

WORKPACKAGE WP3 PROGRAMME IDENTIFIER
H2020-ICT-

2020-1

DOCUMENT D3.1 GRANT AGREEMENT ID 957246

REVISION V1.0
START DATE OF THE

PROJECT
01/10/2020

DELIVERY DATE 30/06/2021 DURATION 3 YEARS

D3.1

Enhancing deep learning
/ reinforcement learning

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

2 of 108

DISCLAIMER
This document does not represent the opinion of the European Commission, and the European

Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain IoT-NGIN consortium parties,

and may not be reproduced or copied without permission. All IoT-NGIN consortium parties have

agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the proprietor of that information.

Neither the IoT-NGIN consortium as a whole, nor a certain party of the IoT-NGIN consortium warrant

that the information contained in this document is capable of use, nor that use of the information is

free from risk, and does not accept any liability for loss or damage suffered using this information.

ACKNOWLEDGEMENT
This document is a deliverable of IoT-NGIN project. This project has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement Nº

957246.

The opinions expressed in this document reflect only the author’s view and in no way reflect the

European Commission’s opinions. The European Commission is not responsible for any use that may

be made of the information it contains.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

3 of 108

PROJECT ACRONYM IoT-NGIN

PROJECT TITLE Next Generation IoT as part of Next Generation Internet

CALL ID H2020-ICT-2020-1

CALL NAME Information and Communication Technologies

TOPIC ICT-56-2020 - Next Generation Internet of Things

TYPE OF ACTION Research and Innovation Action

COORDINATOR Capgemini Technology Services (CAP)

PRINCIPAL

CONTRACTORS

Atos Spain S.A. (ATOS), ERICSSON GmbH (EDD), ABB Oy (ABB), INTRASOFT
International S.A. (INTRA), Engineering-Ingegneria Informatica SPA (ENG),

Bosch Sistemas de Frenado S.L.U. (BOSCH), ASM Terni SpA (ASM), Forum

Virium Helsinki (FVH), Optimum Technologies Pilroforikis S.A. (OPT), eBOS
Technologies Ltd (EBOS), Privanova SAS (PRI), Synelixis Solutions S.A. (SYN),

CUMUCORE Oy (CMC), Emotion s.r.l. (EMOT), AALTO-Korkeakoulusaatio

(AALTO), i2CAT Foundation (I2CAT), Rheinisch-Westfälische Technische

Hochschule Aachen (RWTH), Sorbonne Université (SU)

WORKPACKAGE WP3

DELIVERABLE TYPE REPORT

DISSEMINATION

LEVEL

PUBLIC

DELIVERABLE STATE FINAL

CONTRACTUAL DATE

OF DELIVERY
30/06/2021

ACTUAL DATE OF

DELIVERY
30/06/2021

DOCUMENT TITLE Enhancing deep learning / reinforcement learning

AUTHOR(S)
Adrian Arroyo (ATOS), Terpsi Velivassaki (SYN), Hervé Bardisbanian (CAP),

Artemis Voulkidis (SYN), Stavroula Borou (SYN), Daniel Calvo (ATOS)

REVIEWER(S) Dimitrios Skias (INTRA), Terpsi Velivassaki (SYN)

ABSTRACT SEE EXECUTIVE SUMMARY

HISTORY SEE DOCUMENT HISTORY

KEYWORDS
Artificial Intelligence, Machine Learning, Machine Learning as a Service,

IoT, Big Data, Deep Learning, Reinforcement Learning, Federated Learning

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

4 of 108

Document History

Version Date Contributor(s) Description

V0.1 02/12/2020 ATOS Toc and first draft

V0.1 03/01/2021 ATOS Update on Use Case requirements

V0.1 03/02/2021 SYN Federated Learning State-of-the-art

update

V0.1.1 15/03/2021 ATOS MLaaS platform updates

V0.1.2 23/03/2021 ATOS Use Cases UML Diagrams

V0.2 10/05/2021 ATOS/SYN/CAP UML diagrams update: Use Cases,

Platform Logical View and sequence
diagrams

V0.3 26/05/2021 ATOS Platform logical view description, Deep

Learning / Reinforcement Learning
techniques state-of-the-art

V0.4 07/06/2021 ATOS/Living Labs Living Labs Use Case data and AI

techniques requirements.

V0.5 16/06/2021 ATOS BDV reference model alignment.

Introduction, ML techniques overview,
conclusions.

V0.6 18/06/2021 CAP MLaaS architecture framework details

V0.6.1 29/06/2021 SYN Peer review comments

V0.6.2 29/06/2021 INTRA Peer review comments

V1.0 30/06/2021 ATOS Final version & quality check

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

5 of 108

Table of Contents

Document History .. 4

Table of Contents .. 5

List of Figures ... 7

List of Tables .. 8

List of Acronyms and Abbreviations.. 10

Executive Summary ... 13

1 Introduction ... 14

1.1 Intended Audience .. 14

1.2 Relations to other activities .. 15

1.3 Document overview ... 16

2 Artificial Intelligence Terminology in IoT-NGIN .. 18

2.1 Solution building blocks of Artificial Intelligence .. 18

2.2 Functionalities related to an AI Application service .. 18

3 Artificial Intelligence and Big Data preconditions from IoT-NGIN Living Labs 20

3.1 Human-Centred Twin Smart Cities Living Lab ... 21

3.1.1 Preconditions per application ... 21

3.1.2 Mapping to IoT-NGIN MLaaS tools .. 22

3.1.3 Use Case Data Analysis .. 22

3.1.4 Use Case AI Techniques Analysis ... 24

3.2 Smart Agriculture IoT Living Lab .. 26

3.2.1 Preconditions per application ... 26

3.2.2 Mapping to IoT-NGIN MLaaS tools .. 26

3.2.3 Use Case Data Analysis .. 27

3.2.4 Use Case AI Techniques Analysis ... 29

3.3 Industry 4.0 Living Lab ... 31

3.3.1 Preconditions per application ... 31

3.3.2 Mapping to IoT-NGIN MLaaS tools .. 32

3.3.3 Use Case Data Analysis .. 32

3.3.4 Use Case AI Techniques Analysis ... 35

3.4 Energy Grid Active Monitoring/Control Living Lab... 37

3.4.1 Preconditions per application ... 37

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

6 of 108

3.4.2 Mapping to IoT-NGIN ML tools ... 38

3.4.3 Use Case Data Analysis .. 38

3.4.4 Use Case AI Techniques Analysis ... 40

4 Big Data and ML framework: IoT-NGIN MLaaS Architecture ... 42

4.1 MLaaS state-of-the-art definition .. 42

4.2 IoT-NGIN MLaaS Platform Concept .. 44

4.2.1 IoT-NGIN MLaaS Concept .. 44

4.2.2 Actors .. 55

4.2.3 MLaaS Platform Use Cases ... 57

4.2.4 Functional and Non-Functional Requirements for MLaaS 67

4.2.5 MLaaS Platform Logical view ... 71

4.2.6 MLaaS sequence diagrams ... 75

4.3 Data Storage and Data Management ... 88

4.3.1 Horizontal concerns ... 89

4.3.2 Vertical concerns .. 90

5 Machine Learning, Deep Learning and Reinforcement Learning in IoT-NGIN 93

5.1 Overview and state-of-the-art of Machine Learning techniques................................ 93

5.2 Privacy-preserving Federated Machine Learning in the MLaaS platform 96

5.3 Enhancing Machine Learning techniques in IoT-NGIN.. 98

5.3.1 Enhancing training processes .. 100

5.3.2 Strengthening the performance of the ML models deployed............................ 101

6 Conclusions ... 104

7 References .. 105

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

7 of 108

List of Figures
Figure 1- IoT NGIN WP3 objectives to enhance IoT intelligence ... 14

Figure 2: Work Packages structure .. 15

Figure 3: Adaptive behaviour control loop of an intelligent (adaptive) system, from DECENTER

EU project, with IoT-NGIN main AI features. ... 19

Figure 5: IoT-NGIN network topology .. 46

Figure 6: IoT-NGIN proposed architecture, DoA version .. 47

Figure 7: IoT Device – Edge Relationship .. 48

Figure 7: MLaaS platform architecture overview .. 50

Figure 8: IoT Device – MLaaS platform interaction ... 52

Figure 9: Digital Twin System ... 54

Figure 10: MLaaS platform interaction with Digital Twin and IoT Device 55

Figure 11: Platform Use Case 1: Data Acquisition ... 58

Figure 12: Platform Use Case 2: Data pre-processing .. 60

Figure 13: Platform Use case 3: AI Modelling ... 62

Figure 14: Platform Use Case 4: AI Model Deployment ... 63

Figure 15: Platform Use Case 5: Integration and Model Operation ... 65

Figure 16: Use Case 6: Model Sharing ... 66

Figure 17: MLaaS Platform Components - Logical view... 74

Figure 18: Sequence diagram for Data acquisition use case ... 76

Figure 19: Sequence Diagram for Data pre-processing use case ... 78

Figure 20: Sequence diagram for AI Modelling use case (1/2) .. 80

Figure 21: Sequence diagram for AI Modelling use case (2/2) .. 81

Figure 22: Sequence diagram for Model Deployment use case ... 83

Figure 23: Sequence diagram for Integration and Model Operation use case 85

Figure 24: Sequence diagram for the Model Sharing use case ... 87

Figure 25: Big Data Value Reference Model ... 88

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

8 of 108

List of Tables
Table 1: Relation of WP3 activities to other WPs and tasks .. 16

Table 2: Solution building blocks of AI and their description ... 18

Table 3: Types of services provided by AI applications ... 19

Table 4: IoT-NGIN Living Labs and Use Cases .. 20

Table 5: Mapping of Human-Centred Twin Smart Cities Living Lab to IoT-NGIN MLaaS tools 22

Table 6: Data analysis for “Traffic Flow Prediction & Parking Prediction” use case 23

Table 7: Data analysis for “Crowd Management” use case .. 24

Table 8: AI techniques analysis for " Traffic Flow Prediction & Parking Prediction " use case . 25

Table 9: AI techniques analysis for " Crowd Management " use case 25

Table 10: Mapping of Smart Agriculture IoT Living Lab to IoT-NGIN MLaaS tools 27

Table 11: Data analysis for “Crop diseases prediction, smart irrigation and precision aerial

spraying” use case .. 28

Table 12: Data analysis for “sensor aided crop harvesting” use case 29

Table 13: AI techniques analysis for “Crop diseases prediction. Smart irrigation and precision

aerial spraying " use case ... 30

Table 14: AI techniques analysis for “sensor aided crop harvesting" use case 30

Table 15: Mapping of Industry 4.0 Living Lab to IoT-NGIN MLaaS tools 32

Table 16: Data analysis for “human-centred safety in a self-aware indoor factory

environment” use case ... 33

Table 17: Data analysis for “human-centred augmented reality assisted build-to-order

assembly” use case ... 34

Table 18: Data analysis for “digital powertrain and condition monitoring” use case 35

Table 19: AI techniques analysis for “human-centred safety in a self-aware indoor factory

environment" use case ... 36

Table 20: AI techniques analysis for "human-centred augmented reality assisted build-to-

order assembly" use case ... 36

Table 21: AI techniques analysis for "digital powertrain and condition monitoring" use case

 .. 37

Table 22: Mapping of Energy Grid Active Monitoring / Control Living Lab to IoT-NGIN MLaaS

tools ... 38

Table 23: Data analysis for “move from reacting to acting in smart grid monitoring & control”

use case .. 39

Table 24: Data analysis for “driver-friendly dispatchable EV charging” use case 40

Table 25: AI techniques analysis for “move from reacting to acting in smart grid monitoring &

control” use case ... 41

Table 26: AI techniques analysis for “driver-friendly dispatchable EV charging” use case 41

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

9 of 108

Table 27: IoT device classification ... 49

Table 28: Human actors of the MLaaS platform ... 56

Table 29: Non-human actors, either hardware or software, using the MLaaS platform 57

Table 30: MLaaS platform functional requirements (1/2) .. 68

Table 31: MLaaS platform functional requirements (2/2) .. 69

Table 32: MLaaS platform non-functional requirements (1/2) .. 70

Table 33: MLaaS platform non-functional requirements (2/2) .. 71

Table 34: Mapping with Big Data Value Reference Model horizontal concerns 90

Table 35: Mapping with Big Data Value Reference Model vertical concerns 92

Table 36: Matrix comparing different ML techniques ... 95

Table 37: High-level features of IoT-NGIN living labs relevant to Artificial Intelligence 99

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

10 of 108

List of Acronyms and Abbreviations

AGV Automated Guided Vehicle

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

BDVA Big Data Value Association

CD Continuous Deployment

CI Continuous Integration

CNN Convolutional Neural Network

CSV Comma-separated values

IDS International Data Spaces

IoT Internet of Things

DL Deep Learning

DOA Description of Action

DP Differential Privacy

DSML Data Science and Machine Learning Platforms

ETL Extract, Transform, Load

ETP4HPC European Technology Platform for High Performance Computing

EOSC European Open Science Cloud

EV Electrical Vehicle

FATE Federated AI Technology Enabler

FL Federated Learning

GCP Google Cloud Platform

GDPR Global Data Protection Regulation

GMM Gaussian Mixture Models

GNSS Global Navigation Satellite System

GPU Graphical Processing Unit

GUI Graphical User Interface

HCA Hierarchical Clustering Analysis

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

11 of 108

HPC High Performance Computing

HPDA High Performance Data Analytics

HTTP Hypertext Transfer Protocol,

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

LL Living Labs

MDP Markov Decision Process

ML Machine Learning

MLaaS Machine Learning as a Service

MQTT Message Queue Telemetry Transport

OPC UA Open Productivity Collaboration Unified Architecture

PCA Principal Component Analysis

PMU Phasor measurement units

PPDL Privacy-Preserving Deep Learning

RFID Radio Frequency Identification

RL Reinforcement Learning

RNN Recurrent Neural Network

SDK Software Development Kit

SMC Secure Multiparty Computation

SME Small and medium-sized enterprise

SRIA Strategic Research and Innovation Agenda

SVM Support Vector Machine

TCP Transmission Control Protocol

TIFF Tagged Image File Format

TL Transfer Learning

TPU Tensor Processing Unit

UC Use-case

UML Unified Modelling Language

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

12 of 108

UWB Ultra-Wide Band

VLP Visible Light Positioning

WP Work Package

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

13 of 108

Executive Summary
This document constitutes Deliverable “D3.1: Enhancing deep learning / reinforcement

learning” of the European H2020-ICT-2018-20 project “IoT-NGIN: Next Generation IoT as part
of Next Generation Internet”. D3.1 is an output of Work Package 3, entitled “Enhancing IoT

Intelligence”, which reports the activities of all the tasks of the Work Package until the ninth
month of the project’s lifetime. More concretely, the tasks of the work package are:

1. T3.1 (M1-M27): Big Data and Machine learning framework architecture.

2. T3.2 (M3-M27): Deep learning/reinforcement learning techniques to enhance training
processes.

3. T3.3 (M3-M28): Confidentiality-preserving federated ML models.
4. T3.4 (M6-M30): Machine Learning model sharing.

The scope of this deliverable is: (i) to detail the Big Data and ML framework that enables

MLaaS and supports decentralised / federated ML, and (ii) to study different deep learning
and/or reinforcement learning techniques, including self-learning techniques and

supervised/unsupervised machine learning procedures applied to IoT devices to select those
that better fit the IoT-NGIN scenarios and enhance the ML models’ performance.

Main results/findings

• A common terminology for Artificial intelligence related elements.

• A study of Artificial Intelligence needs of IoT-NGIN Living Labs.

• A design of a Machine Learning as a Service platform that includes architecture,

actors and use cases; and which references to BDVA SRIA4.0.

• The application of the federated learning paradigm over the platform and the Living

Labs.

• A study of machine learning techniques, including deep learning, reinforcement

learning and self learning, and a mapping of those techniques to IoT-NGIN use cases.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

14 of 108

1 Introduction
H2020 IoT-NGIN promotes the enhancement of the Internet of Things (IoT) technology from

several points of view towards the next generation of IoT through scalability, openness and
security, while supporting monetization. In order to achieve this, the project pushes the

boundaries of IoT communication, federation, intelligence, security and privacy via concrete
work packages (WP) the results of which are applied over four main application areas: Smart
City, Smart Agriculture, Industry 4.0 and Smart Energy.

Concretely, WP3, entitled “Enhancing IoT Intelligence”, provides the innovation with respect

to Artificial Intelligence (AI) and Big Data analytics, where the partners of the WP will go

beyond the state-of-the-art of the Machine Learning (ML) techniques applied to the IoT.
More specifically, the main objectives of the work package are shown in Figure 1.

Figure 1- IoT NGIN WP3 objectives to enhance IoT intelligence

Considering this, Deliverable 3.1: “Enhancing Deep learning / reinforcement learning” reports

the first activities that have been carried out in order to fill these objectives. Mainly, the
platform, denominated as IoT-NGIN Machine Learning as a Service (MLaaS), that will allow

the application of Artificial Intelligence techniques over IoT is explained through dedicated
sections, and details with respect to its architecture, the management of data according to

BDVA SRIA4.0, and the privacy preserving federated ML layer are given. In addition, the
machine learning techniques, including deep learning and reinforcement learning, that will
be implemented over the upcoming months of the project are reviewed.

1.1 Intended Audience

Since Deliverable 3.1 reports upon the application of Artificial Intelligence in the IoT, it offers
an innovative point of view for developers and infrastructure managers who need to provide
a higher level of intelligence in their IoT deployments. Moreover, data scientists and AI

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

15 of 108

specialists will benefit from the results of the Deliverable, where details on how to build,
deploy and maintain AI applications can be acquired.

The document will be also useful for project partners and the participants in IoT NGIN Open

Calls since they will be able to get information about the functionalities and services to be
implemented by IoT NGIN Big data and AI platform.

Finally, the whole European AI and IoT communities will be potential readers of the present

deliverable due to its public nature.

1.2 Relations to other activities

In Figure 2 the work packages of IoT-NGIN are presented via a set of layers, where it can be
estimated that the Big Data Analytics and ML layer influcences many other activities of the

project.

Figure 2: Work Packages structure

Considering this, D3.1 and, generally, WP3, are related to the work packages and tasks

described in Table 1.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

16 of 108

Table 1: Relation of WP3 activities to other WPs and tasks

WP Relation to WP3 and D3.1

WP1 Artificial Intelligence and Big Data analytics plays an important role on

the next generation of IoT. In this regard, this role shall be represented in

the meta-architecture resulting by the activities in WP1

WP2 The micro-services framework developed within WP2 shall be

interconnected with the WP3 framework and its deployments. In
addition, WP3 results, and more concretely trained AI models, are

related to Task 2.4, where the Unikernels may support their deployment
in an innovative environment

WP4 WP4 may need usage of several AI techniques to provide some of its

functionalities. Specifically, Task 4.2 may benefit from the training of the
AI models in charge of recognizing in real-time IoT devices

WP5 As the federation of the AI models training over several nodes may suffer

from different cybersecurity attacks, WP3 clearly benefits from the
mitigation of Federated Learning attacks in Task 5.1 and from the

verification of AI models integrity in Task 5.2.

In addition, the WP3’s platform includes interaction with the Digital

Twins, so results from Task 5.5 must be considered for a proper
integration.

WP6 As the WP3’s platform provides several components, the integration

with rest of the project’s technology and frameworks is clearly very
important and will be continuously reviewed as the activities of WP3

iterate over their results. The WP3 platform will be exploited for
application development, involving ML services.

In addition, the infrastructure that enables CI/CD will provide the tools

to develop the components of the WP in a safe a productive manner

WP7 WP3’s framework will be used in several Living Labs to train, deploy and

maintain their AI models, as it will be shown throughout the deliverable.

In addition, WP3’s platform will support 3rd parties by offering a specific

set of functionalities

1.3 Document overview

The present deliverable is divided into seven chapters:

• Chapter 1 introduces the motivation and general objectives for the document, its

intended audience, relation to other project tasks and structure.

• Chapter 2 proposes a common terminology and definions for all the components of

the Artificial Intelligence stack and the involved stakeholders. It will guarantee the

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

17 of 108

homogeneity and consistency of the content of the document and the
corresponding technical developments addressed within the scope of WP3.

• In Chapter 3, an exhaustive analysis of the pre-conditions and requirements imposed

by the Living Labs’ use-cases is done, extending and introducing specific details that

will serve to guide the development of IoT-NGIN AI components.

• The main goal of Chapter 4 is to provide a detailed specification of the functionalities

to be implemented by IoT-NGIN MLaaS platform. It is based on the 4+1 architectural

view model [1] and covers the identification of actors interacting with the platform,

modelling the functionalities through use cases, their translation to sequence
diagrams and the composition of the platform’s architecture from a logical point of

view. In addition, the analysis of the state-of-the-art for available technologies and
scientific trends is performed to ensure that the project is built considering the most
advanced technical baselines. The alignment with BDVA SRIA1 is also done,

demonstrating compliance with the reference model.

• Chapter 5 focuses on the different techniques that will be implemented within project

covering aspects like online learning and federated learning. A detailed vision of the

current state-of-the-art and the improvement that will be brought by IoT-NGIN is
included.

• The conclusions and next steps are explained in Chapter 6.

1 https://www.bdva.eu/SRIA.

https://www.bdva.eu/SRIA

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

18 of 108

2 Artificial Intelligence Terminology in IoT-NGIN
As a result of the European & Korean joint DECENTER2 project, a common terminology was

identified to define an Artificial Intelligence application architecture. It is used also in IoT-
NGIN to have a common ground for all the project partners.

2.1 Solution building blocks of Artificial Intelligence

Table 2 describes the terminology adopted to refer to each of the main building blocks that
result from applying AI, going from the lowest level of complexity (a trained AI model) to the

most complex one (AI application service).

Table 2: Solution building blocks of AI and their description

Solution building

block type

Description

AI Model A trained model (either a deep neural network or another Machine

Learning model).

AI Method An entity serving the inference of a trained model (runs the model on

the ML engine). Refers to the actual method of the programming

language that executes the ML engine to serve/offer the model.

AI Service An entity serving a certain AI functionality (model serving layer) based

on an AI Method. Refers to a software component that offers an AI
functionality through an AI Method and other related methods.

AI Application An entity invoking AI Methods to provide AI functionalities to the end-

user through a GUI on a responsive and/or mobile app.

AI Application

Service

Set of AI functionalities closely related comprising a software

application or product function and delivered as a service to an end-
user.

2.2 Functionalities related to an AI Application

service

Table 3 provides a description for each type of service that an AI application service could
provide, although it may be extrapolated for the rest of the building blocks described in the
previous section.

2 https://www.decenter-project.eu/

https://www.decenter-project.eu/

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

19 of 108

Table 3: Types of services provided by AI applications

AI application

service kind

Description

Sensing Data collection, monitoring

Analysis Advanced analytics using AI, also known as perception in AI systems,

may incorporate attention, data/sensor, image segmentation, object

classification, object localization, object detection, scene classification,
scene interpretation, etc.

Decision Knowledge representation and reasoning, search / optimization,

planning / scheduling, behaviour selection (reactive planning).
Prescriptive machine learning, e.g. reinforcement learning

Action Behaviour (decision) enaction. Control of the course of action or

sequence of actuation (e.g. motor) commands.

Effecting Execute a command (e.g. motor). Also means “actuation,” to activate,

or to put into motion; to animate.

Figure 3 is representing the described functionalities of an AI application service in a graph,

where they are also linked to each other to define a higher level of complexity, like Cognition,

Perception or Inter-action. With respect to the original figure, defined in DECENTER EU project,
the main AI features that the IoT-NGIN project will implement and support have been added
using bubbles.

Figure 3: Adaptive behaviour control loop of an intelligent (adaptive) system, from DECENTER EU

project, with IoT-NGIN main AI features.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

20 of 108

3 Artificial Intelligence and Big Data
preconditions from IoT-NGIN Living Labs

Throughout this section, the initial needs of IoT-NGIN use cases regarding Artificial Intelligence

and Big Data are collected. The scope is to gather a set of requirements and information
from the use cases so that the set of services that will be offered by the platform supports
these requirements as best as possible, considering as well the objectives of the MLaaS

platform defined in IoT-NGIN’s Description of Action. Obviously, at the stage of the project in
which this deliverable is released, the descriptions of the Living Labs are still to be refined and

extended, so there could be information to be defined or that may vary in future iterations.
For a more general overview of the requirements from the Living Labs for the whole IoT-NGIN

project, the reader must refer to IoT-NGIN’s Deliverable 1.1 [2].

The AI requirements from the use cases are analysed from four perspectives:

1. Preconditions per application: collects a list of conditions and objectives from each

Living Lab use case (application) where the relevant AI needs are highlighted.
2. Mapping to IoT-NGIN MLaaS tools: one table per Living Lab which maps the

highlighted AI needs from the previous section to the main components or services of
the MLaaS platform to be built in WP3.

3. Use Case data analysis: these tables collect information regarding the data sources

that are part of the Living Labs’ use cases such as format, availability, communication
protocol, etc. In addition, it collects information about the IoT-Devices which will be

integrated into the use case.
4. Use Case AI techniques analysis: These tables collect information relevant to the AI

models that are expected to be produced from the use case data, and that will

participate in a successful deployment of the use case. They include attributes like the
type of outcome (classification, regression), training techniques to be used

(federated, online, ...), inference approach (real-time, on batches, ...), etc. Note that
the information from these tables is under development; thus, some information might
change or is still to be defined in future iterations.

The Living Labs and use cases of IoT-NGIN project are divided as represented in Table 4.

Table 4: IoT-NGIN Living Labs and Use Cases

Living Lab Use Case

Human-Centred Twin Smart

Cities

Traffic Flow Prediction & Parking Prediction

Crowd management

Co-commuting solutions based on social networks

Smart Agriculture Crop diseases prediction. Smart irrigation and precision

aerial spraying

Sensor aided crop harvesting

Industry 4.0 Human-centred safety in a self-aware indoor factory

environment

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

21 of 108

Human-centred Augmented Reality assisted build-to-

order assembly

Digital powertrain and condition monitoring

Smart Energy Move from Reacting to Acting in Smart Grid Monitoring

& Control

Driver-friendly dispatchable EV charging

3.1 Human-Centred Twin Smart Cities Living Lab

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under
the Twin Smart Cities Living Lab is provided; including preconditions of each use case,

mapping of those preconditions to MLaaS tools, a use case data analysis and a use case AI
techniques analysis.

3.1.1 Preconditions per application

1. Traffic Flow Prediction & Parking Prediction

a. In order to model and train distributed AI models on traffic flow and parking

prediction, weather data (and how that affects road & traffic conditions) and

road data (number of cars, velocity, fluctuation) will be used. The predictive

model will also consume historical data and public transportation information.
b. Traffic and parking prediction ML models will be federated at the edge cloud.

c. Ideally, the driver could, with small behavioural changes, avoid traffic and
know where available parking is located, without needing to look for it
aimlessly.

d. With the data collected the ML process will identify traffic patterns. This
information will be provided in the least intrusive way to a willing user to avoid

invasive notifications.
e. 5G communications will be used for interconnecting sensors, gather IoT data in

real-time and store it at the edge, and run smart AI-based simulations to

perform what-if analysis when transport is interrupted, e.g.: due to extreme

weather, man-made or technical hazards.

2. Crowd management
a. Demonstrate the use of open data, user data and IoT data on traffic fluency

through cameras and radars installed at the bottleneck intersections for crowd

steering based on the application of AI.

b. Demonstrate the use of AI on advanced crowd prediction and movement

control.
3. Co-commuting solutions based on social networks

a. Combine IoT data with virtual citizen-generated IoT data from social networks

to demonstrate the use of advanced AI in the provision of co-commuting

solutions at the neighbourhood level and cross-border.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

22 of 108

b. UC will take avail of the Urban Open Platform and Lab (UOP.Lab) developed
in the Finest Twins project3.

3.1.2 Mapping to IoT-NGIN MLaaS tools

The preconditions collected in the previous section are mapped to IoT-NGIN’s MLaaS

platform in Table 5.

Table 5: Mapping of Human-Centred Twin Smart Cities Living Lab to IoT-NGIN MLaaS tools

Big Data and ML

framework

Deep Learning Reinforcement

learning

Federated

learning

ML

models

sharing

Open data, user

data, IoT data,

images from
cameras and
radars. Cross-border

data models.

Predictive

algorithms for traffic

flow, parking, crowd
management.

N/A Prediction ML

models will be

federated at
edge-cloud.

Transfer

of models

for SMEs.

For the Twin Smart Cities Living Lab two AI Applications will be developed, namely:

• “Traffic Flow Prediction & Parking Prediction”, which contains two AI Services: “Traffic

Flow prediction “and “Parking prediction”.

• “Crowd Management”, which contains two AI services: “Crowd size prediction” and

“Route alternatives prediction”.

The third application of this living lab, “Co-commuting solutions based on social networks”

has no AI requirements at this stage of the project, so it is not included in the following

analysis. The analysis of the data and the AI techniques that will be used to build these AI
services is described in the following sections.

3.1.3 Use Case Data Analysis

The following tables describe, from a generic point of view, the features of the data

produced in the Human-Centred Twin Smart Cities Living Lab that is relevant for the creation
of AI Applications.

3 http://www.finesttwins.eu/en.

http://www.finesttwins.eu/en

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

23 of 108

Table 6: Data analysis for “Traffic Flow Prediction & Parking Prediction” use case

Use Case Human-Centred Twin Smart Cities Living Lab

AI Application Traffic Flow Prediction & Parking Prediction

AI Service Traffic Flow Prediction Parking Prediction

Data

Sources

IoT Devices

Multispectral & Visual Cameras

Radars

Weather stations

Sensors on Robo-buses & City Streets (road data)

Data Type(s) JSON and GeoJSON

Data size To be defined

Data

communication

protocols

HTTP

MQTT

Data

availability

Request only

Potential Bias N/A

Heuristics/Assumptions

The number of cars on the roads correlates directly with

environmental factors and time (weather, events,
weekday, etc.)

Data privacy level API is not public access

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

24 of 108

Table 7: Data analysis for “Crowd Management” use case

3.1.4 Use Case AI Techniques Analysis

The following tables describe, from a generic point of view, the techniques of AI that will be
used in the Human-Centred Twin Smart Cities Living Lab for the creation of the relevant AI

Applications.

Use Case Human-Centred Twin Smart Cities Living Lab

AI Application Crowd Management

AI Service Crowd size prediction Route Alternatives Prediction

Data

Sources

IoT Devices

Multispectral & Visual Cameras

Radars

Noise sensors

Data Type(s)
JSON

XML

Data size To be defined

Data

communication

protocols

HTTP

MQTT

Data

availability

On request

Potential Bias

Passengers with luggage are very different from

passengers without luggage. Distinction important to be
made.

Heuristics/Assumptions
Diverting a part of the incoming passenger flow helps

directly improve bottleneck situations.

Data privacy level Private

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

25 of 108

Table 8: AI techniques analysis for " Traffic Flow Prediction & Parking Prediction " use case

Table 9: AI techniques analysis for " Crowd Management " use case

Use Case Human-Centred Twin Smart Cities Living Lab

AI Application Traffic Flow Prediction & Parking Prediction

AI Service Traffic Flow Prediction Parking Prediction

Outcome type

Prediction

Multi-class classification (car type, size, direction)

Multidimensional regression (car type and count linearly related

to parking spot amounts and traffic jams)

Metrics: Acceptance /

Failure Criteria

Minimum accuracy to be set

Training strategy
Unsupervised ML/DL

Auto-labelling

Enhanced AI

techniques

N/A

Inference approach To be set

Serving approach To be set

Use Case Human-Centred Twin Smart Cities Living Lab

AI Application Crowd Management

AI Service Crowd size prediction Route Alternatives Prediction

Outcome type
Multi-class classification

Multidimensional regression

Metrics: Acceptance /

Failure Criteria

To be set

Training strategy Unsupervised ML/DL

Enhanced AI

techniques

N/A

Inference approach To be set

Serving approach To be set

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

26 of 108

3.2 Smart Agriculture IoT Living Lab

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under
the Smart Agriculture Living Lab is provided; including preconditions of each use case,

mapping of those preconditions to MLaaS tools, use case data analysis and use case AI
techniques analysis.

3.2.1 Preconditions per application

1. The preconditions identified as relevant for ML processes for the “Crop diseases

prediction, Smart irrigation and precision aerial spraying” use case are identified as
follows:

a. Crop diseases prediction is based on images and real-time video analysis of the

crop and the leaves captured from visual and multi-spectral cameras located on

semi-autonomous drones flying over the orchard.

b. Crop diseases’ prediction also considers measurements acquired via SYN SynField4
precision agriculture IoT nodes, integrating a variety of sensor modules.

c. Real-time video analysis takes place either locally (on the drone), based on

already trained ML models, or remotely (at the edge) based on federated ML.

d. The drones will be able to dynamically modify their trajectory to introduce optimal,

precision aerial spraying only in areas of interest.

e. The agronomists can access the crop disease predictions and suggest irrigation
and spraying rules.

f. IoT-NGIN will leverage existing datasets available for Living Lab experimentation,
to the extent possible. Alternatively, publicly available datasets will be used.

2. In addition, the preconditions assumed for the “Sensor aided crop harvesting” use
case, in relation to ML processes, are the following:
a. AGLV serving as carrier machines of crates, assisting the harvesting process,

capable of calculating and following an appropriate trajectory from the
harvesting location to the loading points.

b. AGLV will be able to locate and avoid workers (for safety reasons) and trees (for

operating reasons).
c. The crates identification at the loading points will be based on RFID readers

located there, as well as RFID tags attached to the crates.

3.2.2 Mapping to IoT-NGIN MLaaS tools

The Smart Agriculture Living Lab use cases will exploit various ML tools developed within IoT-
NGIN. Specifically, the Big Data and ML Framework will be exploited for data acquisition and

analysis, referring to the sensor measurements acquired via SynField devices, the images and
videos captured from the drones, as well as the RFID readings of the crates. Moreover, deep

learning techniques will be used for crop diseases’ prediction, as well as for obstacle
avoidance. Federated learning techniques will be employed for crop disease prediction,
exploiting experience gained in other fields, as well as for near-real-time video analysis of

drones’ captures, in order to effectively calculate clear trajectories for drones’ movement.

4 https://www.synfield.gr/about/.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

27 of 108

The exploitation of ML techniques in the Smart Agriculture Living Lab is summarized in Table
10.

Table 10: Mapping of Smart Agriculture IoT Living Lab to IoT-NGIN MLaaS tools

Big Data and ML

framework

Deep Learning Reinforcement

learning

Federated

learning

ML models

sharing

Micro-climate

measurements

Images and real-

time video analysis

from drones

RFID readings

Crop diseases

prediction

Obstacle

avoidance.

N/A Crop diseases

prediction

During UCs’

development/

validation

3.2.3 Use Case Data Analysis

For the Smart Agriculture IoT Living Lab, two AI Applications will be developed, namely the
“Crop diseases prediction. Smart irrigation and precision aerial spraying” and the “Sensor
aided crop harvesting”, each one serving one of the LL’s trials. The first one will use the “Crop

diseases prediction” AI Service, while the latter will use the “V-SLAM” and “Obstacle
Avoidance using Deep Learning” AI Services.

The datasets used for each AI Service of the Living Lab are described in Table 11 and Table

12.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

28 of 108

Table 11: Data analysis for “Crop diseases prediction, smart irrigation and precision aerial spraying”

use case

Use Case Smart Agriculture IoT Living Lab

AI Application Service
Crop diseases prediction. Smart irrigation and precision

aerial spraying

AI Service Crop diseases prediction

Data

Sources

IoT Devices

SynField devices measuring micro-climate data (e.g. air

temperature, air humidity, wind direction, wind speed, rain

volume, rain intensity), and soil and crop-related data (leaf
wetness, soil type, soil temperature, soil humidity, soil

conductivity)

Drones (multi-spectral or RGB cameras)

Data Type(s)

JSON

Image (JPEG, TIFF)

GNSS measurements

Data size N/A

Data

communication

protocols

SynField API, HTTPS/REST

Data

availability
Streaming

Potential Bias Class imbalance, more data of one class for drone Images

Heuristics/Assumptions Data are strongly correlated with the time of the collection

Data privacy level Private

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

29 of 108

Table 12: Data analysis for “sensor aided crop harvesting” use case

3.2.4 Use Case AI Techniques Analysis

Diving deeper into the AI services of the Smart Agriculture LL from an ML perspective, the
services are further analysed in the following tables. For each AI Service, several properties

are highlighted, such as the expected outcome type, assessment criteria, the preferred
training strategy, potential techniques for facilitating the ML process, the inference and the

serving approach.

Use Case Smart Agriculture IoT Living Lab

AI Application Service Sensor aided crop harvesting

AI Service
V-SLAM Obstacle Avoidance using

Deep Learning

Data

Sources

IoT Devices Sensors on mobile robots

Data Type(s)
JSON

GNSS, Images

Data size N/A

Data

communication

protocols

HTTPS, pub/sub or REST

Data

availability
Streaming

Potential Bias Homogeneity of the collected data

Heuristics/Assumptions Most data will be collected for autonomous navigation

Data privacy level Private

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

30 of 108

Table 13: AI techniques analysis for “Crop diseases prediction. Smart irrigation and precision aerial

spraying " use case

Table 14: AI techniques analysis for “sensor aided crop harvesting" use case

Use Case Smart Agriculture IoT Living Lab

AI Application Service
Crop diseases prediction. Smart irrigation and precision aerial

spraying

AI Service Crop diseases prediction

Outcome type Classification

Metrics: Acceptance /

Failure Criteria

Confusion matrix

Minimum Accuracy

F1 score

Training strategy Unsupervised ML/DL, FL

Enhanced AI

techniques
GPU or TPU

Inference approach Near real-time responses

Serving approach Streaming

Use Case Smart Agriculture IoT Living Lab

AI Application Service Sensor aided crop harvesting

AI Service V-SLAM
Obstacle Avoidance using

Deep Learning

Outcome type
Visual Mapping and Trajectory

into space

Binary Classification (Obstacle

or Non-Obstacle)

Metrics: Acceptance /

Failure Criteria

Minimum Accuracy –

Geometric Error Minimization

Minimum Accuracy

F1 Score

Training strategy
Unsupervised ML/DL with Other

Computer Vision Techniques

Unsupervised ML/DL with Other

Computer Vision Techniques

Enhanced AI

techniques
GPU GPU or TPU

Inference approach Real-time responses Real-time responses

Serving approach Streaming Streaming

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

31 of 108

3.3 Industry 4.0 Living Lab

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under
the Industry 4.0 Living Lab is provided; including preconditions of each use case, mapping of

those preconditions to MLaaS tools, a use case data analysis and a use case AI techniques
analysis.

3.3.1 Preconditions per application

1. Human-centred safety in a self-aware indoor factory environment

a. Edge computing resources will be used to support a set of virtual AI functions

that will process the real-time location of the AGVs, based on the real-time

stream coming from the safety cameras. The AI functions will determine a

potential collision between AGVs, or between a worker and an AGV and will

issue an early warning.

b. This can give a connected AGV fleet the ability to regulate the speed of
vehicles instead of stopping suddenly to avoid a collision. AI algorithms can
recalculate the optimal route in real time and provide alternative routes if the

planned one has too many delays. In addition, the AGV use rate can be
optimized by going where they are most needed instead of following a fixed

pattern.
c. IoT-NGIN will provide a high precision IoT localization layer merging real-time

localizations obtained from Ultra-Wide Band (UWB) sensors and a solution

providing Visible Light Positioning (VLP). In addition, safety cameras will be
deployed to monitor areas with reduced visibility.

d. The data from the sensors provide a full description of the environment and
how it is changing. It allows to model moving objects and skeletonizes human

bodies to detect the position of each body part and build a "safety shell"
around it to ensure human-centred safety.

2. Human-centred Augmented Reality assisted build-to-order assembly

a. This UC aims to assist human workers in the assembly line with the use of
Augmented Reality (AR). Machine learning and computer vision techniques will

be used to detect product defects and differentiate between different

components and modules.
b. IoT-NGIN will be able to recognize the components and the stage of the

assembly process using local ML trained models and provide assistance and

guided instructions, displaying the procedure and next stage of the

customizable manufacturing, either using AR classes, mobile devices or small
industrial screens.

3. Digital powertrain and condition monitoring

a. Condition monitoring and predictive maintenance of powertrains and drive
units using federated machine learning.

b. Parameter tuning and optimization (e.g. in terms of energy consumption) of
drive units using federated learning.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

32 of 108

3.3.2 Mapping to IoT-NGIN MLaaS tools

The requirements collected in the previous section are mapped to IoT-NGIN’s MLaaS

platform in Table 15.

Table 15: Mapping of Industry 4.0 Living Lab to IoT-NGIN MLaaS tools

Big Data and ML

framework

Deep Learning Reinforcement

learning

Federated

learning

ML

models

sharing

High precision IoT

localization layer,

safety cameras,
contextual IoT data,

IoT localization, RFID
sensors and camera
analysis.

Potential collision

between AGVs, or

between a worker
and an AGV.

Recognition of

components and
stage of assembly.

N/A Federated ML

decision on

constrained
resources

N/A

For the Industry 4.0 Living Lab three AI Applications will be developed, namely:

• “Human-centred safety in a self-aware indoor factory environment”, which contains

two AI Services: “Collision Detection” and “AGV Route Planning”.

• “Human-centred Augmented Reality assisted build-to-order assembly”, which

contains one AI service: “(AR) Object detection and classification”.

• “Digital powertrain and condition monitoring”, which contains two AI Services:

“Predictive maintenance of powertrains" and “Energy consumption optimization”.

The analysis of the data and the AI techniques that will be used to build these AI services is

described in the following sections.

3.3.3 Use Case Data Analysis

The following tables describe, from a generic point of view, the features of the data

produced in the Industry 4.0 Living Lab that is relevant for the creation of AI Applications.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

33 of 108

Table 16: Data analysis for “human-centred safety in a self-aware indoor factory environment” use

case

Use Case Industry 4.0 Use Cases & Living Lab

AI Application Service
Human-centred safety in a self-aware indoor factory

environment

AI Service Collision Detection AGV Route Planning

Data

Sources

IoT Devices

Cameras

Ultra-Wide Band (UWB) sensors

AGV Sensors

Data Type(s) JSON, OPC UA

Data size To be set

Data

communication

protocols

TCP

OPC UA

Data

availability

Request-only access

Potential Bias None identified so far

Heuristics/Assumptions Data gathered to edge server

Data privacy level Private

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

34 of 108

Table 17: Data analysis for “human-centred augmented reality assisted build-to-order assembly” use

case

Use Case Industry 4.0 Use Cases & Living Lab

AI Application Service
Human-centred Augmented Reality assisted build-to-order

assembly

AI Service (AR) Object detection and classification

Data

Sources

IoT Devices

Public displays, tablet, Cameras

Ultra-Wide Band (UWB) sensors

AGV Sensors

Data Type(s) JSON, OPC UA

Data size To be set

Data

communication

protocols

TCP

OPC UA

Data

availability

Request-only access

Potential Bias None identified sofar

Heuristics/Assumptions Data gathered to edge server,

Data privacy level Private

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

35 of 108

Table 18: Data analysis for “digital powertrain and condition monitoring” use case

3.3.4 Use Case AI Techniques Analysis

The following tables describe, from a generic point of view, the techniques of AI that will be
used in the Industry 4.0 Living Lab for the creation of AI Applications.

Use Case Industry 4.0 Use Cases & Living Lab

AI Application Service Digital powertrain and condition monitoring

AI Service
Predictive maintenance of

powertrains

Energy consumption

optimization

Data

Sources

IoT Devices Variable speed drive, smart sensor, heat camera

Data Type(s) JSON, OPC UA

Data size To be set

Data

communication

protocols

TCP

OPC UA

MQTT

Data

availability

Request-only access

Potential Bias
Data is heavily affected by the powertrain’s operating

point (torque and speed).

Heuristics/Assumptions
Data gathered to edge server, which can forward and

adapt to different protocols

Data privacy level Private

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

36 of 108

Table 19: AI techniques analysis for “human-centred safety in a self-aware indoor factory

environment" use case

Table 20: AI techniques analysis for "human-centred augmented reality assisted build-to-order

assembly" use case

Use Case Industry 4.0 Use Cases & Living Lab

AI Application Service
Human-centred safety in a self-aware indoor factory

environment

AI Service Collision Detection AGV Route Planning

Outcome type Prediction

Metrics: Acceptance /

Failure Criteria

Zero collisions / a collision with humans or human operated

vehicles occurs

Training strategy Federated learning

Enhanced AI

techniques

N/A

Inference approach Real time, data stored for later analysis

Serving approach HTTP, others possible depending on implementation

Use Case Industry 4.0 Use Cases & Living Lab

AI Application Service
Human-centred Augmented Reality assisted build-to-order

assembly

AI Service (AR) Object detection and classification

Outcome type Classification

Metrics: Acceptance /

Failure Criteria

To be defined

Training strategy Federated learning

Enhanced AI

techniques

N/A

Inference approach Real time, data stored for later analysis

Serving approach HTTP, others possible depending on implementation

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

37 of 108

Table 21: AI techniques analysis for "digital powertrain and condition monitoring" use case

3.4 Energy Grid Active Monitoring/Control Living

Lab

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under
the Energy Grid Active Monitoring/Control Living Lab is provided; including preconditions of

each use case, mapping of those preconditions to MLaaS tools, a use case data analysis
and a use case AI techniques analysis.

3.4.1 Preconditions per application

1. Move from Reacting to Acting in Smart Grid Monitoring & Control

a. AI/ML-based analytics to train models tracking the health of the grid and

indicating that maintenance is required before obvious performance

degradation or even failure, along with urban traffic scenario and traffic
predictions

2. Driver-friendly dispatchable EV charging

5 Assume that the powertrain is working normally for some days after being commissioned i.e. this data

can be classified as normal.

Use Case Industry 4.0 Use Cases & Living Lab

AI Application Service Digital powertrain and condition monitoring

AI Service
Predictive maintenance of

powertrains

Energy consumption

optimization

Outcome type
Binary classification

Anomaly detection

Metrics: Acceptance /

Failure Criteria

If data drifts away from a normal operation based on some

statistical measure of normality or ML model bound.

Training strategy Federated learning model of ‘normal operation’5

Enhanced AI

techniques

N/A

Inference approach Batched / Stored, later catching

Serving approach

HTTP

MQTT
Script

(Edge node can adapt)

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

38 of 108

a. AI/ML-based analytics to train models that are able to forecast the energy

demand for the EV charges according to the data of the system.

3.4.2 Mapping to IoT-NGIN ML tools

The requirements collected in the previous section are mapped to IoT-NGIN’s MLaaS

platform in Table 22.

Table 22: Mapping of Energy Grid Active Monitoring / Control Living Lab to IoT-NGIN MLaaS tools

Big Data and ML

framework

Deep Learning Reinforcement

learning

Federated

learning

ML

models

sharing

High-tech power

sensor

Health of energy

grid, traffic

predictions, local
discrepancies,

discharge
detection.

N/A Federated ML

hosted on the

IoT nodes

N/A

For the Energy Grid Active Monitoring/Control Living Lab two AI Applications will be

developed, namely:

• “Move from Reacting to Acting in Smart Grid Monitoring & Control”, which contains

two AI Services: “Grid operation optimization”, “Consumption prediction” and
“Generation prediction”.

• “Driver-friendly dispatchable EV charging”, which contains one AI service:

“Forecasting of energy demand”.

The analysis of the data and the AI techniques that will be used to build these AI services is

described in the following sections.

3.4.3 Use Case Data Analysis

The following tables describe, from a generic point of view, the features of the data
produced in the Energy Grid Active Monitoring / Control Living Lab that is relevant for the

creation of AI Applications.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

39 of 108

Table 23: Data analysis for “move from reacting to acting in smart grid monitoring & control” use

case

Use Case Energy Grid Active Monitoring/Control Living Lab

AI Application Service
Move from Reacting to Acting in Smart Grid Monitoring &

Control

AI Service
Grid operation

optimization

Consumption

prediction

Generation

prediction

Data

Sources

IoT Devices

6 Power quality

analysers (PQA)

150 Smart meters 2 Phasor

measurement
units (PMU)

Digital Twin YES YES YES

Data Type(s)
Csv - Json,

Numerical data

Json, Numerical

data

Json, Numerical

data

Data size 2 GB/year/device 1 GB/Year/device 5 GB/Year

Data

communication

protocols

HTTP MQTT MQTT

Data

availability

Real-Time Real-Time Real-Time

Potential Bias N/A

Heuristics/Assumptions N/A

Data privacy level Proprietary

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

40 of 108

Table 24: Data analysis for “driver-friendly dispatchable EV charging” use case

3.4.4 Use Case AI Techniques Analysis

The following tables describe, from a generic point of view, the techniques of AI that will be
used in the Energy Grid Active Monitoring / Control Living Lab for the creation of AI
Applications.

Use Case Energy Grid Active Monitoring/Control Living Lab

AI Application Service Driver-friendly dispatchable EV charging

AI Service Forecasting of energy demand

Data

Sources

IoT Devices

Charging stations

Electric vehicle OBD devices

Near real-time smart meters

Digital Twin Yes

Data Type(s) String

Data format JSON

Data size Some KBs per day per device

Data

communication

protocols

REST API and MQTT

Data

availability

Real-time

Potential Bias More consumption during mornings

Heuristics/Assumptions N/A

Data privacy level Private / Open source

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

41 of 108

Table 25: AI techniques analysis for “move from reacting to acting in smart grid monitoring & control”

use case

Table 26: AI techniques analysis for “driver-friendly dispatchable EV charging” use case

Use Case Energy Grid Active Monitoring/Control Living Lab

AI Application Service
Move from Reacting to Acting in Smart Grid Monitoring &

Control

AI Service
Grid operation

optimization

Consumption

prediction

Generation

prediction

Outcome type

Optimized

electrical
parameter

(voltage, current,
power…)

Predicting values Predicting values

Metrics: Acceptance /

Failure Criteria

>0.8 close to

nominal values

>0.8 close to real >0.8 close to real

Training strategy Continuous learning Continuous learning Continuous learning

Enhanced AI

techniques

N/A N/A N/A

Inference approach Real-time Real-time Real-time

Serving approach Rest API Rest API Rest API

Use Case Energy Grid Active Monitoring/Control Living Lab

AI Application Service Driver-friendly dispatchable EV charging

AI Service Forecasting of energy demand

Outcome type
Predicting day-ahead energy consumption values related to

smart meters collected data

Metrics: Acceptance /

Failure Criteria

>0.8 close to real

Training strategy
Federated learning

Continuous learning

Enhanced AI

techniques

GPU

Inference approach Real-Time predictions

Serving approach REST API

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

42 of 108

4 Big Data and ML framework: IoT-NGIN
MLaaS Architecture

Throughout this section, the MLaaS platform to be developed and integrated over the IoT-

NGIN project is going to be described. First, an initial analysis of the state-of-the-art
considering this kind of platforms is provided. Then, an architecture for the platform is
proposed, which includes the definition of:

• Actors of the platform

• Use cases for the platform

• Logical view of platform components

• Sequence diagrams for each platform use case considering the components

Then, an overview of how the data is managed in the platform following the BDVA

architecture is provided in Section 4.3. Finally, the privacy-preserving federated learning
framework that will be on top of the MLaaS platform is described.

4.1 MLaaS state-of-the-art definition

One of the promises of the “internet of things” is the use of device and sensor services to

extract knowledge about how a system is performing and helps companies better
understand what exactly is going on in various aspects of the system. The data from device
and sensor services can be used immediately by a simple system, for example launching an

alert if a value is above a specific threshold. However, the multiplication of these devices
and sensors generates a growing amount of data and companies face the challenge of the

5 V’s of Big Data: Velocity, Volume, Value, Variety, and Veracity. A simple system is no more
able to cope with the complexity involved by these 5 V. New solutions are required to be

able to react to complex data and to effectively and purposely captured valuable
information from the data. With the development of new techniques, new algorithms and
the increasing availability of computational power, it is now possible to not only get

information about the current state of a system but also extract value from a huge amount
of data and predict future states of a system. This will help the stakeholders better understand

what exactly is going on in various aspects of the company and better plan for the future.

 Primary users of the ML techniques are data science professionals which include expert data

scientists, citizen data scientists, data engineers and machine learning engineers/specialists.
These people need a platform that can provide all the necessary components to work on
data, train ML models, share models and deploy models. Implementing and maintaining

such a platform is complex, time-consuming, costly and companies may lack experience.
So, one trend in the industry is to provide this kind of platform providing all the necessary

services to build and execute ML in a ready-to-use form. In addition, it can be built as a
custom-tailored ML system for some specific use cases. Such a platform is commonly referred

to as Machine Learning as a Service (MLaaS). Using MLaaS allows a company to reduce the

time and cost of integrating ML into its development and IT environment. By using MLaaS,

Data Scientist can upload their data and model for training at the MLaaS platform and can
focus on their core competency, i.e. ML development without taking care of the underlying

infrastructure which is then provided and managed by another identity (such as in an as-a-
service fashion).

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

43 of 108

There is no formal definition for an ML platform. For example, R. Bohm and G. Digital in [3]

define ML platform as “Broadly speaking, a platform is a set of interconnected services
designed to enable all the parts of an application to work together. These platforms not only

provide basic services, but they also create ecosystems so that new components can be
added, and components can be offered for sale”. In another report by Louis Dorard [4],

different types of ML platforms are presented: Pre-trained models as a service, Vertical ML as
a service, Semi-specialized machine learning as a service, ML development platforms, ML
deployment platforms. In another report by Gartner [5], Gartner defines a Data Science and

Machine Learning Platforms (DSML) platform as “a core product and supporting a portfolio
of coherently integrated products, components, libraries and frameworks (including

proprietary, partner and open-source)”. In report MLaaS: Machine Learning as a Service [6],
authors wrote: ”Because multiple users will be using the same platform, computational

resources can be shared or allocated on-demand, reducing overall costs. By specifying a
well-defined interface, users can have access to the machine learning process efficiently
from anywhere, at any time. Users must not be concerned with implementation and

computing resources, focusing mainly on the data itself.”

ML platforms can come in different formats. They can be based on open source or

commercial software, and they can run on-premises or in the cloud. For example, the major
public cloud actors like Microsoft Azure, Google Cloud Platform (GCP) or AWS have MLaaS

offers to provide different AI services. Several software vendors are also offering the MLaaS
platform. Most of the literature discusses MLaaS as being in the cloud. However, in the context
of IoT where there could be millions of sensors, intermittent connectivity, sensitive or private

data, it may not make sense nor be even possible to push all the data to the cloud. Also, in
real-life situations such as health monitoring, emergency response and other latency-

sensitive applications, the delay caused by transferring the data or/and doing the prediction
in the cloud may not be acceptable. Companies must decide what, when and where to

send data versus keeping data locally and similarly must decide what, when and where ML
model is trained, and prediction is done.

This has led to the notion of Edge computing and Fog computing where some local resources

can be used to process data. Edge computing and fog computing share a lot of similarities
and the distinction is not always clear. With edge, computing happens where data is being

generated, right at “the edge” of a given network. Edge computer is connected to the
sensors and controllers of a given device and then sends data to the cloud. Initially, Edge
Computing paradigm devices had limited resources which limited its usage. Fog Computing

is a new paradigm addressing this issue by providing a compute layer between the cloud
and the edge. As explained in [7] Fog Computing has been defined in many ways. The

definition from S. Yi, Q. Li, and C. Li in [8] fits well with the purpose of the IoT NGIN MLaaS: “Fog
Computing is a geographically distributed computing architecture with a resource pool

consisting of one or more ubiquitously connected heterogeneous devices (including edge
devices) at the edge of the network and not exclusively seamlessly backed by cloud
services, to collaboratively provide elastic computation, storage and other services either in

remote locations or in a large number of clients nearby”.

As stated in Machine Learning as a Service-Challenges in Research and Applications [9],

there is no clear definition of what MLaaS is. Similarly, there are no standard functional
requirements and no reference architecture for MLaaS. However, in most of the descriptions,

the MLaaS platform provides services to store data, visualize data, perform Extract, Load,
Transform (ETL), train ML models, allow transfer learning and leverage pre-trained model.
Ideally, MLaaS must be scalable, provide substantial computational resources (e.g., high-

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

44 of 108

performance graphics processing units (GPUs)) and allow for technical interoperability with
other systems via standard APIs and standard network protocols.

MLaaS comes with new security concerns. As a shared platform MLaaS faces the challenge

of data privacy of the data and security of the overall system. Owners must be sure that their
data and model are not stolen, compromised nor being used by unauthorized users. This

area is subject to quite a lot of research. For example, in survey Privacy-Preserving Deep
Learning on Machine Learning as a Service [10], Privacy-Preserving Deep Learning (PPDL) is
presented as a possible solution to this problem for Deep Learning specifically for MLaaS. In

addition, the MLaaS platform, being connected to the network and in the case of IoT possibly
using new network protocols, is subject to both common and new network attacks.

Evaluation in [11] of both the attacks and defences dimensions of an MLaaS system reveals
that there is an increasing interest from the research community on the perspective of

attacking and defending against various attacks on Machine Learning as a Service platform.
IoT-NGIN will participate in this effort by developing privacy-preserving federated Machine
Learning (ML) and deep ML/ reinforcement learning techniques to enable ML training

without moving sensitive data from its original sites, overcoming legal or privacy constraints,
while novel cybersecurity techniques will mitigate poisoning attacks and ensure early attack

detection in on-device federated ML.

4.2 IoT-NGIN MLaaS Platform Concept

The following section details the architecture of the MLaaS framework from different

perspectives: at the architecture level, at the actors level, at the components level and at
the functionality level.

4.2.1 IoT-NGIN MLaaS Concept

Throughout this section the MLaaS platform is described at the architecture and business

level, including the functional and non-functional requirements as well as the main
interactions of the platform. In later sections the architecture is realized into use cases, logical

components view and sequence diagrams.

4.2.1.1 Business Context & Motivation

One of the ambitions of Europe is to foster, strengthen and support the development and

wide adoption of Big Data Value technologies to sustain the growth of Big Data and remain
competitive. As stated in BDVA SRIA4.0, three dimensions (over seven) of a strong Big Data

ecosystem relate to:

• Data. The availability of data and access to data sources are paramount concerns.

There is a broad range of data types and data sources: structured and unstructured
data; multilingual data sources; data generated from machines and sensors; data at-

rest and data-in-motion. Value is created by acquiring data, combining data from
different sources, and providing access to data with low latency while ensuring data

integrity and preserving privacy. Pre-processing, validating and augmenting data, as
well as ensuring their integrity and accuracy, add value.

• Skills. In order to leverage the potential of Big Data Value, a key challenge for Europe

is to ensure the availability of highly and relevantly skilled people who have an

excellent grasp of the best practices and technologies for delivering Big Data Value

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

45 of 108

within applications and solutions. There will be a need for data scientists and engineers
who have expertise in analytics, statistics, machine learning, data mining and data
management. These specialists should be combined with other experts who have

strong domain knowledge and the ability to apply this know-how within organisations
to create value.

• Technical. Key aspects such as real-time analytics, low latency and scalability in

processing data, new and rich user interfaces, interacting with and linking data,
information and content, all have to be developed in order to open up new
opportunities and to sustain or develop competitive advantages. As well as having

agreed approaches, the interoperability of datasets and data-driven solutions is
essential to ensure wide adoption within and across sectors.

The goal of the MLaaS architecture is to define a hybrid edge-cloud MLaaS (Machine

Learning as a Service) framework that will support these three dimensions by providing the

data scientists and engineers with access to data and the tools they need for their role

without taking care of the underlying infrastructure and by providing capabilities for real-time
analytics, low latency and scalability in processing data. More information related to how

the MLaaS platform follows the BDVA architecture can be found in Section 4.3: Data Storage
and Data Management.

4.2.1.2 High-level IoT-NGIN architecture

IoT-NGIN aims to act as the engine that will drive the evolution to the next generation of IoT.
As such, IoT-NGIN addresses multi-variate diverse network topologies and computing

paradigms for IoT systems acroos a number of domains. With the increasing emergence of
IoT devices and things, with diverse computing capabilities, computational loads could be
executed even on device or offloaded to more powerful devices. At the same time, the

energy efficiency constraints, combined with stringent delay requirement, depending on the
underlying IoT application, often mandate for the computation to be executed as close as

possible to the data sources. This has led to the adoption of edge computing, which usually
refers to computation jobs being offloaded within the same LAN. However, heavier

computations in less time-sensitive applications have led to the emergence of fog
computing. In this paradigm, computation is done at more powerful devices in remote
locations compared to the data sources, but still not referring to cloud resources. Last, but

least cloud computational resources can be exploited, utilizing flexible plans of data centre
resources.

IoT-NGIN covers all three computing paradigms, as illustrated in the network topology of

Figure 4. As shown in the figure, computation tasks can be executed at the edge, fog or
cloud layers. Indeed, computation offloading can be performed directly from the edge layer

to other edge devices or fog or cloud resources, but also from fog to cloud resources.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

46 of 108

Figure 4: IoT-NGIN network topology

The complete IoT-NGIN functionality can be mapped to the network nodes, as depicted in

the draft meta-architecture figure included in the the Description of Action (DoA), which is
illustrated in Figure 5. The architecture specifies the services offered both in IoT devices and
in more capable edge / fog / cloud nodes of an IoT-NGIN powered system, supporting a

modular and flexible combination of next generation (5G, mesh and fog) communications
and federations of IoT systems and Distributed Ledger Technologies (DLTs), along with Big

Data Analytics and privacy preserving federated ML for distributed intelligence. As shown in
the figure, five flexible meta-architectural functional groups are foreseen, namely Federated

Communications, Microservices and Virtual Network Functions (VNF), Federated Data
Sovereignty, Federation of Big Data Analytics & ML and Human-Centred Augmented Reality
Tactile IoT.

The MLaaS function is plays a central role in the overall IoT-NGIN design, which includes

various ML-based components. The MLaaS function is supported in the Big Data Analytics, as

well as the primary ML-based components appearing in purple color in the figure.

Edge

Fog

Cloud

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

47 of 108

Figure 5: IoT-NGIN proposed architecture, DoA version

4.2.1.3 IoT Device Classification for MLaaS

The IoT Device is not part of the MLaaS platform per se, but it can be a consumer of the

platform and can have strong interaction with it. As there are many diverse types of IoT
devices there will be different levels of possible interactions between the IoT device and the

edge/fog/cloud node. The services used from MLaaS platform will depend on the IoT device
capabilities.

The IoT devices could range from a simple Microcontroller (Arduino for example) to a large

object with high compute capabilities (a Street Light or a Wind Turbine for example). Looking
at the range of possible IoT devices, the characteristics of a micro-controller are:

• Has low CPU and memory capabilities

• Runs on battery which possibly should last several years

• Has limited communication capabilities (only low-power wide-area network – LPWAN,

for example)

• Can only run simple ML model (TensorFlow Lite6, etc.)

In addition, the characteristics of a Big Thing are:

• Has higher (or at least decent) CPU and memory capabilities

• Is continuously powered

6 https://www.tensorflow.org/lite

Edge / Fog / Cloud Node

https://www.tensorflow.org/lite

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

48 of 108

• Has a lot of communication capabilities (4G/5G, Wifi, Ethernet, etc.)

• Can use complex AI models (Tensorflow7, PyTorch8 models, etc.)

As the IoT devices has increasing compute capabilities, it will be able to have higher

interaction with the IoT-NGIN Edge node and higher potential autonomy. Figure 6 illustrates
the differences in terms of capabilities between a simple IoT device (a micro-controller) and

a bigger IoT device (a Robot) with regards to the services they can use from the IoT-NGIN
edge node.

Figure 6: IoT Device – Edge Relationship

Indicatively, the micro-controller will not be able to use AR/Human centered UI/UX, micro-

apps or Blockchain technology in contrast to a Robot which will have enough capabilities to
use these services. It may be useful to classify the IoT devices based on their capabilities in
order to evaluate the potential interaction with the IoT-NGIN services and especially with the

MLaaS platform. Table 27 presents a classification with some of the capabilities of the
devices.

7 https://www.tensorflow.org/
8 https://pytorch.org/

Microcontroller

Raspberry Pi

Robot

Big Thing
(Street Light)

AR/Human Centered UI/UX

Semi-autonomous real-time
Operation

Distributed trained
ML Models

Blockchain-DLT client

Sensing, Streaming & Actuating

Micro-Apps Em
be

dd
ed

 C
yb

er
-s

ec
ur

it
y

&
D

at
a

Pr
iv

ac
y

Ressource Self-awareness &
Dynamic Network Connecticity

Fog-M2M
communications

5G-MCM
communications

Power

IoT Device Edge Node

Smartphone

https://www.tensorflow.org/
https://pytorch.org/

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

49 of 108

Class Device type Can do prediction? Can do Federated ML?

1 Microcontroller Prediction with only simple

model and framework like

TinyML

Likely not

2 Smartphone Prediction only with simple

model

Yes with simple model

3 Affordable low-

powered computer

(e.g.: Raspberry Pi)

Prediction with model of

medium complexity

Yes with model of medium

complexity

4 Robot with medium-

powered computer

Prediction with possibly

complex model (image /
video recognition)

Yes

5 Big Thing Prediction with complex

model
Yes

Table 27: IoT device classification

It is worth noting that even in the case that the IoT device cannot do prediction or participate
in Federated Machine Learning, it may still be possible to perform such tasks using a Digital

Twin that will mimic the behaviour of the device.

4.2.1.4 MLaaS platform high-level overview

Considering the network topology and the draft IoT-NGIN meta-architecture described in
section 4.2.1.2 “High-level IoT-NGIN architecture”, the IoT device characteristics, as well as

the IoT-NGIN requirements derived from the Living Lab use cases in deliverable document
D1.1 “Definition analysis of use cases and GDPR Compliance” [2], the high-level architectural

concept of the MLaaS platform is defined in this section. Specifically, Figure 7 maps the
MLaaS functionality in the IoT devices, the Edge nodes and the cloud, highlighting basic
interactions among them in the MLaaS workflow. These functionalities are mapped to logical

platform components in Section 4.2.5 “MLaaS Platform Logical view".

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

50 of 108

Figure 7: MLaaS platform architecture overview

From an architectural point of view, the platform provides the following functionalities and

interactions, which are detailed and explained later throughout section 4.3:

• A set of edge nodes providing the MLaaS functions. This set of edge nodes can be

located in the same location or distributed over several locations.

• Interaction with the Cloud:

o The platform can interact with the cloud to download AI Models

o The edge nodes may possibly use computation from the cloud when extra
compute resources are required

o The platform may send data to the cloud for data aggregation or data
archiving

• Interaction with the Development Environment of a consumer of the platform (Data

Scientist, AI developer)

o The consumer can use some of the development tools of the platform (Jupyter
notebooks for example in the figure)

o The consumer can use compute service from the platform directly or via the
development tool of the platform

o The consumer can update a Digital Twin that would be hosted in the MLaaS

platform. The consumer can update the devices via a Continuous
Integration/Continuous Delivery pipeline

• Data Storage

o The development environment can use the storage either to retrieve data (for
training for example) or to store data (following ETL process for example)

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

51 of 108

o The Data storage can be used to store data (from sensor for example) by the
Digital Twin (as illustrated in the figure) or directly by the IoT device in case the
IoT system has no Digital twin

o The Data Storage is also used for secondary purpose like storing ML from the
library or ML template

• Models Library

o The ML library is used to store ready to use models by a consumer of the
platform. These models could be used as is or for transfer learning.

• Polyglot model sharing

o The Polyglot model sharing component is a software that reads the Model

library and transforms models into an standard format. It may also offer a
transfer learning API.

• API

o The platform host standard API like Tensorflow or Pytorch so that a consumer
can directly used these API from the platform

• Development Environment

o The platform will have a limited integrated ready to use Development

Environment (like Jupyter notebooks) that will allow a developer to create AI
Models without having to setup his own development environment, e.g.

directly on the platform as a Service

• Interaction from the Management Agent

o Depending on user case and associated SLA, the platform can be monitored
to ensure it is up and running and in good condition. Also the Monitoring

Management Agent will ensure that the platform is up to date in terms of
patching and software version. The Management Agent will also be in charge

of ensuring the platform is and stays secure.

• Platform Development

o The platform may be provided by an entity who will be responsible to develop
the platform, i.e. add new functionalities, perform major upgrades of some of

the components, change components, etc.

• Interaction with Digital Twin / IoT device

o The Digital Twin or the IoT Device is not a component of the MLaaS platform

but is is expected that it will have major interaction with the platform as it is
described as part of the architecture of the solution. Such interaction is detailed
in section 4.2.1.4.2 “Inference on IoT Device ” and section 4.2.1.4.3 “Digital

Twins

• Interaction with a communication Layer

o The platform will be using a communication layer provided by the underlying

infrastructure to exchange data with external components like a Cloud (Public
or Private), a Digital Twin or an IoT Device, a third party, external data sources,
etc. It is especially expected that 5G will be supported by the communication

layer.

4.2.1.4.1 MLaaS Platform and Federated Machine Learning

As derived from the draft IoT-NGIN meta-architecture, the platform should support Federated

Machine Learning. In this context, the MLaaS Platform may have one or several of the
following functions:

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

52 of 108

• In the case of several disjoint MLaaS platform instances, those instances will act as

Edge Nodes using data from the Data Storage. The Cloud or one of the MLaaS

platform instances would then be the Aggregator Node.

• The MLaaS platform will act as the aggregator node in the case the Digital Twins or IoT

Devices are the Edge Node

• The MLaaS platform will provide Compute capabilities to a Digital Twin or IoT Device

during the training process

The exploitation of the platform will depend on the use case and the platform may have

several roles (via separate services, for example).

4.2.1.4.2 Inference on IoT Device

One of the functions of the MLaaS platform is to collect data sent by the IoT device. The IoT
device may also request for inferences to the MLaaS platform. However another key function
is to create AI models that can be loaded onto the IoT devices. Using these models, the IoT

devices should be then capable of doing local prediction using local data (data from a
sensor measurement and small cache for example). Such local prediction may be required

if low latency is needed or when the device has lost connectivity to the edge node.
Interaction between the IoT device and the MLaaS platform is illustrated in Figure 8.

Figure 8: IoT Device – MLaaS platform interaction

Apart from the device sending sensor data and receiving AI Model from the MLaaS platform
the figure illustrates how the IoT device can work in an autonomous mode. The compute part

(an application) of the device controls a sensor to retrieve some data. The data received
from the sensor is then used with the ML Model do perform a prediction (Inference). Based
on the result of the prediction, the IoT device may choose to perform an action, like

activating an actuator for example.

MLaaS platform

IoT-NGIN IoT devices

Send Sensor

data

Trained
ML model

Sensor

Actuator

useComputecontrol

control Inference

use

use

Data

Storage

Use data from sensor

Communication Layer

Trained
ML model

Send ML

Model

Compute

Request prediction Send prediction

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

53 of 108

4.2.1.4.3 Digital Twins

One of the technological objectives of the IoT-NGIN project is to perform research towards

a novel concept of DLT enabled Meta-Level Digital Twin (MLDT) to enable “by design” digital
twins’ scalability, flexibility and trust. This research will be conducted as part of WP5:

Enhancing IoT Cybersecurity & Data Privacy. The Digital Twin will not be as such part of the
MLaaS platform. However it is expected that there will be interaction between the Digital
Twin and the MLaaS platform. This section gives a simplified and short introduction of the

Digital Twin concept and its possible interaction with the MLaaS platform.

For the definition of the Digital Twin, we will use the definition from the Digital Twin

Consortium9: “A digital twin is a virtual representation of real-world entities and processes,
synchronized at a specified frequency and fidelity”. Using Digital Twins could present several
benefits:

• Digital twin systems transform business by accelerating holistic understanding, optimal

decision-making, and effective action.

• Digital twins use real-time and historical data to represent the past and present and

simulate predicted futures.

• Digital twins are motivated by outcomes, tailored to use cases, powered by

integration, built on data, guided by domain knowledge, and implemented in IT/OT
systems.

The Digital Twin Consortium sees two categories of digital models:

• A representational model which consists of structured information which generally

represents the states of entities or processes.

• A computational simulation model which is an executable model of a process and

consists of data and algorithms that input and output representational models.

Whatever the model is, a key function of a Digital Twin is to synchronize itself with the real

world. This means:

• The virtual representation should match more closely the real world. This can be

achieved via observation mechanisms (sensors, laser scans, satellite imaging, radar,

videos)

• The real world should match the virtual representation of a desired state more closely.

This can be achieved via intervention mechanisms (actuators, robots)

• The real world should match the virtual configuration of a desired state. This can be

achieved via regular update of the real world via for example a CI/CD pipeline.

Several parameters could be used for the synchronisation. Which one are used and with

which values depends on the context and would have to be decided on case-by-case basis.

Example of possible parameters are:

• Observational synchronization frequency

• Interventional synchronization frequency

• Frequency by mechanism (i.e. sensors and laser scans)

The Digital Twin Consortium introduces the notion of a Digital twin system which is a way to

implement a digital twin. It comprises functional subsystems that implement digital twin

9 https://www.digitaltwinconsortium.org/

https://www.digitaltwinconsortium.org/

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

54 of 108

system features. Figure 9, from the Digital Twin Consortium website, gives an overview of a
Digital Twin System.

Figure 9: Digital Twin System10

In the context of MLaaS, a Digital Twin System may interact with the platform in different

ways:

• Detect, prevent, predict and optimize through real time analytics based on data from

real device

• Send request to the real device to activate an actuator following a prediction

• Federated ML using private data

• Update configurations of real IoT devices

• Check integrity of real world (real state vs desire state)

• Provide data privacy by keeping data local to the digital twin

• Keep some of the data private and share some of the data with the platform.

10 https://www.digitaltwinconsortium.org/

https://www.digitaltwinconsortium.org/

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

55 of 108

Figure 10: MLaaS platform interaction with Digital Twin and IoT Device

From an implementation point of view the Digital Twin System could be from small digital twin

(metadata only) to large digital twin (complete application/simulator). Dedicated container
or application with multiple containers could be used to make the Digital Twin System. The
Digital Twin System is not part of the MLaaS platform but complements the MLaaS schema,

providing the required interface for the optimal utilization of the IoT devices.

4.2.2 Actors

The identification of the actors that will interact with the MLaaS platform is key for the
specification of the use cases and the functionalities that will be provided. Table 28 and
Table 29 describe the actors of the MLaaS platform, which can be separated into two main

groups: human actors and non-human actors (systems).

MLaaS

IoT DeviceDigital Twin

Observation

Model.X Model.X

Local
Data

Local
Data

Sensor

Private Data from

Digital twin can be used

for Federated ML

Data from Digital

Twin can be used

for Federated ML

Real-world to match the virtual

configuration of a desired state:

Digital Twin updates real worls

The virtual representation to

match more-closely the real-

world: Real world sends data

to Digital Twin

Intervention Actuator

Real-world to match the

virtual representation of a

desired state:Digital Twin

takes decision and ask real

world to act

Digital Twin may choose

which data to share vs

keep as private

Administrator/Data Scientist

updates Digital Twin

CPU

CPU Digital twin can be

used for Federated ML

Real-world may rely on digital

twin for intervention but may

also take local decision (if

inference capability or lost of

connectivity with digital twin

for example)

CPU

Real-world may cache some

data locally

Metadata Local
Data

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

56 of 108

Table 28: Human actors of the MLaaS platform

Human Actors

Data scientist / AI

developer

This actor will make use of the tools provided by the platform to:

1. Analyse and process the data.

2. Design and prepare AI models to be trained within the

infrastructure.

The actor may also use the platform to prepare an AI method or an

AI Service.

AI Application

developer

This actor is responsible for the creation of an AI Application by

gathering a set of AI methods or AI Services that serve a common

purpose. The AI Application may be offered as an AI Application
Service, which can be consumed by other human or system actors.

AI User / Integrator This actor will either consume single AI services or an entire AI

Application Service offered directly from the platform. As an
alternative, it will deploy AI Methods or AI Services into another

infrastructure.

End-user (e.g.,

farmer, factory

operator, etc.)

This actor refers to the final consumer, who is the one who benefits

from the actual outcomes of the AI models and the one who will take
different actions or decisions according to those results.

Platform provider /

administrator (hw +

sw)

This actor is the manager of the infrastructure, overseeing the in-

premise deployment of the platform as well as its maintenance and
updates.

Third parties / Data

providers

Refers to companies or other users that benefit externally from the

platform capabilities.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

57 of 108

Table 29: Non-human actors, either hardware or software, using the MLaaS platform

4.2.3 MLaaS Platform Use Cases

The key functionalities which will be implemented as part of the IoT-NGIN MLaaS platform are

represented through use case diagrams. The actors identified in the previous section will be
the users of these functionalities. The use cases will be the baseline for the definition of the
internal platform architecture and the specification of the interactions with external

components and systems.

4.2.3.1 Data acquisition

Figure 11 depicts the Data Acquisition platform use case as a UML diagram. It explains the
functionality of the MLaaS platform when it comes to getting the data from different data
sources.

The use case is divided into five sub-use cases:

1. UC1.1 Loads dataset: a Data scientist / AI developer should be able to load a dataset

(connects to local data storage and gets the data) from within the MLaaS platform
and perform typical operations on it included in the rest of UC1 use cases.

2. UC1.2 Specifies dataset parameters: When loading a dataset, the Data scientist / AI

developer should be able to specify some parameters to be applied to it, which
should be previously defined in the MLaaS data templates. These parameters may

include, for instance, the format of the dataset (structured data, images, etc.), the
number of instances to load, among many others.

Non-human actors

Device (i.e. IoT

devices, robots or

drones)

Generally speaking, any device that produces data that can be used

to train AI Models or feed AI methods, services and applications. Also,
they can directly embed the AI Methods / Services or consume their

results.

Data platform

(e.g. used in the

living labs)

A cloud data provider or any other kind of data platform providing data

from the cloud or edge. It could also refer to the general data sources

of the MLaaS platform.

AI Applications Applications (e.g. to be developed within the living labs’ use cases) that

consume the offered AI models by means of AI Services or AI

Application Services.

Digital Twins Mimics of the UC devices or platforms, providing the right response when

those are not available or are not desired to be accessed from the
MLaaS platform (for example, due to a local electrical issue).

Blockchain

network

The management of data in the platform can be integrated with a

blockchain network to ensure data integrity immutability.

(IoT-NGIN)

Orchestrator

Manager of the deployed instance of cloud-edge infrastructures.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

58 of 108

3. UC1.3 Extracts data: Once the loading parameters are defined, the Data scientist / AI

developer can extract the data (exports it to the platform) from the corresponding
data source(s): a Data Platform, a Digital Twin or a Device. Extracting this data can

be done in two ways:
a. UC1.3.1 Retrieves batch information: The dataset is loaded once or in some

subsets or batches into the MLaaS platform storage.

b. UC1.3.2 Connects to data streams: The dataset is not loaded entirely but rather

the data source sends the data periodically to the MLaaS platform storage,

which handles the connection to the stream seamlessly.
4. UC1.4 Feeds AI Methods and Services: Once the dataset is loaded and it has been

processed by the Data pre-processing, a Data scientist / AI developer should be able

to feed seamlessly an AI method from the data so that it is used as an ML model input
for training or inference.

In this use case the following actors participate:

• Data scientist / AI developer: He or She should be able to load a dataset from one or

some of the data sources and connect the dataset with an AI method.

• Device: Real IoT Devices, robots or another kind of devices that send data in batches

or a stream to the MLaaS platform.

• Digital Twin: A data source provided by IoT-NGIN instead of the Devices that sends

data in batches or a stream.

• Data Platform: A data source that is not a Digital twin or a Device, but instead, for

example, a cloud provider or any other data provider that sends data to the MLaaS

platform.

Figure 11: Platform Use Case 1: Data Acquisition

4.2.3.2 Data pre-processing

The Data preprocessing use case provides information related to how the analysis of the

data is done in the platform and its preparation to be used as a source to train an AI model.

The use case is divided into seven sub-use cases:

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

59 of 108

1. UC2.1 Exploratory Design Analysis: a Data scientist / AI developer should be able

to use data analysis tools and techniques to investigate, analyse, and summarize
the main characteristics of a dataset. Typical operations refer to detecting obvious

errors, identifying outliers, understanding relationships, unearthing important
factors, and finding patterns within data.

2. UC2.2 Data annotation: data is annotated by a Data scientist / AI developer to

prepare the raw data in order to be consumed by the ML platform. Example of
annotation would be an image, video, text, audio annotation and 2D/3D

bounding box. This may also include the division of the dataset into train and test
sets.

3. UC2.3 Data wrangling: a Data scientist / AI developer should be able to restructure

and transform data into a standard format. Part of Data wrangling operations are:
a. UC2.4 Data Cleaning: the source data is converted into cleaned data by

removing incomplete, errors, noise, duplicates data and inconsistencies.
b. UC2.5 Data normalization: any unstructured data and redundancies that

can exist in the data set is removed and eventually the data are grouped

logically in order to end up with more structured data.
4. UC2.6 Data sampling: As it is not always possible to store the data in full or it is

inconvenient to work with data in full, it could be faster to work with a compact
summary. The Data scientist / AI developer may decide to obtain a smaller data

set with the same structure from the full dataset.
5. UC2.6 Data augmentation: value can be added to the data by adding information

derived from internal and external sources. Some of the common techniques that

can be used are extrapolation, tagging, aggregation and probability technique.

In this use case the following actors participate:

• Data scientist / AI developer: He or She should be able to perform various

transformation on the dataset in order to prepare the data to be consumed by the

ML platform.

• Third-party: The third party may use the data from the platform and perform its own

transformation on them.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

60 of 108

Figure 12: Platform Use Case 2: Data pre-processing

4.2.3.3 AI Modelling (edge)

The “AI Modelling” use case provides the set of actions that are necessary in order to develop
an AI model that can be further deployed and tested. The use case is divided into the

following sub-use cases:

1. UC3.1 Feature engineering: The efficacy of any ML model depends on successful

feature engineering. This use case allows the Data Scientist/AI developer to derive
better features from raw data, by enabling blending information together to make

useful model inputs.
2. UC3.2 Model selection: “There is an old theorem in the machine learning and pattern

recognition community called the No Free Lunch Theorem, which states that there is

no single model that is best on all tasks,” said Dr Jason Corso, who is a Professor of
Electrical Engineering and Computer Science at the University of Michigan and the

co-founder and CEO of Voxel5111. Via this use case, the Data Scientist/AI developer
can select the algorithm that best fits their dataset, as well as their task. Based on the
type of learning selected, the algorithm can change the shape it takes. The Data

Scientist/AI developer can select among supervised learning, unsupervised learning,
reinforcement learning and transfer learning. This use case is the generalization of the

following use cases.
a. UC3.4 Supervised Learning: Supervised learning involves the machine being

trained on a given labelled dataset. The Data Scientist/AI developer can select

the supervised learning algorithm in order to train accordingly.
b. UC3.5 Unsupervised Learning: In this type of learning, the machine is trained

over unlabelled datasets. The Data Scientist/AI developer selects unsupervised

11 https://voxel51.com.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

61 of 108

learning to let the machine find the links between the objects, potentially
applying dimensionality reduction, where it reduces the number of variables to
decrease the noise.

c. UC3.8 Reinforcement Learning: Reinforcement learning allows the Data

Scientist/AI developer to train their machine, by learning from their own success

and failures. This use case allows the selection and application of algorithms
performing reinforcement learning techniques.

d. UC3.10 Transfer Learning: In this type of learning, training exploits the

knowledge (patterns) learnt in one task to another related task, by actually
retraining a pre-trained model in a different task than the original training took

place. Through this use case, the Data Scientist/AI developer performs transfer
learning.

3. UC3.3 Model training: This use case provides the next step in model creation, which is

the training of the model. In order to do so, the Data Scientist/AI developer defines
the training set, on which the algorithm will be trained. This use case is the

generalization of the following use cases.
a. UC3.6 Federated Learning: In federated learning, the training procedure is a

product of “coopetition” among a set of nodes, trading off cooperation and

competition in deriving an aggregated trained model. The Data Scientist/AI
developer may select this type of training through this use case. Moreover, the

Device, the Data Platform and the Digital Twin interact with the use case, as
they may select to perform training as federated nodes.

b. UC3.7 Continuous Learning: Continuous learning embeds the idea of

continually updating an ML model with new data as they become available.
This use case enables the Data Scientist/AI developer to perform online

training, while it provides the baseline for active learning and multimodal and
multitask learning. Moreover, the Device, the Data Platform and the Digital Twin

participate in the use case, as they may perform online training on their
continuous data streams.

4. UC3.11 Validation: The definition of performance metrics is valuable in the evaluation,

comparison and analysis of results of training, which will help to further refine the ML
models. Indicatively, the classification accuracy, which represents the number of

correct predictions divided by the total number of predictions, and multiplied by 100,
is an appropriate performance metric for classification problems. Also, the selection
of validation dataset affects the model trustworthiness, overcoming the problem of

overfitting. In this use case, the Data Scientist/AI developer defines the set of
performance metrics against which the ML models will be validated, as well as the

success criteria, i.e. the setpoints which will define whether the model can be
considered appropriate for the use case it is aimed for. Also, through this use case, the

validation takes place and the Data Scientist/AI developer is provided with the
validation result.

5. UC3.12 Model tuning: In this use case the Data Scientist/AI developer applies model

tuning, by configuring a set of hyperparameters, such as coefficients penalties,
decision trees, number of layers in neural networks, etc. Model tuning is required in

order to derive more accurate predictions for different datasets.
6. UC3.13. Create AI Method: In this use case, the Data Scientist/AI developer build saves

the model and uses it to create an AI method.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

62 of 108

Figure 13: Platform Use case 3: AI Modelling

4.2.3.4 AI Model deployment

The AI Model deployment use case defines the set of actions to be carried out in order to
package, optimize and deploy an AI model into a target infrastructure.

The use case is divided into four sub-use cases:

1. UC4.1 Model Packaging: a Data scientist / AI developer should be able to put the AI

models and their descriptions in one place and a standard format so that they can

be easily shared and used through an API. This will enable to place the model in the
corresponding AI services, which offer the API to the users.

2. UC4.2 Model Optimization: The model should be validated before it is put into

production, which means optimizing its parameters before doing the final

deployment. In addition, the deployment of models on low-powered devices or
constrained hardware may require performing some optimization techniques on the
model so that it operates smoothly in that hardware. With regards to this, this sub-use

case conforms to the set of actions and operations to optimize (i) the model

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

63 of 108

hyperparameters after doing a validation operation against a validation dataset, and
(ii) the optimization of the model binary according to the requirements of the target
deployment infrastructure.

3. UC4.3 Model Deployment: a Data scientist / AI developer should be able to deploy

the model to a device, a digital twin or a data platform once it has been packaged.

The calls for inferences to this model are done via an API defined by the
corresponding AI method.

4. UC3.13 Creates AI Method: In order to deploy a model, it must be created previously

the corresponding AI Method that calls the AI model in the background.

In this use case the following actors participate:

• Data scientist / AI developer: He or She should be able to package, optimize and

deploy a model.

• Device: Real IoT Devices, robots or other kinds of devices to which the data model

can be deployed.

• Digital Twin: A data source provided by IoT-NGIN instead of the Devices to which the

data model can be deployed.

• Data Platform: A data platform that is not a Digital twin or a Device, but instead for

example a cloud provider or any other data provider to which the data model can
be deployed to.

Figure 14: Platform Use Case 4: AI Model Deployment

4.2.3.5 Integration and Model Operation

In Figure 15 we may observe the UML diagram for the Integration and Model Operation

platform use case. This use case depicts how the trained ML models are integrated into AI
services after an AI method has been created, and how those AI services are deployed for

their integration in the living labs or any other third-party platform operating IoT-NGIN. In
addition, this platform use case describes how the model operates once it has been

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

64 of 108

deployed. For that, different kind of actors will make use of it, some of them will even monitor
its performance in production, as it is described below.

The platform use case is divided into six sub-use cases:

1. UC5.1 Creates AI Service: This sub-use case refers to the preparation of an AI service

through loading the required libraries and frameworks for using the required AI

method. The AI Application developer is in charge of creating this AI service by
packaging the required libraries, as well as the AI method and the trained AI model,
enabling seamless deployment in any compatible infrastructure.

2. UC5.2 Deploys AI Service: Once the AI service has been created, it may be deployed

in the target infrastructure by the AI application developer. This use case extends from

the UC4.3 Model Deployment, described previously, so that the target infrastructure
deployment requirements are properly addressed before running the AI service.

3. UC5.3 Uses AI Service: The AI User / Integrator and any client’s end-user can use the

AI service through this sub-use case. It includes the UC5.4 described next.
4. UC5.4 Consumes Inferencing API: This sub-use case offers the deployed AI service API

for its usage, either by the Digital Twins and/or IoT Devices deployed in the
infrastructure or by external calls from other parts of the platform.

5. UC5.5 Feeds AI method: By means of this sub-use case, the Digital Twins and IoT

Devices will be able to feed the AI method of the deployed AI service, as input data
for the AI model and/or as a request for inference (prediction or classification).

6. UC5.6 Monitors Performance: The AI User / Integrator and/or the Data scientist / AI

Developer could monitor the metrics of the deployed AI models by means of this sub-
use case. The inferencing API will be consumed to obtain the required data for the

monitoring.

In this use case the following actors participate:

• AI application developer: Person in charge of creating the AI services, by loading the

specific AI methods and AI models, and deploying them into the target infrastructure.

• End-user: User or client of IoT-NGIN’s deployed MLaaS platform that consumes the

deployed AI services.

• Data Scientist / AI developer: Person that deals with the deployed AI models’

monitoring and uses the relevant metrics to perform UC3.7 Continuous Learning on

the deployed AI models, if applicable.

• Digital Twin: Entity consumer and/or feeder for the AI models.

• Device: Real device consumer and/or feeder for the AI models.

• AI User / Integrator: Person in charge of ensuring the correct usage of the AI services

and monitoring the performance of the deployed AI models in the target
infrastructure.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

65 of 108

Figure 15: Platform Use Case 5: Integration and Model Operation

4.2.3.6 Model Sharing

Use Case 6 “Model Sharing” deals with making the model available to third-party developers
in order to use the stored models in new applications or services or even use a direct API to

make predictions using these models. This use case is realized via the following set of sub-use
cases.

1. UC6.1 Publishes model: The Data Scientist/AI Developer publishes the model, i.e.

shares the model with a user or a group of users or publicly, giving them the ability to
see and run the model. Specifically, the Data Scientist/AI Developer tags a stable

version of their model or API serving this model and it is made available as a new
release.

2. UC6.2 Controls access: The Data Scientist/AI Developer controls the type of sharing,

including “private” sharing with selected users or groups, as well as “public” which
makes the model available with no additional access restrictions.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

66 of 108

3. UC6.4 Discovers models: A Third-party (developer) searches ML models or APIs serving

those models, which are available to them, based on their profile or access rights or
availability restrictions of the models per se. This Third-party (developer) discovers

models of their interest, being provided with data or metadata describing the model.
4. UC6.5 Gets model: The Third-party (developer) has the option to get the model of their

interest in order to use it, selecting a specific tag (release) of it. This includes

downloading the binary model, in order to use it in the AI method, service or
application development or a direct API to an AI method that uses this model.

5. UC6.6 Checkout model: This use case is “included” in UC6.5 “Gets model”. It refers to

Third-party (developer) being able to download locally the selected tag of the model

or API serving the model.
6. UC6.3 Monetizes model: This use case is not included in Use Case 6 “Model Sharing”,

as it represents an optional case of the Data Scientist/AI Developer monetizing the

model. Also, this use case involves the Third-party (developer) paying the specified
remuneration fee, as part of the checkout process, after selecting and before

downloading/being granted access to the model.

Figure 16: Use Case 6: Model Sharing

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

67 of 108

4.2.4 Functional and Non-Functional Requirements
for MLaaS

In this section, both functional and non-functional requirements are elicited for the IoT-NGIN

MLaaS platform, considering the platform use cases specified in section 4.2.3 “MLaaS
Platform Use Cases” lists the functional requirements for the MLaaS platform.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

68 of 108

Table 30: MLaaS platform functional requirements (1/2)

IoT-NGIN MLaaS Functional Requirements

Data Storage The platform should provide Data Storage. The Data Storage

should allow for storing:

1. Data from Data Ingestion

2. Data for ML training
3. Data for feature processing

Data Visualisation The platform should provide an environment to perform data

exploration and data visualisation

Data Analytics The platform should provide an environment for applications to

request prediction

Data Processing The platform should provide an environment to perform data

preparation

Data Management The platform should provide a collection of tools that help control

and manage the data storage effectively to achieve centralized

data coherence. Data management tools support functions
performing control, protect, organize, retrieve, search, data

lifecycle, etc. of the data

Feature engineering The platform should provide an environment to perform Feature

engineering

Data collection and

ingestion

The platform should allow for IoT devices or Digital Twin to ingest

and store data in the Data Storage

Model creation and

training

The platform should allow for creating ML model and perform

training

Model testing The platform should allow for testing ML models prior to their

deployments

Model Deployment The platform should provide tools for the deployment of the

trained model onto IoT devices or Digital Twin

Model library The platform should provide a library storage of AI models that

can be used as-is or for transfer learning by the platform

Support for

Federated Machine

Learning

The platform should provide support for Federated Machine

Learning

Polyglot trained ML

model sharing

The platform should provide polyglot trained ML model sharing

component where AI models can be shared with third parties and

stakeholders entirely or by applying transfer learning
methodologies

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

69 of 108

Table 31: MLaaS platform functional requirements (2/2)

In addition, Table 32 and Table 34 list the non-functional requirements for the MLaaS platform.

IoT-NGIN MLaaS Functional Requirements

Interaction with Digital

Twin

The platform should be able to collaborate with a Digital Twin

System or meta-level Digital Twins:

1. To get access to data for Federated Machine Learning

2. To send prediction to the Digital Twin
1. To send command to the Digital Twin

Search and Discovery The platform should allow clients to search for ML models and

available (public) data

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

70 of 108

Table 32: MLaaS platform non-functional requirements (1/2)

IoT-NGIN MLaaS Non-Functional Requirements

Availability The platform should be able to run 7 days a week, 24 hours a

day

Data collection and

ingestion protocols

The platform should support open interfaces for data ingestion

via REST, MQTT and/or CoAP transfer protocols.

Data ingestion format The platform should support data representation in the JSON,

XML and/or CBOR format

Network

communication

Platform support for data ingestion protocols should be

independent from the underlying network communication

layer, e.g. 4/5G, LTE/NB-IoT, LPWAN, Ethernet, WLAN, etc.

Platform protection The platform should provide Role Based Access Control (RBAC)

for protected access to the platform

Data protection at rest

and in transit

The platform should provide secure data at-rest and in-transit.

Traffic should be encrypted with TLS or DTLS.

Data sharing The platform should provide a secure, trusted and controlled

way to share data. Sharing should stay within the bounds of
security and privacy policies defined by the stakeholders of the

data

Data privacy The platform should provide adequate protection to ensure

privacy of the data

Data type Platform should address data management across a data

ecosystem comprising both open and closed data

Provide GPU The platform should provide graphics processing unit (GPU)

capabilities to accelerate ML training

Model

Operationalization

The platform should allow adjustment of models to ensure their

relevance over time (MLOps)

Management The platform should allow to be maintained, monitored and

managed

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

71 of 108

Table 33: MLaaS platform non-functional requirements (2/2)

4.2.5 MLaaS Platform Logical view

Considering the MLaaS requirements and the previously described platform use cases, the

logical view of IoT-NGIN’s MLaaS platform was conformed as it is shown in Figure 17. The
components of the platform are not designed to be a software element itself, but rather they

represent a set of functionalities that serve a common purpose provided through different
software and/or hardware procedures. They are represented in the part of the network

(Cloud/Edge) in which they are expected to function. However, some components can be
executed and perform tasks along the cloud-edge continuum, thus, they are represented in
the middle of the figure. three main blocks can be identified as follows:

• Orange boxes represent the functionalities that deal with AI models: training,

deploying, optimizing, and sharing. The following components have been identified:
o Model training: This represents the functionalities related to training an AI model

with data handled by the platform in the Data Storage component and
represents the use cases defined in Platform Use Case 3: AI modelling. Even
though the training of those models is supposed to be federated, the

aggregation operations of the federated learning servers can be executed in
the cloud-edge continuum, so, in the figure, it appears in the middle of the

network. Once an AI model is trained, its weights can be stored in the Models
Library for later usage or sharing, or it can be directly deployed with the Model

Deployment component. In addition, the Model Training component is

IoT-NGIN MLaaS Non-Functional Requirements

Scalability The platform should be scalable to ensure it can grow over time

according to the number of requests.

Regulatory

requirements

The platform should be compliant according to the data hosted into

the platform (GDPR, HIPPA, etc.)

Localization The platform should support the English language. Depending on the

tools used it will possibly support other languages

Implementation The platform should preferably be installed using Infrastructure as Code

(IaC)

Recoverability The platform should have backup mechanism to be able to recover

data and models in case the platform must be reinstalled

Open source The platform should be based on Open source components

External access The platform should be able to exchange data with external platforms

like public/private cloud, external data provider (weather forecast for

example) or social media

DevOps The platform should provide tools for Continuous Integration &

Continuous Deployment (CI/CD) for deployment of the AI models into

IoT-NGIN IoT devices

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

72 of 108

accessible from the Development Environment, and it works in cooperation
with the Model optimization component.

o Models Library: This component represents the functionalities related to storing

the AI models’ weights in a database-like object. It will allow to verify the
integrity of those models and to prevent disclosing any data related to the

training phase, along with the capacity of loading and downloading.
o Model deployment: It represents the set of functionalities related to deploying

an AI model (comprised of an AI Service) for inference. It also enables the set

of APIs that can be used to request inferences and the set of APIs to enable
the monitoring of the model’s performance. In addition, it will allow using the

continuous learning framework if the target environment can take advantage
of this functionality. All in all, this component represents the use cases defined
in Platform Use Case 4 “AI Model Deployment” and Platform Use Case 5

“Integration and Model Operation”. Likewise, the Model deployment
component is supposed to operate over the cloud-edge continuum; there will

be cases in which the AI Model may be deployed directly on the IoT Devices
or in the edge nodes, but in other cases, it may be deployed in the cloud

instance of the platform.
o Model optimization: With respect to Platform Use Case 4 “AI Model

deployment”, this component is in charge of performing the required

optimizations on the trained AI model to (i) validate the model
hyperparameters against the validation data and (ii) to enable an optimal

deployment on the target environment (different types of IoT Devices or Edge
nodes that have different hardware capabilities). Thus, this component will
enable the operation of those models optimally by leveraging a set of

techniques implemented for (i) validation of the model’s parameters before
production deployment, and (ii) adaptation of the model to the hardware of

the production environment.
o Polyglot model sharing: In addition to the rest of the operations with an AI

model, the AI platform will define a component with the functionalities detailed

in the Platform Use Case 6 “Model Sharing”. It will be in charge of sharing the
model with third parties or other external users in different AI frameworks

(polyglot).

• Green boxes represent the functionalities to handle the data from the data sources:

loading the data according to templates, performing data processing and storing the
data in edge nodes. The following component conforms to the data-related

functionalities of the platform:
o Data Management: This component will conform to the main functionalities

related to managing the data in the platform, allowing to access, view, modify
and/or delete specific data to specific users, and to enable the operations in

the ways explained in Platform Use Case 1 “Data Acquisition and platform”
and Use Case 2 “Data pre-processing”, from a common point of view. Since it
is comprised of a set of functionalities, this component is represented in the

cloud, where the users have access from the Development Environment
component.

o Template Data Library: This component enables the acquisition and pre-

processing of the data according to some pre-defined templates, i.e. granting
the users with pre-existing functionalities and schemes to load and visualize the

data or to do some pre-defined operations over them.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

73 of 108

o Data Acquisition: As defined in Platform Use Case 1 “Data acquisition”, this

component will grant the users of the platform to load a dataset (or connect
to a data stream) from the Data Storage according to some parameters that

can be configured previously. These functionalities can be executed along the
cloud-edge continuum.

o Data pre-processing: Once a dataset is loaded, the data can be processed in

the ways explained in Platform Use Case 2 “Data Pre-processing”, before
feeding this data into an AI model. Similar to the Data Acquisition component,

these operations can be carried out along the cloud-edge continuum.
o Data Storage: This component represents the set of functionalities and

capabilities of the platform to store the data locally, close to the edge. Not
only that, but it also enables access to this data through a set of APIs or
functionalities. The storage of the data in the MLaaS platform is supposed to be

only on the edge, in order to preserve privacy and to prevent disclosing this
data outside the scope of the local deployment.

• Blue boxes represent the data sources of the platform, that send data in batches or a

stream. The following main data sources of the platform have been identified:
o IoT Devices: This represents the data sources of the platform and, possibly,

consumers of the AI models.

o Digital Twins: Similar to the IoT Devices, the Digital Twins may access the AI

models for inference, and they can feed the Data Storage of the platform.

Last, there is a white-marked component named “Development Environment”. This

component will serve as the entry point of the platform for any user where, through a set of
APIs and/or a graphical user interface (GUI), it will grant usage of the rest of the platform

components and functionalities from a common place.

Figure 17: MLaaS Platform Components - Logical view

4.2.6 MLaaS sequence diagrams

In this section, the sequence diagrams of the MLaaS platform are described following the
UML pattern. The main purpose of these diagrams is to link each platform use case with the
platform’s logical view in Figure 17, showing how the actors and components interact

arranged in a time sequence way.

4.2.6.1 Data acquisition

Figure 18 depicts the sequence diagram for the data acquisition platform use case. The
workflow is as follows:

1. The first actor involved in this diagram is the Data Scientist / AI Developer, who

interacts with the Data Acquisition component to perform some preliminary

operations on the dataset to be stored or processed, such as setting the parameters

for the following extraction processes.
2. Once the preliminary parameters are set, the Template Data Library is used to store

this information for later usage when the real data is received. There are two ways of
getting this data: either directly from the Devices or the Digital Twins as a stream, or

from the Data Platforms, which may also be as a stream or in batches.

3. Finally, after the successful extraction of this data, it is stored in the Data Storage

component, which should be local/close to the edge.

Figure 18: Sequence diagram for Data acquisition use case

4.2.6.2 Data pre-processing

Figure 19 depicts the Sequence Diagram for the Data preprocessing platform use case. The
workflow is as follows:

1. The first actor involved in this diagram is the Data Scientist / AI Developer, who

connects to the Development Environment of the platform before accessing tools and

compute resources required for the data pre-processing. The Development
Environment will check if the requester has adequate rights to use the platform.

2. Once authorized in the platform, the Data Scientist / AI Developer will start performing

Exploratory Design Analysis. He will load the data s/he wants to explore from the

platform’s Data Storage. The platform will check if the Data Scientist / AI Developer

has the rights to access these data. The Data Scientist / AI Developer will use data
analysis tools and techniques available in the platform to investigate, analyse, and
summarize the main characteristics of the dataset. This can be an iterative process

where the Data Scientist / AI Developer refines her/his exploration of the data via
several iterations. Once done the Data Scientist / AI Developer will save the updated

data if they have been modified in the process.
3. Once the Data Scientist / AI Developer has completed the Data Exploration, s/he will

perform data wrangling to possibly restructure and transform data into a standard

format. She ornHe will load the data saved in the previous step and will perform data

cleaning and data normalization. Updated data are saved to the data storage.

4. A second actor in this diagram is a third party that could want to use the data from
the platform. This third party will request the data prepared by the Data Scientist / AI
Developer and, if authorized, s/he will download the data from the data storage.

5. The Data Scientist / AI Developer may want to augment the data with external data

from a third-party source. She or He will request the third-party data and, if authorized,

will load the data in the development environment. This can be an iterative process
where the Data Scientist / AI Developer augments the data via several external
sources.

6. Once all data are fine, the Data Scientist / AI Developer will annotate the data to

prepare the raw data to be consumed by the platform for ML training. Example of

annotation would be an image, video, text, audio annotation and 2D/3D Bounding
Box. Annotated data are saved in the data storage for future used for the ML training

process.
7. In the case, the full data are big for long term storage or it is inconvenient to work with

data in full, it could be faster to work with a compact summary. The Data scientist / AI

developer may decide to create a smaller data set with the same structure as the full

dataset. The Data scientist / AI developer will perform data sampling and will store the

sampled data on the data storage for future use for ML training for example.
8. Once the data are ready, the Data scientist / AI developer will split the data into a

training and a test set.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

78 of 108

Figure 19: Sequence Diagram for Data pre-processing use case

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

79 of 108

4.2.6.3 AI Modelling (edge)

The AI modelling process describes the activities following the Data Preprocessing tasks and
focused on the delivery of an ML model which is appropriate for the predictive modelling

problem in question. In IoT-NGIN, the ML modelling process includes the following steps:

• Feature engineering,

• Model selection

• Model training

• Model validation

• Model tuning

• Model saving

The sequence of processes through AI Modelling that takes place in IoT-NGIN is analysed in

the sequence diagram depicted in Figure 20 and Figure 21. The process starts with “feature
engineering”, which refers to the definition of appropriate properties or calculations which

can be used to extract useful insights over the given data set for a given predictive problem.
The Data scientist/AI developer interacts with the Development Environment in order to

define and apply a new feature engineering process over the dataset already acquired and
pre-processed, e.g. via the Data Acquisition and Data Preprocessing processes. The feature

engineering process is handled by Data Management, which undertakes to store the
process in the Template Data Library and apply it on the dataset loaded by the Data
Storage. After Feature Extraction is finished, the feature metadata are stored in the Data

Storage and are also provided back to the Data scientist/AI developer.

The next step includes the processes that lead to model selection, i.e. the model definition,

training and assessment. First, the model hyperparameters are defined and the candidate
model is stored in the Model Library. Then, the Data scientist/AI developer calls model training

via the Development Environment and Model Training loads the model from the Model
Library, as well as the data and features from the Data Acquisition and perform the model
training. The trained model is stored in the Model Library and the result is returned to the Data

scientist/AI developer. Then, validation takes place, after the Data scientist/AI developer’s
call, which is passed to the Model Optimization. This component performs the validation of

the model -taken from the Model Library- and the validation dataset -acquired via Data
Acquisition. The validation result is returned to the Data scientist/AI developer. In case the
validation has failed, s/he performs model tuning and the updated model hyperparameters

are saved in the Model Library.

If validation has been successful, the Data scientist/AI developer selects and saves the

trained model in the Model Library. Now, the model is available for developing an AI method,
using it for inference.

Figure 20: Sequence diagram for AI Modelling use case (1/2)

Figure 21: Sequence diagram for AI Modelling use case (2/2)

4.2.6.4 AI Model deployment

Figure 22 depicts the sequence diagram for the AI Model Deployment use case. The
workflow is as follows:

1. The Data Scientist / AI Developer starts by loading an AI method that has been

previously created.

2. The Data Scientist / AI Developer packages the AI model in a standard format and

with a description. The packaged model is saved in the Model library so it can be
shared and reused.

3. Optionally, The Data Scientist / AI Developer may need to optimize the model for a

specific use case like deployment on low-powered devices or constrained hardware.

Once optimized the model is saved in the Model Library.
4. Once the model is ready to be deployed, the Data Scientist / AI Developer will deploy

the model onto the physical device or the digital twin or another data platform.

Optionally (but preferably), the Data Scientist / AI Developer could use the CI/CD

system of the platform to deploy the model onto the physical device or the digital

twin or another data platform by updating a CI/CD repository associated with the

device, the Digital Twin or the data platform.

Figure 22: Sequence diagram for Model Deployment use case

4.2.6.5 Integration and Model Operation

Figure 23 depicts the Sequence Diagram for the Integration and Model Operation platform
use case. The workflow is as follows:

5. The Data Scientist / AI Developer starts using the Development Environment to create

an AI service. It includes the AI model, loaded from the Models Library, and the AI

Method corresponding to that model. Once the AI model is loaded and the AI
method is prepared, the AI service is created encapsulating them through the
Development Environment.

6. Once an AI service is ready, it is deployed by the Model Deployment component,

which is connected to the corresponding Data Storage. The AI service deployment

takes place, according to the Data Scientist / AI Developer’s input, in the Living Labs

of IoT-NGIN or any client Data Platform.
7. The AI service can be operated in different ways. However, in order to do so, the AI

model needs some input data, which can be obtained either directly from the
Devices or Digital Twins, or via requests to the Data Storage. Similarly, the Devices and

Digital Twins can get the inference either directly from the AI Service, or via reading

the stored inference in the Data Storage.

8. In addition, as the inferences are stored in the Data Storage, the AI model can be

monitored by the Data Scientist / AI Developer and the AI User / Integrator.

9. Last, the AI User / Integrator can make use of the AI Service, similarly, feeding or

consuming the AI model in order to get inferences.

Figure 23: Sequence diagram for Integration and Model Operation use case

4.2.6.6 Model Sharing

The Model Sharing processes ensure that a published model will be available to third parties
for use. Model Sharing in IoT-NGIN is analysed via the processes depicted in the sequence

diagram of Figure 24. First, the Data scientist/AI developer publishes their model via the
Development Environment. Accordingly, the model metadata referring to the sharing

options of the model, such as sharing scope (public/private) and permission, are updated in
the Model Library.

Some Third-party wishing to use a pre-trained model searches for models through the

Development Environment. The request is communicated to the Model Library, which calls
Polyglot Model Sharing for retrieving the models from the Model Library. The call returns the

list of models, potentially filtered by the underlying technology, as there is polyglot support.

Then, the Third-party selects a specific model version, again via the Polyglot Model Sharing.

Last, the Third-party checks out the model, i.e. they download locally the model from the
Model Library.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

87 of 108

Figure 24: Sequence diagram for the Model Sharing use case

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

88 of 108

4.3 Data Storage and Data Management

The European Big Data Value Strategic Research and Innovation Agenda (SRIA), published
in October 2017, sets up the basis for the European vision of the complete data value chain,

proposing the Big Data Value Reference model included in Figure 25. The figure also shows
the mappings with IoT-NGIN MLaaS and the main areas where WP3 will work.

Figure 25: Big Data Value Reference Model

The horizontal components of the reference model are used to identify the foundational

aspects that must be taken into account during the complete data management life cycle
while the vertical elements depict cross-cutting topics and/or non-technical issues. As can
be derived, it also includes relationships with other technologies like IoT, High-Performance

Computing or 5G connectivity which are relevant for the IoT-NGIN project.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

89 of 108

4.3.1 Horizontal concerns

• Data visualisation and user interaction: presentation of the data so that they can be

explored and understood by the final user or by the scientist. Interfaces must be able to

represent huge amounts of multidimensional data in an intuitive fashion addressing the
requirements of the users. Data visualisation techniques include data discovery,

interactive and collaborative interfaces, interactive visual data exploration, etc.

• Data analytics that extract value from the data deluge generated by the digital platforms

and solutions. Analytics cover areas like near-real-time interpretation applying
knowledge-based analysis, models for validation of trustworthiness of datasets and data

sources, advanced business analytics and intelligence, the usage of Machine Learning
to obtain predictive and prescriptive analytics, exploiting the potential of HPC

infrastructures through High-Performance Data Analytics (HDPA) and the creation of
scalable frameworks for quality-aware processing considering batch and streaming
information and distributed architectures.

• Data processing architectures that rely upon hardware infrastructures composed of

heterogeneous devices and resources and which deal also with heterogeneous data,
having to satisfy functional and non-functional requirements for a potentially high number

of users, including components and technologies for processing data-in-motion and at
rest. It considers specifically the need to adapt data processing architectures to
environments including IoT devices and edge computing resources or executing big data

workloads that require exploiting HPC resources or specialised hardware accelerators.

• Data protection, which implies taking care of sensitive information and compliance with

regulations. The application of techniques to protect data privacy must preserve at the

same time the usefulness of the data. Data protection covers topics like usage control,
auditability, scalable anonymisation techniques, dealing with heterogeneous data, etc.

• Data management: semantic interoperability between heterogeneous data types

collected and shared by different sources or platforms, harmonization of data formats

and models, multilingualism, analysis of data quality and robustness, data lifecycle
management and traceability.

• Cloud and High-Performance Computing (HPC): convergence between Big Data and

HPC to make it possible to run more computationally intensive applications including

deep learning workloads. BDVA is exploring this trend utilizing a close collaboration with
ETP4HPC and EOSC.

• IoT, CPS, Edge and Fog Computing. IoT devices and cyber-physical systems have become

a major source of information during the last years thanks to the progressive deployment
of sensors and actuators in a wide variety of application domains. Although many of

these devices are quite constrained in terms of hardware capabilities, some of them
provide also enough computational power to allow running processing tasks directly at
the edge or fog tiers.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

90 of 108

Table 34: Mapping with Big Data Value Reference Model horizontal concerns

4.3.2 Vertical concerns

• Data sharing platforms, industrial/personal: the development of applications and services

exploiting the data from a single individual or company is not enough anymore. In many

use-cases, there are complex ecosystems with multiple stakeholders that establish close

and symbiotic relationships. Also, the information collected from one actor can be
relevant to other ones. Thus, data sharing and trading are going to become essential
enablers for the development of data-driven systems in the near future. For industrial data

platforms, new solutions should be able to guarantee secure and sovereign data
exchange and monetisation. International Data Spaces (IDS) reference architecture has

Big Data Value

Reference Model

IoT NGIN MLaaS platform

IoT, CPS, Edge and Fog

Computing

BDVA is currently pushing a close collaboration with AIOTI for this

area. IoT NGIN will strongly contribute to this area through the

project’s results and the demonstration in the living labs.

The Cloud and High-

Performance

Computing (HPC),

Related to IoT NGIN, HPC computing is not within the scope of

the project.

Data management IoT NGIN MLaaS will not be focused on data management

although some tools will be integrated for data exploration and

analysis.

Data protection IoT-NGIN MLaaS will implement privacy-preserving Federated

Learning, new functionality that will suppose an important step
forward for the training of deep neural networks directly at the

edge without having to exchange personalised datasets
containing sensitive information.

Data processing The project will specifically aim to innovate in this area since IoT

NGIN MLaaS will be demonstrated in several use-cases that
require ingest and process heterogeneous streaming

information coming from IoT devices and smart objects. The
resulting ML models will be optimised and deployed directly at
different levels of the edge tier.

Data analytics IoT-NGIN will address the complete life cycle of Machine

Learning models from the data collection to the final

deployment and inferencing, considering the specific needs of
IoT-based systems and decentralised architectures including

edge computing resources. The project will provide new
mechanisms to enhance the models’ training process, i.e. self-
learning, federated learning.

Data visualisation and

user interaction

Although IoT-NGIN MLaaS may integrate some well-known

libraries and tools for visual data exploration, it is not one of the

priorities of WP3.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

91 of 108

become a de-facto standard for the implementation of interoperable embryonic data
spaces. Regarding personal data platforms, the major barrier is the protection of privacy
and avoiding abuses by companies. Personal data spaces should enable citizens to

maintain complete control of the usage that third parties do of their data, being fully
compliant with the provisions of the General Data Protection Regulation (GDPR).

• Development – engineering and DevOps: Particularization of DevOps environments to the

specific needs of data scientist and data engineers, new testing paradigms to increase
the level of confidence of the resulting systems and to provide enough quality during
operation in production environments. DevOps tools must also guarantee the productivity

of the development and operation teams.

• Standards: BDVA SRIA proposes to rely on already existing standards and also to support

them with the outcomes of the projects under its umbrella and the different task forces,

e.g., ETSI, ISO, IEEE, CNELEC, etc. The Big Data Reference Model is already aligned with
the ISO Big Data Reference Architecture described in ISO IEC JTC1 WG9 20547-3 and it
serves as the common ground for most European research projects that address Big Data

issues.

• Communication and connectivity: 5G is identified as the enabling technology that will

provide communication and connectivity supporting the needs of BigData and AI

applications. In addition, network management and automation could be improved also
with these technologies, for instance, through the usage of machine learning to predict
the status of the infrastructures and implement smart orchestration schemas.

• Cybersecurity and trust: as it happens with the communications area, cybersecurity and

BigData can benefit from each other. On one hand, data and metrics collected from all
systems’ components, interfaces and communications links can be used to detect

threats, attacks and anomalies. Even research has been done about their prediction
which would result in safer and robust systems, which is required in many critical

applications. At the same time, cybersecurity and privacy must be considered holistically
by design, especially in those cases where personal or sensitive data is being collected
and processed. Last but not least, the progress done during the last years in Artificial

Intelligence techniques are enabling also new opportunities for adversarial attacks or
data poisoning. Again, requirements identified concerning trustworthy AI must be

enforced and even crystallized in new legislations and regulations.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

92 of 108

Table 35: Mapping with Big Data Value Reference Model vertical concerns

Big Data Value Reference

Model

IoT NGIN MLaaS platform

Standards Standardisation will be explored through the activities of

WP8: Impact Creation and Outreach.

Communication and

Connectivity

The relationship between IoT NGIN MLaaS and

communication technologies will be done through the
interaction between WP2: Enhancing IoT Underlying

Technology and WP3: Enhancing IoT Intelligence.

Cybersecurity The functionalities and services provided by IoT NGIN

MLaaS will be used also by WP5 to mitigate poisoning
attacks in IoT devices and to detect adversarial attacks.
Federated Learning will be the main asset to innovate in

the level of cybersecurity and trust of IoT-based systems.

Engineering and DevOps for

building Big Data Value

systems

The vision for DevOps and development methodologies

will be explored in collaboration with WP6: IoT‐NGIN

Integration & Laboratory evaluation.

Marketplaces, Industrial

Data Platforms and Personal

Data Platforms

Data sharing between several personal or industrial

platforms is not within the scope of the IoT NGIN project.

Data types BDV reference model identifies 6 types of BigData:

1. Structured data.

2. Time-series data.

3. Geospatial data.

4. Media, image, video and audio.

5. Text including genomics representations

6. Graph data, Network/Web data and Metadata.

IoT NGIN will deal mainly with the first four data types as

has been explained in subsection 3.3. Nevertheless, the
platform will be applicable also to the rest of them.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

93 of 108

5 Machine Learning, Deep Learning and
Reinforcement Learning in IoT-NGIN

So as to enhance the underlying IoT intelligence, in addition to implementing privacy-

preserving federated ML, IoT-NGIN plans to provide innovation in the AI and IoT world from
two more perspectives: (i) enhancing the model’s training processes and (ii) improving the
resulting models automatically. Undoubtedly, this supposes a challenge due to the high

innovation expected in linking AI methodologies with the underlying IoT technologies. Even
though the state-of-the-art concerning these two topics is already stocked in solutions, it is

significantly hard to find real-world implementations. In this regard, throughout this section,
firstly, it will be provided with an overview of Machine Learning techniques and, secondly, it

will be described how the IoT-NGIN project plans to provide a solution to the enhancement
of the intelligence over the IoT landscape, considering the use case needs described in
Section 3 and the current state-of-the-art solutions, that will help in the development of the

MLaaS components in the upcoming months.

5.1 Overview and state-of-the-art of Machine

Learning techniques

Machine Learning is a scientific discipline within Artificial Intelligence that allows creating

systems that learn automatically from data. Machine Learning algorithms can analyse large
datasets, identify patterns and extract knowledge that can be used then for different tasks.

Two main groups of ML algorithms can be identified depending on the type of learning:
supervised and unsupervised.

Supervised algorithms train models relying on labelled datasets, including features (i.e. input

attributes) and labels (i.e. the output that will be predicted [12], [13]. Since the difference
between the real value and the prediction can be obtained, it is possible to minimize the

error. The models resulting from the training process are then able to obtain forecasts for new
values. Supervised machine learning comprises classification where the goal is to predict to

which category a new sample belongs, and regression, where continuous variables must be
used as input. Examples of supervised learning algorithms are linear or logistic regression,
decision trees, random forests, support vector machines (SVMs), Naïve Bayes and neural

networks.

Unsupervised algorithms infer relationships between input data [14], [15]. Clustering

algorithms are a clear example of this method that group homogeneous elements in a set
of clusters so that the degree of correlation between members of the same cluster is high

and low inter-cluster. The most common algorithms are k-means clustering, PCA (principal
component analysis), hierarchical clustering analysis (HCA), probabilistic clustering based on
Gaussian Mixture Models (GMMs) or autoencoders.

A variant of these two main groups is semi-supervised ML, where algorithms learn from

datasets that are partially labelled [16], [17]. This, it is possible to reduce the effort and cost

of the labelling, which is one of the main barriers for the development of some ML-based
applications that need to deal with the huge amount of annotated data. Two main
approaches can be also found within semi-supervised ML: semi-supervised classification

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

94 of 108

which enhances supervised classification and semi-supervised clustering for obtaining better-
define clusters than just using pure supervised classification.

Deep Learning is an evolution of ML technologies that replicate the working principles of the

human brain. For that reason, its models are based on neural networks that can work with
multidimensional data and execute complex tasks with high accuracy on top of Graphical

Processing Units (GPUs). For instance, Convolutional Neural Networks (CNNs) are commonly
used for computer vision, while Recurrent Neural Networks (RNNs) have demonstrated great
potential in speech recognition. Transformers are also becoming more and more popular

due to the capacity to solve problems that imply the transformation of an input sequence to
an output one.

Reinforcement learning systems are based on algorithms that learn how to reach a certain

goal through positive or negative incentives defined by the designer, following a cause and

effect approach [18]–[20]. The advantage of RL is that it does not need to collect training
datasets in advance, but the resulting models can learn in an online way.

Transfer Learning (TL) aims to extract the knowledge from one or more source tasks and

applies the knowledge to a target task. It is a solution to solve problems for which the
collection of high-quality, complete, and accurate training and validation datasets is not

possible. Thus, instead of training a machine learning model from scratch, an already
available model pre-trained for another task is reused with a smaller and low-quality dataset

[21].

In addition, a comparison between these Machine Learning techniques is done in Table 36,

which tabulates the main differences and challenges that each technique deals with.

Table 36: Matrix comparing different ML techniques

ML Technique Reinforcement Learning Online Learning /

Incremental Learning

Batched Machine Learning / Deep Learning

Type of

learning

By rewards Supervised (*)12 Supervised Unsupervised Semi-supervised

High-level

definition

Algorithms that aim to

maximize the rewards

obtained by an agent
encouraged to take
actions in an

environment

Algorithms that are able to

adapt to new data

sequentially and which
compute the best model at
every step

Algorithms that

learn to map the

input data to the
outputs (classes or
values)

Algorithms that are

able to learn the

data patterns without
knowledge of the
labels or values

Algorithms that are

able to learn the

patterns of the
data against a few
labelled samples

and a large
number of

unlabelled ones

Learning

procedure

In real-time when a

reward is received after
the action was
performed

New adaptations are done

incrementally and in real-
time as new data arrives

A pre-defined

dataset is fit entirely
into an AI model
until it is able to infer

the classes or values
as best as possible

A pre-defined dataset is fit entirely into an

AI model until it is able to discover the
output

Expected

input data

over time

Context and reward after

an action
High variation Low variation

Main

drawbacks

Requires a very specific

and active operational

environment to obtain
good results, depending
directly on the rewards

received

Adaptations to new data

need to be controlled: new

adaptations may lead to
catastrophic forgetting; too
drastic adaptations may

lead to bad results

On the one hand, it needs a large amount of data to cover most

of the data variation spectrum. On the other hand, it may lead to

overfitting trying to cover all this spectrum. It may also lead to
bad results when the training data is not representative enough
or when it has a big bias towards one (or some) of the outputs

12 (*) Could be unsupervised in some cases

5.2 Privacy-preserving Federated Machine

Learning in the MLaaS platform

Traditional machine learning approaches demand the training data be centralized on one

machine or central server. For this purpose, those approaches collect a vast amount of data
from devices (smartphones, laptops, IoT devices) and transfer it to central servers for training.

However, data owners are not often willing to share their data, because it may contain
sensitive information, which is subject to the GDPR. Thus, data privacy is a major concern. To

address this problem, Federated Learning (FL) is introduced by Google [22], which is a
distributed machine learning approach.

FL aims to build and train global models based on training datasets that are distributed across

different remote devices while avoiding data leakage. Thus, as opposed to traditional
approaches, FL inherently enhances privacy and security as the data is never processed on

central servers, decoupling the machine learning process from the data sources.

In practice, FL solutions train an initial, generic machine learning model in a central server,

which is a baseline to start with. Afterwards, the server sends this model to the user’s devices,

where the local copy of the model is trained using its own data. Then, the updated model
parameters are sent back to the central server and the global model is updated. Therefore,

FL approaches are capable of learning robust models from a huge amount of distributed
data across devices without transferring and/or processing it on a central server.

FL approaches can be applied in several application areas, in which data privacy is

required, such as health care, telecommunications as well as IoT networks. The term devices
are referred to entities that are participated in the communication network of federated

learning. Smartphones can be viewed as devices that commonly used in the FL approach,
to jointly learn users’ behaviour, while protecting their personal privacy by not sharing their

data. The application in [23], learns a predictor in a large-scale smartphone network based
on users’ text data. Organizations/institutes can also be treated as devices in federated

learning. For instance, hospitals are organizations that private data of patients, that should
remain local. FL architecture presented in [24] can reduce privacy leakage and implement
private learning between the different organizations. Additionally, FL can also be used on IoT

networks to ensure privacy, enabling on-device machine learning solutions without the need
to store private data from end devices to a central server.

Federated learning approaches can be categorized based on the distribution

characteristics of the data [25]. The instances and the features of the data may differ among

parties, so FL can be distinguished in horizontal FL, vertical FL and federated transfer learning,
based on the way that data is distributed among parties in the feature and sample space.
Specifically, at horizontal FL approaches the datasets to share the same features, but they

differ in instances. While, vertical FL can be applied when the datasets share the same
instances, but they present differences in features. Lastly, Federated Transfer Learning is

applicable when the datasets differ in instances and features, with only a small portion of the
features and instances overlapped.

Initially, the FL was introduced for mobile and edge devices applications. Those FL settings

are referred to as “cross-device” [26]. This FL setting is applied in many consumer digital
products. For example, Google widely uses FL in the Gboard mobile keyboard [23], [27], [28],

while Snips applies cross-devices FL for hotword detection [29]. Additionally, the great interest
in FL has led to applications, which might involve a small number of relatively reliable clients

to train a model. Specifically, these FL settings are mentioned as “cross-silo” and they are
applicable when several organizations or companies share and train a common model,
without sharing the data directly due to confidentiality and legal constraints. A cross-silo

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

97 of 108

setting can also be employed within a single company/organization when the data cannot
be centralized between different geographical regions. Cross-silo applications have been
explored in different domains, including drug discovery [30] and detection vaccine adverse

event mentions [31]. Regarding the data partitioning, the cross-device setting is a horizontal
FL approach, while the cross-silo can be either horizontal or vertical FL approach.

In the case of centralized FL, a central server orchestrates all the necessary steps of the

algorithm and coordinates the participating clients during the learning process. This central
server is responsible to aggregate the received model updates as well as sending model

updates to nodes. In some more collaborative learning cases, the use of a powerful and
reliable central server might not always be available and desirable [32]. A potential

bottleneck of centralized FL is the communication traffic jam that can be occurred since all
the nodes must communicate with the central node [33].

This bottleneck can be addressed by the decentralized federated learning approaches, in

which individual nodes can communicate with each other to obtain the global model. The
key difference is that in decentralized FL the communication with the central server is

replaced by peer-to-peer communication between individual clients. The topology of
decentralized FL techniques is represented as a connected graph, where the nodes are the

clients and the edges are the communication channels between two nodes. Thus, devices
only communicate with neighbours. Blockchain can be characterized as a popular

decentralized platform. Authors in [34] propose a decentralized FL architecture based on
blockchain for global model storage as well as model update exchange. Additionally, [35]
presents a blockchain-based privacy-preserving FL platform for IoT devices, which trains an

ML model at customers’ data from various home appliances. Decentralized FL appears to
outperform centralized FL, by reducing the high communication cost of a network with a

central server.

Although FL enables on-device machine learning, it does not itself guarantee security and

privacy. The fact that the private data are not shared with the central server is an advantage
without doubts, still, there are ways to extract private information from data. After the shared
model is trained at the user’s device based on its own private data, the trained parameters

are sent to the central server. Thus, it is possible to extract information about the private data
from those trained parameters. For example, [36] demonstrates that it is possible to extract

sensitive text patterns, like the credit card number, from a recurrent neural network that is
trained on users’ data. Therefore, additional methodologies are required to protect data
from attack strategies, which are subject to privacy-preserving mechanisms on FL. The

approaches that can be applied in FL for data protection are differential privacy,
homomorphic encryption and secure multiparty computation.

Differential Privacy (DP) is a method that randomizes part of the mechanism’s behaviour to

provide privacy [37], [27]. For the FL scenario, a mechanism is considered the learning

algorithm. The motivation behind adding randomness into a learning algorithm is to make it
impossible to reveal behaviour patterns that correspond either to the model and the learned
parameters or to the training data. Thus, the DP provides privacy protection against a wide

range of privacy attacks (e.g., differencing attack, linkage attacks) [28]. The method of
adding noise can result in great privacy but may compromise accuracy, therefore there is a

trade-off between using differential privacy and achieving a high level of model accuracy.
However, the authors in [29] present a method, which does not sacrifice accuracy to privacy.

Secure Multiparty Computation (SMC) is a well-defined cryptographic technique that allows

a number of mutually distrustful parties to jointly compute a function while preserving the
privacy of the input data [38], [25]. In the case of ML applications, the function can be the

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

98 of 108

model’s loss function at training, or it could be the model itself at inference. The challenge
of applying SMC on a large-scale distributed system is the communication overhead, which
increases with the number of participated parties.

Homomorphic encryption [39] secures the learning process by applying computations (e.g.,

addition) on encrypted data. Specifically, an encryption scheme is characterized as

homomorphic, when standard operations can be applied directly to the cypher data, in
such a way that the decrypted result is equivalent to performing analogous operations to
the original encrypted data [40], [41]. For machine learning methods, homomorphic

encryption can be applied when training and inference are performed directly on
encrypted data. In scenarios, where large mathematical functions are implemented to

cypher text space, the remarkable properties of homomorphic encryption schemes confront
several limitations, related to the encryption performance.

Several open sources frameworks and libraries have been developed to facilitate the

widespread use of FL in machine learning. Google’s TensorFlow Federated13 provides
functionalities with a comprehensive set of features, which can help to perform research and

to implement FL models. Another library is PySyft, which was introduced by OpenMined14.
PySyft is suitable for research in FL and allows the users to perform private and secure Deep

Learning. PySyft is also used in PyGrid15, a peer-to-peer platform for federated learning and
data privacy, which can be used for private statistical analysis on the private dataset as well

as for performing FL across multiple organization’s datasets. Additionally, FATE16 (Federated
AI Technology Enabler) framework supports FL architectures and secure computation of
various machine learning algorithms.

5.3 Enhancing Machine Learning techniques in IoT-

NGIN

According to IoT-NGIN living labs, there are three major types of data to be handled by the

platform: images data, structured data and time-series data, but other types of data could
be also expected in future iterations. From the IoT-NGIN living labs requirements of the

Artificial Intelligence techniques to be exploited, we can extract the high-level results
collected in Table 37. Considering these results, as the data is not only coming in predefined

datasets or batches of known size, but also as a stream, it is reasonable, then, to investigate
the machine learning techniques that have been proved to work well with these types of
data, and to define how they can be integrated into a platform such as the one proposed

in this project. As explained previously, the implementations to be made following two main
patterns: enhancing the training procedures and improving the resulting models

automatically once deployed. In each pattern there are different kinds of techniques, some
of them have already been overviewed in the previous section, so only how they would be

managed in the MLaaS platform will be tackled, but other techniques, such as the
optimization of the AI models, are contemplated in the following sections.

13 https://www.tensorflow.org/federated
14 https://www.openmined.org/
15 https://blog.openmined.org/what-is-pygrid-demo/
16 https://fate.fedai.org/

https://www.tensorflow.org/federated
https://www.openmined.org/
https://blog.openmined.org/what-is-pygrid-demo/
https://fate.fedai.org/

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

99 of 108

Table 37: High-level features of IoT-NGIN living labs relevant to Artificial Intelligence

Living lab / Use Case Data Type(s) Outcome type(s) ML Techniques

Smart City

UC1

Structured

Images

Timeseries

Prediction

Multi-class

classification

Multidimensional

regression

Unsupervised

ML/DL

Self-Learning

(Auto-labelling)

UC2

Multi-class

classification

Multidimensional

regression

Unsupervised

ML/DL

Smart

Agriculture

UC4

Images

Structured

Classification

Unsupervised

ML/DL

Federated

learning

UC5

Visual Mapping

and Trajectory

prediction

Binary

Classification

Unsupervised

ML/DL

Computer Vision

Techniques

Industry 4.0

UC6
Structured

Images
Prediction

Federated

Learning

UC7
Structured

Images
Classification

Federated

Learning

UC8
Structured-time-

series

Binary

classification

Anomaly

detection

Supervised ML/DL

Federated

learning

Smart

Energy

UC9

Structured-time-

series

Classification

Prediction

Supervised ML/DL

Continuous/online

learning

UC10 Prediction

Supervised ML/DL

Federated

learning

Online learning

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

100 of 108

5.3.1 Enhancing training processes

Enhancing the training of the AI models can be accomplished from different standpoints.

Although one of the most relevant factors, when performance improvement matters, is the
selection of the underlying ML or DL algorithm, one cannot forget about the actual training

process. It may also be enhanced through different procedures, like using hardware
capabilities, such as using GPUs or other novel ML accelerators, or by improving the actual
software execution of the algorithm by means of quantization or binarization techniques.

Regarding the algorithm selection, the most influential factors to select one are: (i) the type

of the training data and (ii) the type of outcome expected (classification, forecasting,

anomaly detection). As for time series data, historically there have been applied different
algorithms or network architectures depending on the task at hand [42]. The state-of-the-art

shows that Recurrent Neural Networks (RNN), such as Long short-term memory (LSTM)
networks [43], have proven to be one of the most effective architectures for time series data
since they are designed to handle an internal state (memory) that grants them to understand

the temporal connections between consequent inputs. Nevertheless, there has also been a
success in using other architectures such as Deep Belief Networks, especially for forecasting

tasks, or Convolutional Neural Networks (CNN), especially for classification tasks. In addition,
for anomaly detection tasks, Autoencoders networks have had quite a success in fitting
temporal data. Moreover, the diversity of time series datasets, as reported for instance in [44],

shows that it is not possible to map only one kind of neural network with a specific type of
time series dataset. Thus, in the context of MLaaS platforms that want to handle this kind of

data, it is best to provide tools to build and test several kinds of neural network architectures,
granting the user the freedom to select and try the one that could fit the type of the dataset.

For that, there already exist several AI frameworks that already grant usage of these deep
learning algorithms, such as the well-known Tensorflow [45] and PyTorch [46] frameworks.
With respect to video/image data, neural network architectures have also been applied

historically, and with a very high ratio of success. Undoubtedly, CNNs are one of the most
applied architectures for this kind of issue, but the state-of-the-art shows that there exist lots

of architectures that may be applied with results just as good as CNN’s. What’s more, a
common approach is to combine different types of neurons and other kinds of methods such

as pooling [47], which allows selecting the best representations of the convolutional neurons
output, or batch normalization [48], that reduces the complexity of the output neurons with
the intention of avoiding overfitting [49]. AI Frameworks like Tensorflow and PyTorch already

provide tools to execute this kind of techniques on video/image data.

Moreover, as stated in [50] and other similar studies, the particular design of the circuits that

execute the artificial intelligence operations is shown to affect the performance in terms of
training and inference speed. Graphical processing units (GPU) have been historically one

of the hardware devices selected to improve the training speed of AI models, due to their
effectiveness in parallel operations. However, nowadays there exist other kinds of hardware
devices that may perform similarly or even better; for instance: Google’s Tensor Processing

Unit (TPU)17. What’s more, using those devices for executing the ML tasks does not suppose
major effort from the point of view of the AI Developer, as most of the AI frameworks already

offer seamless integration with this kind of devices. Thus, the capabilities of an MLaaS platform
would clearly be boosted when it grants the usage of these hardware accelerators with the

17 https://cloud.google.com/tpu/docs/tpus

https://cloud.google.com/tpu/docs/tpus

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

101 of 108

supported AI frameworks. This will be considered for the developments to be carried out in
the upcoming months of the project.

5.3.2 Strengthening the performance of the ML
models deployed

Some IoT environments need their applications to tailor their performance at runtime,
according to the variation of their data over time. Traditionally, data for training AI models

has always been processed in batches, so the model has been aware of all the training data
when computing the loss during the learning process. However, there exists also the case in

which the data comes in a stream and, what is more, the variance of the data might be
changing over time. This last scenario, which fits for instance in Twin Smart Cities Living lab or
in the Smart Energy Living Lab, is not suitable for traditional machine learning techniques

since this variation of fresh data makes pointless computing the loss on all the previous data,
as it is not representative of the current data anymore. Just as the enhancement of the

training procedures, there exist different ways to adapt the operational performance of the
AI models, once they have been deployed, to the changes in their IoT environment. One

approach to deal with this issue may be the so-called self-learning methodology, in which
the AI models adapt themselves dynamically through different kinds of algorithms.

One relatively common approach to adapt models to changes is the Incremental or

continuous learning paradigm, where input data (a variable batch of samples) is
continuously processed by the AI model without forgetting the already obtained knowledge

and without repeating the whole learning process. However, not every machine learning
algorithm can apply incremental learning [51] since some of them, especially some neural

networks, tend to forget past patterns as new data arrives, a problem known as catastrophic
forgetting [52]. Despite this, there has been a success in applying some machine learning
procedures for incremental learning with streaming and time-series data, as in [53]. In

addition, in this incremental learning context, automatic data labelling could be applied.
With this technique, new data is processed by the model as it arrives, getting an initial

classification for it, so that it can be used later on as labelled training data in subsequent
training stages. Ideally, the confidence of the classification of each new sample is stored
along with the sample, enabling a human annotator to verify the labels of the data in order

to prevent using errors in the new training step. This procedure has the advantage of
accelerating the initial data labelling phase, but it also has the inconvenience of the model

being low accurate at the firsts iterations and, thus, producing some errors at the firsts
inferences that must be fixed by humans annotators.

Another approach to tackle the continuous adaptation of AI models is the machine learning

technique named online (machine) learning, introduced in [54]. The main difference with
other machine learning approaches is that the training examples are processed one at a

time, which means that the loss is computed against only that sample. In the context of
streaming data, each sample is processed by the algorithm as it arrives and, afterwards, the

instance is discarded (not used anymore). There already exist some implemented algorithms
to perform the online learning methodology, such as the Online Gradient Descent [55], or

the updated version Adaptive Online Gradient Descent [56]. Despite the existence of these
open-source implementations for this paradigm, they are not as extended as the other
algorithms mentioned in the previous section and, what’s more, they have not been

integrated with existing AI frameworks, but rather isolated implementations to fit one specific
scenario.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

102 of 108

Lastly, another state-of-the-art approach to strengthen deployed AI models is the

reinforcement learning paradigm. In this context, an agent learns the behaviour of a specific
scenario through dynamic interactions, in which each movement (inference) of the agent

receives a reward representing how good was this movement according to the current
context of the scenario. More specifically, every interaction of the agent starts with an input

of the current state of the environment and, then, the agent chooses an action to generate
as output. This action changes the state of the environment, and the value of this change,
which is computed as a scalar according to a pre-defined formula, is fed back to the agent

as a reinforcement signal [18]. In order for this agent to fit well into the scenario, it must
choose actions that increase the sum of values of these reinforcement signals. Since the

reinforcement learning paradigm differs from supervised learning in that it is not told which
action would be best to take to obtain the best rewards in the long-term, it is key for the

agent to receive rewards actively from the environment to fit well with it. This means that this
methodology needs a very specific context in which this scenario of dynamic action-reward
can take place actively. Usually, the reinforcement learning problem is phrased as a Markov

Decision Process (MDP), but there exist different algorithms that do the actual
implementation [19].

As we have shown, and considering IoT-NGIN’s deliverable 1.1 [2], the self-learning context

fits well with some of the Living Labs descriptions. Thus, the IoT-NGIN project, and more

specifically WP3: Enhancing IoT Intelligence, will try to bring innovation also from this
perspective along with the Federated Learning framework, by designing and implementing
a solution that will integrate the streaming data from the Living Labs into the MLaaS platform,

and will execute incremental learning, online learning and/or automatic data labelling
algorithms on selected pilots suitable for them.

However, because it is difficult to find real-world implementations outside the academic field

that are integrated with most famous AI frameworks and, especially, due to this necessity for

a suitable action-reward scenario, the implementation of the reinforcement learning
paradigm in IoT-NGIN’s project will be studied in the next months, considering the Living Labs
requirements progression and use cases evolution.

In addition to making use of innovative machine learning techniques, the performance of

the AI models can be strengthened in other ways. One of these means is the acceleration

of the operations executed by the models, especially when the operational environment is
at the edge of the network. Here, the constraints of the hardware that is in charge of
executing those AI operations must be taken into consideration. Due to these constraints,

some IoT environments cannot handle large AI models, since the computational and
memory loads that are required to execute them might be too heavy for the existing

hardware, leading to a large response time, or even no response at all. For this particular
obstacle, there exist techniques that compress the AI models into lighter versions, which are

more feasible for low-powered hardware. Examples of these techniques are, for instance:
Channel pruning [57], which removes some of the weights of the layers of the AI model;
activation function compression [58], which reduces the size of the activation layers of the

neural networks; or model quantization [59], which reduces the floating-point operations of
the AI model to integer-only arithmetic. These specific approaches have been already

developed for some AI frameworks, such as the TensorFlow Lite18 SDK, which makes it possible
to be integrated into IoT-NGIN’s MLaaS platform in the upcoming months.

18 https://www.tensorflow.org/lite

https://www.tensorflow.org/lite

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

103 of 108

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

104 of 108

6 Conclusions
This document has presented the work related to all WP3: Enhancing IoT Intelligence tasks

until the ninth month of the project. It is clear that a focus has been put into Task 3.1 since it
deals with the development of the MLaaS platform. However, results of the other tasks are

included within the design of the platform itself and within the study of IoT-NGN living labs.
This report will not only feed the upcoming activities of WP3 tasks, but also other tasks of the
project that benefit from any Artificial Intelligence activity.

Overall, the Machine Learning as a Service platform has been designed, and its main

functionalities have been detailed through several use case diagrams and sequence

diagrams. In addition, a logical view of the platform has been provided, in which the relations
and interconnetions between the components of the platform have been explained. In

addition to this, the federated learning framework to be implemented over the platform has
been overviewed. Furthermore, the machine learning techniques to be implemented and
applied on the living labs have been analyzed, in which a focus has been put on techniques

related to enhancing the training processes and related to improving the performance of
the AI models deployed.

Although innovating in the field of IoT Intelligence supposes a great challenge, this

deliverable contributes to the state-of-the-art with a considerable effort to facilitate the

application of Machine Learning techniques, including deep learning, self learning and
reinforcement learning, in the next generation of IoT. Upcoming deliverables of the work
packge will boost these efforts by showing how the implementation of the relevant

techniques fit into real-world scenarios, solving complex problems related to IoT.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

105 of 108

7 References

[1] P. B. Kruchten, “The 4+1 View Model of Architecture.”

[2] IoT-NGIN, “D1.1: Definition analysis of use cases and GDPR Compliance,” 2021.

[3] R. Bohm and G. Digital, “Industrial Internet of Things for Developers,” 2018.

[4] L. D. D. C. Papis.io, “Machine Learning Platforms,” 2019. Accessed: Jun. 10, 2021.

[Online]. Available:

https://assets.ctfassets.net/nubxhjiwc091/48kgJWJ6s6p7QZWKOsKWhH/c92e2a2a1e8
5f6ef44d1bd19d012bf8e/Machine_Learnings_Platform_Digital_Catapult_paper.pdf.

[5] “Gartner Magic Quadrant for Data Science and Machine Learning Platforms,” ID

G00385005. Feb. 11, 2020.

[6] M. Ribeiro et al., “MLaaS: Machine Learning as a Service,” 2015. Accessed: Jun. 10,

2021. [Online]. Available:
https://ir.lib.uwo.ca/electricalpubhttps://ir.lib.uwo.ca/electricalpub/86.

[7] C. Prabhu, Fog Computing, Deep Learning and Big Data Analytics-Research

Directions. Springer, 2019.

[8] S. Yi, Q. Li, and C. Li, “A Survey of Fog Computing: Concepts, Applications, and Issues

A Survey of Fog Computing: Concepts, Applications and Issues,” dl.acm.org, vol. 2015-

June, pp. 37–42, Jun. 2015, doi: 10.1145/2757384.2757397.

[9] R. Philipp, A. Mladenow, C. Strauss, and A. Völz, “Machine Learning as a Service-

Challenges in Research and Applications,” dl.acm.org, vol. 11, pp. 396–406, Nov. 2020,

doi: 10.1145/3428757.3429152.

[10] H. Tanuwidjaja, R. Choi, S. Baek, K. K.-I. Access, and undefined 2020, “Privacy-

Preserving Deep Learning on Machine Learning as a Service—a Comprehensive
Survey,” ieeexplore.ieee.org, Accessed: Jun. 10, 2021. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9194237/.

[11] A. Qayyum, A. Ijaz, M. Usama, W. Iqbal, … J. Q.-F. in big, and undefined 2020,

“Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine

Learning Security,” ncbi.nlm.nih.gov, Accessed: Jun. 10, 2021. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931962/.

[12] M. Kuhn, K. Johnson, and others, Applied predictive modeling, vol. 26. Springer, 2013.

[13] T. Hastie, R. Tibshirani, and J. Friedman, “Overview of supervised learning,” in The

elements of statistical learning, Springer, 2009, pp. 9–41.

[14] Z. Ghahramani, “Unsupervised learning,” in Summer School on Machine Learning, 2003,

pp. 72–112.

[15] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in

Proceedings of ICML workshop on unsupervised and transfer learning, 2012, pp. 37–49.

[16] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synth. Lect. Artif.

Intell. Mach. Learn., vol. 3, no. 1, pp. 1–130, 2009.

[17] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning (chapelle, o. et al.,

eds.; 2006)[book reviews],” IEEE Trans. Neural Networks, vol. 20, no. 3, p. 542, 2009.

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

106 of 108

[18] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” J.

Artif. Intell. Res., vol. 4, pp. 237–285, May 1996, doi: 10.1613/jair.301.

[19] C. Szepesvári, “Algorithms for reinforcement learning,” in Synthesis Lectures on Artificial

Intelligence and Machine Learning, Jul. 2010, vol. 9, pp. 1–89, doi:
10.2200/S00268ED1V01Y201005AIM009.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[21] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J. Big data,

vol. 3, no. 1, pp. 1–40, 2016.

[22] “Google AI Blog: Federated Learning: Collaborative Machine Learning without

Centralized Training Data.” https://ai.googleblog.com/2017/04/federated-learning-

collaborative.html (accessed Jun. 29, 2021).

[23] A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” Nov. 2018,

Accessed: Jun. 07, 2021. [Online]. Available: http://arxiv.org/abs/1811.03604.

[24] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu, “LoAdaBoost: loss-based AdaBoost

federated machine learning with reduced computational complexity on IID and non-

IID intensive care data,” PLoS One, vol. 15, no. 4, Nov. 2018, Accessed: Jun. 07, 2021.
[Online]. Available: http://arxiv.org/abs/1811.12629.

[25] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and

applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, Jan. 2019, doi:

10.1145/3298981.

[26] P. Kairouz et al., “Advances and Open Problems in Federated Learning,” Found.

Trends® Mach. Learn., vol. 14, no. 1, p. 16, Dec. 2019, Accessed: May 31, 2021. [Online].

Available: http://arxiv.org/abs/1912.04977.

[27] M. Abadi et al., “Deep Learning with Differential Privacy,” Proc. ACM Conf. Comput.

Commun. Secur., vol. 24-28-October-2016, pp. 308–318, Jul. 2016, doi:
10.1145/2976749.2978318.

[28] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Found.

Trends Theor. Comput. Sci., vol. 9, no. 3–4, pp. 211–487, 2013, doi: 10.1561/0400000042.

[29] Y. Wang, C. Si, and X. Wu, “Regression Model Fitting under Differential Privacy and

Model Inversion Attack.”

[30] Z. Xiong et al., “Facing small and biased data dilemma in drug discovery with

federated learning,” bioRxiv, p. 2020.03.19.998898, Mar. 2020, doi:
10.1101/2020.03.19.998898.

[31] P. Kanani, V. J. Marathe, D. Peterson, R. Harpaz, and S. Bright, “Private Cross-Silo

Federated Learning for Extracting Vaccine Adverse Event Mentions,” Mar. 2021,
Accessed: Jun. 07, 2021. [Online]. Available: http://arxiv.org/abs/2103.07491.

[32] P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized Collaborative Learning

of Personalized Models over Networks,” PMLR, Apr. 2017. Accessed: May 31, 2021.

[Online]. Available: http://proceedings.mlr.press/v54/vanhaesebrouck17a.html.

[33] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can Decentralized

Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel

Stochastic Gradient Descent,” Adv. Neural Inf. Process. Syst., vol. 2017-December, pp.
5331–5341, May 2017, Accessed: Jun. 07, 2021. [Online]. Available:

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

107 of 108

http://arxiv.org/abs/1705.09056.

[34] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A Blockchain-based

Decentralized Federated Learning Framework with Committee Consensus,” IEEE

Netw., vol. 35, no. 1, pp. 234–241, Apr. 2020, doi: 10.1109/MNET.011.2000263.

[35] Y. Zhao et al., “Privacy-Preserving Blockchain-Based Federated Learning for IoT

Devices,” IEEE Internet Things J., vol. 8, no. 3, pp. 1817–1829, Jun. 2019, Accessed: Jun.
07, 2021. [Online]. Available: http://arxiv.org/abs/1906.10893.

[36] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The Secret Sharer: Evaluating and

Testing Unintended Memorization in Neural Networks,” Proc. 28th USENIX Secur. Symp.,
pp. 267–284, Feb. 2018, Accessed: Jun. 07, 2021. [Online]. Available:

http://arxiv.org/abs/1802.08232.

[37] F. McSherry and K. Talwar, “Mechanism Design via Differential Privacy,” Apr. 2008, pp.

94–103, doi: 10.1109/focs.2007.66.

[38] C. Zhao et al., “Secure Multi-Party Computation: Theory, practice and applications,”

Inf. Sci. (Ny)., vol. 476, pp. 357–372, Feb. 2019, doi: 10.1016/j.ins.2018.10.024.

[39] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “ON DATA BANKS AND PRIVACY

HOMOMORPHISMS,” 1978.

[40] C. Gentry, “A FULLY HOMOMORPHIC ENCRYPTION SCHEME,” 2009.

[41] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-Preserving Deep

Learning via Additively Homomorphic Encryption,” IEEE Trans. Inf. Forensics Secur., vol.
13, no. 5, pp. 1333–1345, May 2018, doi: 10.1109/TIFS.2017.2787987.

[42] J. Gamboa, “Deep Learning for Time-Series Analysis.”

[43] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9,

no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

[44] H. Anh Dau et al., “The UCR Time Series Archive.” Accessed: May 31, 2021. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/8894743/.

[45] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” Proc. 12th

USENIX Symp. Oper. Syst. Des. Implementation, OSDI 2016, pp. 265–283, May 2016,
Accessed: May 31, 2021. [Online]. Available: http://arxiv.org/abs/1605.08695.

[46] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning

Library,” 2019. Accessed: May 31, 2021. [Online]. Available:

https://arxiv.org/abs/1912.01703.

[47] Y.-L. Boureau, J. Ponce, J. P. Fr, and Y. Lecun, “A Theoretical Analysis of Feature Pooling

in Visual Recognition,” 2010. Accessed: May 31, 2021. [Online]. Available:

https://www.di.ens.fr/willow/pdfs/icml2010b.pdf.

[48] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help

optimization?,” in Advances in Neural Information Processing Systems, 2018, vol. 2018-
December, pp. 2483–2493.

[49] D. M. Hawkins, “The Problem of Overfitting,” Journal of Chemical Information and

Computer Sciences, vol. 44, no. 1. American Chemical Society , pp. 1–12, Jan. 2004,
doi: 10.1021/ci0342472.

[50] W. J. Dally et al., Hardware-Enabled Artificial Intelligence. .

H2020 -957246 - IoT-NGIN

D3.1 - Enhancing Deep learning/reinforcement learning

108 of 108

[51] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual learning,” Apr. 2019,

Accessed: May 31, 2021. [Online]. Available: http://arxiv.org/abs/1904.07734.

[52] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An Empirical

Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks,” 2nd Int.
Conf. Learn. Represent. ICLR 2014 - Conf. Track Proc., Dec. 2013, Accessed: May 31,

2021. [Online]. Available: http://arxiv.org/abs/1312.6211.

[53] S. Ahmad, A. Lavin, S. Purdy, Z. A.- Neurocomputing, and undefined 2017,

“Unsupervised real-time anomaly detection for streaming data,” Elsevier, Accessed:

May 31, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231217309864.

[54] G. Widmer and M. Kubat, “Learning in the presence of concept drift and hidden

contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, Apr. 1996, doi:

10.1023/A:1018046501280.

[55] M. Zinkevich, “Online Convex Programming and Generalized Infinitesimal Gradient

Ascent.” Accessed: May 31, 2021. [Online]. Available:

https://www.aaai.org/Papers/ICML/2003/ICML03-120.pdf.

[56] P. Bartlett, E. Hazan, and A. Rakhlin, “Adaptive Online Gradient Descent,” EECS Dep.

Univ. California, Berkeley, Jun. 2007, Accessed: May 31, 2021. [Online]. Available:
https://repository.upenn.edu/statistics_papers/163.

[57] Y. He, “Channel Pruning for Accelerating Very Deep Neural Networks.” Accessed: May

31, 2021. [Online]. Available:
http://openaccess.thecvf.com/content_iccv_2017/html/He_Channel_Pruning_for_IC

CV_2017_paper.html.

[58] G. Georgiadis, “Accelerating Convolutional Neural Networks via Activation Map

Compression.” Accessed: May 31, 2021. [Online]. Available:
https://ai.intel.com/nervana-nnp/.

[59] B. Jacob et al., “Quantization and Training of Neural Networks for Efficient Integer-

Arithmetic-Only Inference.” Accessed: May 31, 2021. [Online]. Available:
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Tr

aining_CVPR_2018_paper.html.

	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended Audience
	1.2 Relations to other activities
	1.3 Document overview

	2 Artificial Intelligence Terminology in IoT-NGIN
	2.1 Solution building blocks of Artificial Intelligence
	2.2 Functionalities related to an AI Application service

	3 Artificial Intelligence and Big Data preconditions from IoT-NGIN Living Labs
	3.1 Human-Centred Twin Smart Cities Living Lab
	3.1.1 Preconditions per application
	3.1.2 Mapping to IoT-NGIN MLaaS tools
	3.1.3 Use Case Data Analysis
	3.1.4 Use Case AI Techniques Analysis

	3.2 Smart Agriculture IoT Living Lab
	3.2.1 Preconditions per application
	3.2.2 Mapping to IoT-NGIN MLaaS tools
	3.2.3 Use Case Data Analysis
	3.2.4 Use Case AI Techniques Analysis

	3.3 Industry 4.0 Living Lab
	3.3.1 Preconditions per application
	3.3.2 Mapping to IoT-NGIN MLaaS tools
	3.3.3 Use Case Data Analysis
	3.3.4 Use Case AI Techniques Analysis

	3.4 Energy Grid Active Monitoring/Control Living Lab
	3.4.1 Preconditions per application
	3.4.2 Mapping to IoT-NGIN ML tools
	3.4.3 Use Case Data Analysis
	3.4.4 Use Case AI Techniques Analysis

	4 Big Data and ML framework: IoT-NGIN MLaaS Architecture
	4.1 MLaaS state-of-the-art definition
	4.2 IoT-NGIN MLaaS Platform Concept
	4.2.1 IoT-NGIN MLaaS Concept
	4.2.1.1 Business Context & Motivation
	4.2.1.2 High-level IoT-NGIN architecture
	4.2.1.3 IoT Device Classification for MLaaS
	4.2.1.4 MLaaS platform high-level overview
	4.2.1.4.1 MLaaS Platform and Federated Machine Learning
	4.2.1.4.2 Inference on IoT Device
	4.2.1.4.3 Digital Twins

	4.2.2 Actors
	4.2.3 MLaaS Platform Use Cases
	4.2.3.1 Data acquisition
	4.2.3.2 Data pre-processing
	4.2.3.3 AI Modelling (edge)
	4.2.3.4 AI Model deployment
	4.2.3.5 Integration and Model Operation
	4.2.3.6 Model Sharing

	4.2.4 Functional and Non-Functional Requirements for MLaaS
	4.2.5 MLaaS Platform Logical view
	4.2.6 MLaaS sequence diagrams
	4.2.6.1 Data acquisition
	4.2.6.2 Data pre-processing
	4.2.6.3 AI Modelling (edge)
	4.2.6.4 AI Model deployment
	4.2.6.5 Integration and Model Operation
	4.2.6.6 Model Sharing

	4.3 Data Storage and Data Management
	4.3.1 Horizontal concerns
	4.3.2 Vertical concerns

	5 Machine Learning, Deep Learning and Reinforcement Learning in IoT-NGIN
	5.1 Overview and state-of-the-art of Machine Learning techniques
	5.2 Privacy-preserving Federated Machine Learning in the MLaaS platform
	5.3 Enhancing Machine Learning techniques in IoT-NGIN
	5.3.1 Enhancing training processes
	5.3.2 Strengthening the performance of the ML models deployed

	6 Conclusions
	7 References

