_of_classes -data 
data_input -labels label_input 

Running the Flower example4 which employs the MobilNetV2 model for classification on the 

CIFAR10 dataset can be executed with the following commands: 

1. cd flower-experiment 
2. pip install -r requirements.txt 
3. python server.py 

and in 10 different terminals run: 

1. python client.py 

  

                                                

3 https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-

preserving-federated-learning/privacy-preserving-fl-mechanisms/pate-keras  
4 https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-

preserving-federated-learning/privacy-preserving-fl-experiments/flower-experiment  

https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-federated-learning
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-federated-learning
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-federated-learning/privacy-preserving-fl-mechanisms/pate-keras
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-federated-learning/privacy-preserving-fl-mechanisms/pate-keras
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-federated-learning/privacy-preserving-fl-experiments/flower-experiment
https://gitlab.com/h2020-iot-ngin/enhancing_iot_cybersecurity_and_data_privacy/privacy-preserving-federated-learning/privacy-preserving-fl-experiments/flower-experiment
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6 User Guide 
This section describes the processes to run a Flower example with 10 clients. For running a 

multiple-client scenario in Flower framework to train a DL model for classification using 
TensorFlow, the following steps are needed. 

 

 First, Flower and TensorFlow must be installed 

1. pip install flwr 
2. pip install tensorflow 

 

 Then, the client and the server scripts must be developed 

 

Client script 
The following script must be constructed and saved as client.py  

1. import flwr as fl 
2. import tensorflow as tf 
3.   
4. (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() 
5. model = tf.keras.applications.MobileNetV2((32, 32, 3), classes=10, weights=None) 
6. model.compile("adam", "sparse_categorical_crossentropy", metrics=["accuracy"]) 
7.   
8.   
9. class CifarClient(fl.client.NumPyClient): 
10.     def get_parameters(self): 
11.         return model.get_weights() 
12.   
13.     def fit(self, parameters, config): 
14.         model.set_weights(parameters) 
15.         model.fit(x_train, y_train, epochs=20, batch_size=64, steps_per_epoch=3) 
16.         return model.get_weights(), len(x_train), {} 
17.   
18.     def evaluate(self, parameters, config): 
19.         model.set_weights(parameters) 
20.         loss, accuracy = model.evaluate(x_test, y_test) 
21.         return loss, len(x_test), {"accuracy": accuracy} 
22.   
23.   
24. fl.client.start_numpy_client("127.0.0.1:8080", client=CifarClient()) 
25.   

Server script 

The following script must be constructed and saved as server.py 

1. import flwr as fl 
2. from flwr.server.strategy import FedAvg 
3.   
4. # Start Flower server for three rounds of federated learning 
5. if __name__ == "__main__": 
6.     # FedAvg is the default strategy used when you start the server without a custom strategy 
7.     strategy = FedAvg( 
8.         # Minimum number of connected clients before sampling e.g. 10 



H2020 -957246    -   IoT-NGIN  

 
D3.2 - ENHANCING CONFIDENTIALITY PRESERVING FEDERATED ML 

 

74 of 84 

 

9.         min_available_clients=10, 
10.   
11.         # Fraction of clients which should participate in each round 
12.         fraction_fit=0.3 
13.     ) 
14.     fl.server.start_server("127.0.0.1:8080", strategy=strategy, config={"num_rounds": 3}) 
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7 Conclusions 
This report has presented in an extensive form the state-of-the-art in Federated Learning 

theory, tools and algorithms and reasons why Federated Learning is necessary for privacy-
preserving machine learning with many clients on decentralized data.  

Moreover, this document presented an extensive comparative analysis over open-source FL 

tools and through this broad analysis, the most suitable for the scope of IoT-NGIN are 

indicated for future exploitation.  

The design of the IoT-NGIN privacy-preserving FL as a service has been also presented as a 

generic approach, offering training via different FL frameworks as a service. 

The report includes the initial approaches and experimentations of FL tools both available 

open-sourced and developed within IoT-NGIN. The first version of the privacy-preserving FL 

tools is presented and evaluated through simple ML models. Moreover, the enhancement of 
Flower with the PATE privacy-preserving technique has been designed and specified. 

During the next steps of IoT-NGIN activities towards the design, development and evaluation 

of privacy-preserving FL Frameworks the following tasks will be explored, addressed and 
finalized: 

 Implementation of the privacy analysis methodology for the PATE framework to 

compute the privacy guarantees of the student model. 

 Finalization of integration of Flower with PATE. 

 Exploration of different ML models with Flower, PySyft + PyGrid and TensorFlow 
Federated on heterogeneous environments. 

The final version of the privacy-preserving FL framework of IoT-NGIN will be presented in D3.3 

“Enhanced IoT federated deep learning/ reinforcement ML”, due at the end of the third 
quarter of 2022. 
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