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Executive Summary 
This document constitutes Deliverable “D3.1: Enhancing deep learning / reinforcement 

learning” of the European H2020-ICT-2018-20 project “IoT-NGIN: Next Generation IoT as part 
of Next Generation Internet”. D3.1 is an output of Work Package 3, entitled “Enhancing IoT 

Intelligence”, which reports the activities of all the tasks of the Work Package until the ninth 
month of the project’s lifetime. More concretely, the tasks of the work package are: 

1. T3.1 (M1-M27): Big Data and Machine learning framework architecture. 

2. T3.2 (M3-M27): Deep learning/reinforcement learning techniques to enhance training 
processes. 

3. T3.3 (M3-M28): Confidentiality-preserving federated ML models. 
4. T3.4 (M6-M30): Machine Learning model sharing. 

The scope of this deliverable is: (i) to detail the Big Data and ML framework that enables 

MLaaS and supports decentralised / federated ML, and (ii) to study different deep learning 
and/or reinforcement learning techniques, including self-learning techniques and 

supervised/unsupervised machine learning procedures applied to IoT devices to select those 
that better fit the IoT-NGIN scenarios and enhance the ML models’ performance. 

 

Main results/findings 

• A common terminology for Artificial intelligence related elements. 

• A study of Artificial Intelligence needs of IoT-NGIN Living Labs. 

• A design of a Machine Learning as a Service platform that includes architecture, 

actors and use cases; and which references to BDVA SRIA4.0. 

• The application of the federated learning paradigm over the platform and the Living 

Labs. 

• A study of machine learning techniques, including deep learning, reinforcement 

learning and self learning, and a mapping of those techniques to IoT-NGIN use cases. 
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1 Introduction 
H2020 IoT-NGIN promotes the enhancement of the Internet of Things (IoT) technology from 

several points of view towards the next generation of IoT through scalability, openness and 
security, while supporting monetization. In order to achieve this, the project pushes the 

boundaries of IoT communication, federation, intelligence, security and privacy via concrete 
work packages (WP) the results of which are applied over four main application areas: Smart 
City, Smart Agriculture, Industry 4.0 and Smart Energy.  

Concretely, WP3, entitled “Enhancing IoT Intelligence”, provides the innovation with respect 

to Artificial Intelligence (AI) and Big Data analytics, where the partners of the WP will go 

beyond the state-of-the-art of the Machine Learning (ML) techniques applied to the IoT. 
More specifically, the main objectives of the work package are shown in Figure 1. 

 

 

Figure 1- IoT NGIN WP3 objectives to enhance IoT intelligence 

 

Considering this, Deliverable 3.1: “Enhancing Deep learning / reinforcement learning” reports 

the first activities that have been carried out in order to fill these objectives. Mainly, the 
platform, denominated as IoT-NGIN Machine Learning as a Service (MLaaS), that will allow 

the application of Artificial Intelligence techniques over IoT is explained through dedicated 
sections, and details with respect to its architecture, the management of data according to 

BDVA SRIA4.0, and the privacy preserving federated ML layer are given. In addition, the 
machine learning techniques, including deep learning and reinforcement learning, that will 
be implemented over the upcoming months of the project are reviewed.  

 

1.1 Intended Audience 

Since Deliverable 3.1 reports upon the application of Artificial Intelligence in the IoT, it offers 
an innovative point of view for developers and infrastructure managers who need to provide 
a higher level of intelligence in their IoT deployments. Moreover, data scientists and AI 
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specialists will benefit from the results of the Deliverable, where details on how to build, 
deploy and maintain AI applications can be acquired.  

The document will be also useful for project partners and the participants in IoT NGIN Open 

Calls since they will be able to get information about the functionalities and services to be 
implemented by IoT NGIN Big data and AI platform. 

Finally, the whole European AI and IoT communities will be potential readers of the present 

deliverable due to its public nature. 

1.2  Relations to other activities 

In Figure 2 the work packages of IoT-NGIN are presented via a set of layers, where it can be 
estimated that the Big Data Analytics and ML layer influcences many other activities of the 

project.  

 

 

Figure 2: Work Packages structure 

 

Considering this, D3.1 and, generally, WP3, are related to the work packages and tasks 

described in Table 1. 
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Table 1: Relation of WP3 activities to other WPs and tasks 

WP Relation to WP3 and D3.1 

WP1 Artificial Intelligence and Big Data analytics plays an important role on 

the next generation of IoT. In this regard, this role shall be represented in 

the meta-architecture resulting by the activities in WP1 

WP2 The micro-services framework developed within WP2 shall be 

interconnected with the WP3 framework and its deployments. In 
addition, WP3 results, and more concretely trained AI models, are 

related to Task 2.4, where the Unikernels may support their deployment 
in an innovative environment 

WP4 WP4 may need usage of several AI techniques to provide some of its 

functionalities. Specifically, Task 4.2 may benefit from the training of the 
AI models in charge of recognizing in real-time IoT devices 

WP5 As the federation of the AI models training over several nodes may suffer 

from different cybersecurity attacks, WP3 clearly benefits from the 
mitigation of Federated Learning attacks in Task 5.1 and from the 

verification of AI models integrity in Task 5.2.  

In addition, the WP3’s platform includes interaction with the Digital 

Twins, so results from Task 5.5 must be considered for a proper 
integration. 

WP6 As the WP3’s platform provides several components, the integration 

with rest of the project’s technology and frameworks is clearly very 
important and will be continuously reviewed as the activities of WP3 

iterate over their results. The WP3 platform will be exploited for 
application development, involving ML services. 

In addition, the infrastructure that enables CI/CD will provide the tools 

to develop the components of the WP in a safe a productive manner 

WP7 WP3’s framework will be used in several Living Labs to train, deploy and 

maintain their AI models, as it will be shown throughout the deliverable. 

In addition, WP3’s platform will support 3rd parties by offering a specific 

set of functionalities 

  

1.3  Document overview 

The present deliverable is divided into seven chapters: 

• Chapter 1 introduces the motivation and general objectives for the document, its 

intended audience, relation to other project tasks and structure. 

• Chapter 2 proposes a common terminology and definions for all the components of 

the Artificial Intelligence stack and the involved stakeholders. It will guarantee the 
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homogeneity and consistency of the content of the document and the 
corresponding technical developments addressed within the scope of WP3. 

• In Chapter 3, an exhaustive analysis of the pre-conditions and requirements imposed 

by the Living Labs’ use-cases is done, extending and introducing specific details that 

will serve to guide the development of IoT-NGIN AI components. 

• The main goal of Chapter 4 is to provide a detailed specification of the functionalities 

to be implemented by IoT-NGIN MLaaS platform. It is based on the 4+1 architectural 

view model [1] and covers the identification of actors interacting with the platform, 

modelling the functionalities through use cases, their translation to sequence 
diagrams and the composition of the platform’s architecture from a logical point of 

view. In addition, the analysis of the state-of-the-art for available technologies and 
scientific trends is performed to ensure that the project is built considering the most 
advanced technical baselines. The alignment with BDVA SRIA1  is also done, 

demonstrating compliance with the reference model. 

• Chapter 5 focuses on the different techniques that will be implemented within project 

covering aspects like online learning and federated learning. A detailed vision of the 

current state-of-the-art and the improvement that will be brought by IoT-NGIN is 
included. 

• The conclusions and next steps are explained in Chapter 6. 

 
1 https://www.bdva.eu/SRIA.  

https://www.bdva.eu/SRIA
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2 Artificial Intelligence Terminology in IoT-NGIN 
As a result of the European & Korean joint DECENTER2 project, a common terminology was 

identified to define an Artificial Intelligence application architecture. It is used also in IoT-
NGIN to have a common ground for all the project partners. 

2.1  Solution building blocks of Artificial Intelligence 

Table 2 describes the terminology adopted to refer to each of the main building blocks that 
result from applying AI, going from the lowest level of complexity (a trained AI model) to the 

most complex one (AI application service).  

 

Table 2: Solution building blocks of AI and their description 

Solution building 

block type 

Description 

AI Model A trained model (either a deep neural network or another Machine 

Learning model). 

AI Method An entity serving the inference of a trained model (runs the model on 

the ML engine). Refers to the actual method of the programming 

language that executes the ML engine to serve/offer the model. 

AI Service An entity serving a certain AI functionality (model serving layer) based 

on an AI Method. Refers to a software component that offers an AI 
functionality through an AI Method and other related methods. 

AI Application An entity invoking AI Methods to provide AI functionalities to the end-

user through a GUI on a responsive and/or mobile app. 

AI Application 

Service 

Set of AI functionalities closely related comprising a software 

application or product function and delivered as a service to an end-
user. 

 

2.2  Functionalities related to an AI Application 

service 

Table 3 provides a description for each type of service that an AI application service could 
provide, although it may be extrapolated for the rest of the building blocks described in the 
previous section. 

 

 
2 https://www.decenter-project.eu/  

https://www.decenter-project.eu/
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Table 3: Types of services provided by AI applications 

AI application 

service kind 

Description 

Sensing Data collection, monitoring 

Analysis Advanced analytics using AI, also known as perception in AI systems, 

may incorporate attention, data/sensor, image segmentation, object 

classification, object localization, object detection, scene classification, 
scene interpretation, etc. 

Decision Knowledge representation and reasoning, search / optimization, 

planning / scheduling, behaviour selection (reactive planning). 
Prescriptive machine learning, e.g. reinforcement learning 

Action Behaviour (decision) enaction. Control of the course of action or 

sequence of actuation (e.g. motor) commands. 

Effecting Execute a command (e.g. motor). Also means “actuation,” to activate, 

or to put into motion; to animate. 

 

Figure 3 is representing the described functionalities of an AI application service in a graph, 

where they are also linked to each other to define a higher level of complexity, like Cognition, 

Perception or Inter-action. With respect to the original figure, defined in DECENTER EU project, 
the main AI features that the IoT-NGIN project will implement and support have been added 
using bubbles. 

 

Figure 3: Adaptive behaviour control loop of an intelligent (adaptive) system, from DECENTER EU 

project, with IoT-NGIN main AI features. 
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3 Artificial Intelligence and Big Data 
preconditions from IoT-NGIN Living Labs 

Throughout this section, the initial needs of IoT-NGIN use cases regarding Artificial Intelligence 

and Big Data are collected. The scope is to gather a set of requirements and information 
from the use cases so that the set of services that will be offered by the platform supports 
these requirements as best as possible, considering as well the objectives of the MLaaS 

platform defined in IoT-NGIN’s Description of Action. Obviously, at the stage of the project in 
which this deliverable is released, the descriptions of the Living Labs are still to be refined and 

extended, so there could be information to be defined or that may vary in future iterations. 
For a more general overview of the requirements from the Living Labs for the whole IoT-NGIN 

project, the reader must refer to IoT-NGIN’s Deliverable 1.1 [2]. 

The AI requirements from the use cases are analysed from four perspectives: 

1. Preconditions per application: collects a list of conditions and objectives from each 

Living Lab use case (application) where the relevant AI needs are highlighted.  
2. Mapping to IoT-NGIN MLaaS tools: one table per Living Lab which maps the 

highlighted AI needs from the previous section to the main components or services of 
the MLaaS platform to be built in WP3. 

3. Use Case data analysis: these tables collect information regarding the data sources 

that are part of the Living Labs’ use cases such as format, availability, communication 
protocol, etc. In addition, it collects information about the IoT-Devices which will be 

integrated into the use case. 
4. Use Case AI techniques analysis: These tables collect information relevant to the AI 

models that are expected to be produced from the use case data, and that will 

participate in a successful deployment of the use case. They include attributes like the 
type of outcome (classification, regression), training techniques to be used 

(federated, online, ...), inference approach (real-time, on batches, ...), etc. Note that 
the information from these tables is under development; thus, some information might 
change or is still to be defined in future iterations. 

The Living Labs and use cases of IoT-NGIN project are divided as represented in Table 4. 

Table 4: IoT-NGIN Living Labs and Use Cases 

Living Lab Use Case 

Human-Centred Twin Smart 

Cities 

Traffic Flow Prediction & Parking Prediction 

Crowd management 

Co-commuting solutions based on social networks 

Smart Agriculture Crop diseases prediction. Smart irrigation and precision 

aerial spraying 

Sensor aided crop harvesting 

Industry 4.0 Human-centred safety in a self-aware indoor factory 

environment 
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Human-centred Augmented Reality assisted build-to-

order assembly 

Digital powertrain and condition monitoring 

Smart Energy Move from Reacting to Acting in Smart Grid Monitoring 

& Control 

Driver-friendly dispatchable EV charging 

 

3.1 Human-Centred Twin Smart Cities Living Lab 

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under 
the Twin Smart Cities Living Lab is provided; including preconditions of each use case, 

mapping of those preconditions to MLaaS tools, a use case data analysis and a use case AI 
techniques analysis.  

3.1.1 Preconditions per application 

1. Traffic Flow Prediction & Parking Prediction 

a. In order to model and train distributed AI models on traffic flow and parking 

prediction, weather data (and how that affects road & traffic conditions) and 

road data (number of cars, velocity, fluctuation) will be used. The predictive 

model will also consume historical data and public transportation information.  
b. Traffic and parking prediction ML models will be federated at the edge cloud. 

c. Ideally, the driver could, with small behavioural changes, avoid traffic and 
know where available parking is located, without needing to look for it 
aimlessly.  

d. With the data collected the ML process will identify traffic patterns. This 
information will be provided in the least intrusive way to a willing user to avoid 

invasive notifications. 
e. 5G communications will be used for interconnecting sensors, gather IoT data in 

real-time and store it at the edge, and run smart AI-based simulations to 

perform what-if analysis when transport is interrupted, e.g.: due to extreme 

weather, man-made or technical hazards. 

2. Crowd management 
a. Demonstrate the use of open data, user data and IoT data on traffic fluency 

through cameras and radars installed at the bottleneck intersections for crowd 

steering based on the application of AI. 

b. Demonstrate the use of AI on advanced crowd prediction and movement 

control. 
3. Co-commuting solutions based on social networks 

a. Combine IoT data with virtual citizen-generated IoT data from social networks 

to demonstrate the use of advanced AI in the provision of co-commuting 

solutions at the neighbourhood level and cross-border. 
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b. UC will take avail of the Urban Open Platform and Lab (UOP.Lab) developed 
in the Finest Twins project3. 

3.1.2 Mapping to IoT-NGIN MLaaS tools 

The preconditions collected in the previous section are mapped to IoT-NGIN’s MLaaS 

platform in Table 5. 

Table 5: Mapping of Human-Centred Twin Smart Cities Living Lab to IoT-NGIN MLaaS tools 

Big Data and ML 

framework  

Deep Learning  Reinforcement 

learning 

Federated 

learning  

ML 

models 

sharing  

Open data, user 

data, IoT data, 

images from 
cameras and 
radars. Cross-border 

data models. 

Predictive 

algorithms for traffic 

flow, parking, crowd 
management. 

N/A Prediction ML 

models will be 

federated at 
edge-cloud. 

Transfer 

of models 

for SMEs. 

 

For the Twin Smart Cities Living Lab two AI Applications will be developed, namely:  

• “Traffic Flow Prediction & Parking Prediction”, which contains two AI Services: “Traffic 

Flow prediction “and “Parking prediction”. 

• “Crowd Management”, which contains two AI services: “Crowd size prediction” and 

“Route alternatives prediction”.  

The third application of this living lab, “Co-commuting solutions based on social networks” 

has no AI requirements at this stage of the project, so it is not included in the following 

analysis. The analysis of the data and the AI techniques that will be used to build these AI 
services is described in the following sections.  

3.1.3 Use Case Data Analysis 

The following tables describe, from a generic point of view, the features of the data 

produced in the Human-Centred Twin Smart Cities Living Lab that is relevant for the creation 
of AI Applications. 

 

 
3 http://www.finesttwins.eu/en.  

http://www.finesttwins.eu/en
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Table 6: Data analysis for “Traffic Flow Prediction & Parking Prediction” use case 

 

Use Case Human-Centred Twin Smart Cities Living Lab 

AI Application Traffic Flow Prediction & Parking Prediction 

AI Service Traffic Flow Prediction Parking Prediction 

Data 

Sources 

IoT Devices 

Multispectral & Visual Cameras 

Radars 

Weather stations 

Sensors on Robo-buses & City Streets (road data) 

Data Type(s) JSON and GeoJSON 

Data size To be defined 

Data 

communication 

protocols 

HTTP 

MQTT 

Data 

availability 

Request only 

Potential Bias N/A 

Heuristics/Assumptions 

The number of cars on the roads correlates directly with 

environmental factors and time (weather, events, 
weekday, etc.) 

Data privacy level API is not public access 
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Table 7: Data analysis for “Crowd Management” use case 

 

3.1.4 Use Case AI Techniques Analysis 

The following tables describe, from a generic point of view, the techniques of AI that will be 
used in the Human-Centred Twin Smart Cities Living Lab for the creation of the relevant AI 

Applications. 

 

Use Case Human-Centred Twin Smart Cities Living Lab 

AI Application  Crowd Management 

AI Service Crowd size prediction Route Alternatives Prediction 

Data 

Sources 

IoT Devices 

Multispectral & Visual Cameras 

Radars 

Noise sensors 

Data Type(s) 
JSON 

XML 

Data size To be defined 

Data 

communication 

protocols 

HTTP 

MQTT 

Data 

availability 

On request 

Potential Bias 

Passengers with luggage are very different from 

passengers without luggage. Distinction important to be 
made. 

Heuristics/Assumptions 
Diverting a part of the incoming passenger flow helps 

directly improve bottleneck situations. 

Data privacy level Private 
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Table 8: AI techniques analysis for " Traffic Flow Prediction & Parking Prediction " use case 

 

 

Table 9: AI techniques analysis for " Crowd Management " use case 

 

Use Case Human-Centred Twin Smart Cities Living Lab 

AI Application Traffic Flow Prediction & Parking Prediction 

AI Service Traffic Flow Prediction Parking Prediction 

Outcome type 

Prediction 

Multi-class classification (car type, size, direction) 

Multidimensional regression (car type and count linearly related 

to parking spot amounts and traffic jams) 

Metrics: Acceptance / 

Failure Criteria 

Minimum accuracy to be set 

Training strategy 
Unsupervised ML/DL 

Auto-labelling 

Enhanced AI 

techniques 

N/A 

Inference approach To be set 

Serving approach To be set 

Use Case Human-Centred Twin Smart Cities Living Lab 

AI Application Crowd Management 

AI Service Crowd size prediction Route Alternatives Prediction 

Outcome type 
Multi-class classification 

Multidimensional regression 

Metrics: Acceptance / 

Failure Criteria 

To be set 

Training strategy Unsupervised ML/DL 

Enhanced AI 

techniques 

N/A 

Inference approach To be set 

Serving approach To be set 
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3.2  Smart Agriculture IoT Living Lab 

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under 
the Smart Agriculture Living Lab is provided; including preconditions of each use case, 

mapping of those preconditions to MLaaS tools, use case data analysis and use case AI 
techniques analysis.  

3.2.1 Preconditions per application 

1. The preconditions identified as relevant for ML processes for the “Crop diseases 

prediction, Smart irrigation and precision aerial spraying” use case are identified as 
follows: 

a. Crop diseases prediction is based on images and real-time video analysis of the 

crop and the leaves captured from visual and multi-spectral cameras located on 

semi-autonomous drones flying over the orchard. 

b. Crop diseases’ prediction also considers measurements acquired via SYN SynField4 
precision agriculture IoT nodes, integrating a variety of sensor modules. 

c. Real-time video analysis takes place either locally (on the drone), based on 

already trained ML models, or remotely (at the edge) based on federated ML. 

d. The drones will be able to dynamically modify their trajectory to introduce optimal, 

precision aerial spraying only in areas of interest. 

e. The agronomists can access the crop disease predictions and suggest irrigation 
and spraying rules. 

f. IoT-NGIN will leverage existing datasets available for Living Lab experimentation, 
to the extent possible. Alternatively, publicly available datasets will be used. 

2. In addition, the preconditions assumed for the “Sensor aided crop harvesting” use 
case, in relation to ML processes, are the following: 
a. AGLV serving as carrier machines of crates, assisting the harvesting process, 

capable of calculating and following an appropriate trajectory from the 
harvesting location to the loading points.  

b. AGLV will be able to locate and avoid workers (for safety reasons) and trees (for 

operating reasons). 
c. The crates identification at the loading points will be based on RFID readers 

located there, as well as RFID tags attached to the crates.  

3.2.2 Mapping to IoT-NGIN MLaaS tools 

The Smart Agriculture Living Lab use cases will exploit various ML tools developed within IoT-
NGIN. Specifically, the Big Data and ML Framework will be exploited for data acquisition and 

analysis, referring to the sensor measurements acquired via SynField devices, the images and 
videos captured from the drones, as well as the RFID readings of the crates. Moreover, deep 

learning techniques will be used for crop diseases’ prediction, as well as for obstacle 
avoidance. Federated learning techniques will be employed for crop disease prediction, 
exploiting experience gained in other fields, as well as for near-real-time video analysis of 

drones’ captures, in order to effectively calculate clear trajectories for drones’ movement. 

 
4 https://www.synfield.gr/about/. 
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The exploitation of ML techniques in the Smart Agriculture Living Lab is summarized in Table 
10. 

 

Table 10: Mapping of Smart Agriculture IoT Living Lab to IoT-NGIN MLaaS tools 

Big Data and ML 

framework  

Deep Learning  Reinforcement 

learning 

Federated 

learning  

ML models 

sharing  

Micro-climate 

measurements 

Images and real-

time video analysis 

from drones 

RFID readings 

Crop diseases 

prediction  

Obstacle 

avoidance. 

N/A Crop diseases 

prediction 

During UCs’ 

development/ 

validation 

 

3.2.3 Use Case Data Analysis 

For the Smart Agriculture IoT Living Lab, two AI Applications will be developed, namely the 
“Crop diseases prediction. Smart irrigation and precision aerial spraying” and the “Sensor 
aided crop harvesting”, each one serving one of the LL’s trials. The first one will use the “Crop 

diseases prediction” AI Service, while the latter will use the “V-SLAM” and “Obstacle 
Avoidance using Deep Learning” AI Services.  

The datasets used for each AI Service of the Living Lab are described in Table 11 and Table 

12. 
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Table 11: Data analysis for “Crop diseases prediction, smart irrigation and precision aerial spraying” 

use case 

 

 

Use Case Smart Agriculture IoT Living Lab 

AI Application Service 
Crop diseases prediction. Smart irrigation and precision 

aerial spraying 

AI Service Crop diseases prediction 

Data 

Sources 

IoT Devices 

SynField devices measuring micro-climate data (e.g. air 

temperature, air humidity, wind direction, wind speed, rain 

volume, rain intensity), and soil and crop-related data (leaf 
wetness, soil type, soil temperature, soil humidity, soil 

conductivity) 

Drones (multi-spectral or RGB cameras) 

Data Type(s) 

JSON 

Image (JPEG, TIFF) 

GNSS measurements 

Data size N/A 

Data 

communication 

protocols 

SynField API, HTTPS/REST 

Data 

availability 
Streaming 

Potential Bias Class imbalance, more data of one class for drone Images 

Heuristics/Assumptions Data are strongly correlated with the time of the collection 

Data privacy level Private 
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Table 12: Data analysis for “sensor aided crop harvesting” use case 

 

3.2.4 Use Case AI Techniques Analysis 

Diving deeper into the AI services of the Smart Agriculture LL from an ML perspective, the 
services are further analysed in the following tables. For each AI Service, several properties 

are highlighted, such as the expected outcome type, assessment criteria, the preferred 
training strategy, potential techniques for facilitating the ML process, the inference and the 

serving approach. 

 

Use Case Smart Agriculture IoT Living Lab 

AI Application Service Sensor aided crop harvesting 

AI Service 
V-SLAM Obstacle Avoidance using 

Deep Learning 

Data 

Sources 

IoT Devices Sensors on mobile robots 

Data Type(s) 
JSON 

GNSS, Images 

Data size N/A 

Data 

communication 

protocols 

HTTPS, pub/sub or REST 

Data 

availability 
Streaming 

Potential Bias Homogeneity of the collected data 

Heuristics/Assumptions Most data will be collected for autonomous navigation 

Data privacy level Private 
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Table 13: AI techniques analysis for “Crop diseases prediction. Smart irrigation and precision aerial 

spraying " use case 

 

 

Table 14: AI techniques analysis for “sensor aided crop harvesting" use case 

 

Use Case Smart Agriculture IoT Living Lab 

AI Application Service 
Crop diseases prediction. Smart irrigation and precision aerial 

spraying 

AI Service Crop diseases prediction 

Outcome type Classification 

Metrics: Acceptance / 

Failure Criteria 

Confusion matrix 

Minimum Accuracy 

F1 score 

Training strategy Unsupervised ML/DL, FL 

Enhanced AI 

techniques 
GPU or TPU 

Inference approach Near real-time responses 

Serving approach Streaming 

Use Case Smart Agriculture IoT Living Lab 

AI Application Service Sensor aided crop harvesting 

AI Service V-SLAM 
Obstacle Avoidance using 

Deep Learning 

Outcome type 
Visual Mapping and Trajectory 

into space 

Binary Classification (Obstacle 

or Non-Obstacle) 

Metrics: Acceptance / 

Failure Criteria 

Minimum Accuracy – 

Geometric Error Minimization 

Minimum Accuracy 

F1 Score 

Training strategy 
Unsupervised ML/DL with Other 

Computer Vision Techniques 

Unsupervised ML/DL with Other 

Computer Vision Techniques 

Enhanced AI 

techniques 
GPU GPU or TPU 

Inference approach Real-time responses Real-time responses 

Serving approach Streaming Streaming 
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3.3  Industry 4.0 Living Lab 

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under 
the Industry 4.0 Living Lab is provided; including preconditions of each use case, mapping of 

those preconditions to MLaaS tools, a use case data analysis and a use case AI techniques 
analysis.  

3.3.1 Preconditions per application 

1. Human-centred safety in a self-aware indoor factory environment 

a. Edge computing resources will be used to support a set of virtual AI functions 

that will process the real-time location of the AGVs, based on the real-time 

stream coming from the safety cameras. The AI functions will determine a 

potential collision between AGVs, or between a worker and an AGV and will 

issue an early warning. 

b. This can give a connected AGV fleet the ability to regulate the speed of 
vehicles instead of stopping suddenly to avoid a collision. AI algorithms can 
recalculate the optimal route in real time and provide alternative routes if the 

planned one has too many delays. In addition, the AGV use rate can be 
optimized by going where they are most needed instead of following a fixed 

pattern.  
c. IoT-NGIN will provide a high precision IoT localization layer merging real-time 

localizations obtained from Ultra-Wide Band (UWB) sensors and a solution 

providing Visible Light Positioning (VLP). In addition, safety cameras will be 
deployed to monitor areas with reduced visibility. 

d. The data from the sensors provide a full description of the environment and 
how it is changing. It allows to model moving objects and skeletonizes human 

bodies to detect the position of each body part and build a "safety shell" 
around it to ensure human-centred safety. 

2. Human-centred Augmented Reality assisted build-to-order assembly 

a. This UC aims to assist human workers in the assembly line with the use of 
Augmented Reality (AR). Machine learning and computer vision techniques will 

be used to detect product defects and differentiate between different 

components and modules. 
b. IoT-NGIN will be able to recognize the components and the stage of the 

assembly process using local ML trained models and provide assistance and 

guided instructions, displaying the procedure and next stage of the 

customizable manufacturing, either using AR classes, mobile devices or small 
industrial screens. 

3. Digital powertrain and condition monitoring 

a. Condition monitoring and predictive maintenance of powertrains and drive 
units using federated machine learning. 

b. Parameter tuning and optimization (e.g. in terms of energy consumption) of 
drive units using federated learning. 
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3.3.2 Mapping to IoT-NGIN MLaaS tools 

The requirements collected in the previous section are mapped to IoT-NGIN’s MLaaS 

platform in Table 15. 

Table 15: Mapping of Industry 4.0 Living Lab to IoT-NGIN MLaaS tools 

Big Data and ML 

framework  

Deep Learning  Reinforcement 

learning 

Federated 

learning  

ML 

models 

sharing  

High precision IoT 

localization layer, 

safety cameras, 
contextual IoT data, 

IoT localization, RFID 
sensors and camera 
analysis. 

Potential collision 

between AGVs, or 

between a worker 
and an AGV. 

Recognition of 

components and 
stage of assembly. 

N/A Federated ML 

decision on 

constrained 
resources 

N/A 

 

For the Industry 4.0 Living Lab three AI Applications will be developed, namely:  

• “Human-centred safety in a self-aware indoor factory environment”, which contains 

two AI Services: “Collision Detection” and “AGV Route Planning”. 

• “Human-centred Augmented Reality assisted build-to-order assembly”, which 

contains one AI service: “(AR) Object detection and classification”.  

• “Digital powertrain and condition monitoring”, which contains two AI Services: 

“Predictive maintenance of powertrains" and “Energy consumption optimization”. 

The analysis of the data and the AI techniques that will be used to build these AI services is 

described in the following sections.  

3.3.3 Use Case Data Analysis 

The following tables describe, from a generic point of view, the features of the data 

produced in the Industry 4.0 Living Lab that is relevant for the creation of AI Applications. 
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Table 16: Data analysis for “human-centred safety in a self-aware indoor factory environment” use 

case 

 

 

Use Case Industry 4.0 Use Cases & Living Lab 

AI Application Service 
Human-centred safety in a self-aware indoor factory 

environment 

AI Service Collision Detection AGV Route Planning 

Data 

Sources 

IoT Devices 

Cameras 

Ultra-Wide Band (UWB) sensors 

AGV Sensors 

Data Type(s) JSON, OPC UA 

Data size To be set 

Data 

communication 

protocols 

TCP 

OPC UA 

Data 

availability 

Request-only access 

Potential Bias None identified so far 

Heuristics/Assumptions Data gathered to edge server 

Data privacy level Private 
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Table 17: Data analysis for “human-centred augmented reality assisted build-to-order assembly” use 

case 

 

 

Use Case Industry 4.0 Use Cases & Living Lab 

AI Application Service 
Human-centred Augmented Reality assisted build-to-order 

assembly 

AI Service (AR) Object detection and classification 

Data 

Sources 

IoT Devices 

Public displays, tablet, Cameras 

Ultra-Wide Band (UWB) sensors 

AGV Sensors 

Data Type(s) JSON, OPC UA 

Data size To be set 

Data 

communication 

protocols 

TCP 

OPC UA 

Data 

availability 

Request-only access 

Potential Bias None identified sofar 

Heuristics/Assumptions Data gathered to edge server, 

Data privacy level Private 
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Table 18: Data analysis for “digital powertrain and condition monitoring” use case 

 

3.3.4 Use Case AI Techniques Analysis 

The following tables describe, from a generic point of view, the techniques of AI that will be 
used in the Industry 4.0 Living Lab for the creation of AI Applications. 

 

Use Case Industry 4.0 Use Cases & Living Lab 

AI Application Service Digital powertrain and condition monitoring 

AI Service 
Predictive maintenance of 

powertrains 

Energy consumption 

optimization 

Data 

Sources 

IoT Devices Variable speed drive, smart sensor, heat camera 

Data Type(s) JSON, OPC UA 

Data size To be set 

Data 

communication 

protocols 

TCP 

OPC UA 

MQTT 

Data 

availability 

Request-only access 

Potential Bias 
Data is heavily affected by the powertrain’s operating 

point (torque and speed). 

Heuristics/Assumptions 
Data gathered to edge server, which can forward and 

adapt to different protocols 

Data privacy level Private 
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Table 19: AI techniques analysis for “human-centred safety in a self-aware indoor factory 

environment" use case 

 

 

Table 20: AI techniques analysis for "human-centred augmented reality assisted build-to-order 

assembly" use case 

 

Use Case Industry 4.0 Use Cases & Living Lab 

AI Application Service 
Human-centred safety in a self-aware indoor factory 

environment 

AI Service Collision Detection AGV Route Planning 

Outcome type Prediction 

Metrics: Acceptance / 

Failure Criteria 

Zero collisions / a collision with humans or human operated 

vehicles occurs 

Training strategy Federated learning 

Enhanced AI 

techniques 

N/A 

Inference approach Real time, data stored for later analysis  

Serving approach HTTP, others possible depending on implementation 

Use Case Industry 4.0 Use Cases & Living Lab 

AI Application Service 
Human-centred Augmented Reality assisted build-to-order 

assembly 

AI Service (AR) Object detection and classification 

Outcome type Classification 

Metrics: Acceptance / 

Failure Criteria 

To be defined 

Training strategy Federated learning 

Enhanced AI 

techniques 

N/A 

Inference approach Real time, data stored for later analysis  

Serving approach HTTP, others possible depending on implementation 
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Table 21: AI techniques analysis for "digital powertrain and condition monitoring" use case 

 

3.4  Energy Grid Active Monitoring/Control Living 

Lab 

In this chapter, an analysis of the Artificial Intelligence needs from the three use cases under 
the Energy Grid Active Monitoring/Control Living Lab is provided; including preconditions of 

each use case, mapping of those preconditions to MLaaS tools, a use case data analysis 
and a use case AI techniques analysis.  

3.4.1 Preconditions per application 

1. Move from Reacting to Acting in Smart Grid Monitoring & Control 

a. AI/ML-based analytics to train models tracking the health of the grid and 

indicating that maintenance is required before obvious performance 

degradation or even failure, along with urban traffic scenario and traffic 
predictions 

2. Driver-friendly dispatchable EV charging 

 
5 Assume that the powertrain is working normally for some days after being commissioned i.e. this data 

can be classified as normal. 

Use Case Industry 4.0 Use Cases & Living Lab 

AI Application Service Digital powertrain and condition monitoring 

AI Service 
Predictive maintenance of 

powertrains 

Energy consumption 

optimization 

Outcome type 
Binary classification 

Anomaly detection 

Metrics: Acceptance / 

Failure Criteria 

If data drifts away from a normal operation based on some 

statistical measure of normality or ML model bound. 

Training strategy Federated learning model of ‘normal operation’5 

Enhanced AI 

techniques 

N/A 

Inference approach Batched / Stored, later catching 

Serving approach 

HTTP 

MQTT 
Script 

(Edge node can adapt) 
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a. AI/ML-based analytics to train models that are able to forecast the energy 

demand for the EV charges according to the data of the system. 

3.4.2 Mapping to IoT-NGIN ML tools 

The requirements collected in the previous section are mapped to IoT-NGIN’s MLaaS 

platform in Table 22. 

 

Table 22: Mapping of Energy Grid Active Monitoring / Control Living Lab to IoT-NGIN MLaaS tools 

Big Data and ML 

framework  

Deep Learning  Reinforcement 

learning 

Federated 

learning  

ML 

models 

sharing  

High-tech power 

sensor 

Health of energy 

grid, traffic 

predictions, local 
discrepancies, 

discharge 
detection. 

N/A Federated ML 

hosted on the 

IoT nodes 

N/A 

 

For the Energy Grid Active Monitoring/Control Living Lab two AI Applications will be 

developed, namely:  

• “Move from Reacting to Acting in Smart Grid Monitoring & Control”, which contains 

two AI Services: “Grid operation optimization”, “Consumption prediction” and 
“Generation prediction”. 

• “Driver-friendly dispatchable EV charging”, which contains one AI service: 

“Forecasting of energy demand”.  

The analysis of the data and the AI techniques that will be used to build these AI services is 

described in the following sections.  

 

3.4.3 Use Case Data Analysis 

The following tables describe, from a generic point of view, the features of the data 
produced in the Energy Grid Active Monitoring / Control Living Lab that is relevant for the 

creation of AI Applications. 
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Table 23: Data analysis for “move from reacting to acting in smart grid monitoring & control” use 

case 

 

Use Case Energy Grid Active Monitoring/Control Living Lab 

AI Application Service 
Move from Reacting to Acting in Smart Grid Monitoring & 

Control 

AI Service 
Grid operation 

optimization 

Consumption 

prediction 

Generation 

prediction 

Data 

Sources 

IoT Devices 

6 Power quality 

analysers (PQA) 

150 Smart meters 2 Phasor 

measurement 
units (PMU) 

Digital Twin YES YES YES 

Data Type(s) 
Csv - Json, 

Numerical data 

Json, Numerical 

data 

Json, Numerical 

data 

Data size 2 GB/year/device 1 GB/Year/device 5 GB/Year 

Data 

communication 

protocols 

HTTP MQTT MQTT 

Data 

availability 

Real-Time Real-Time Real-Time 

Potential Bias N/A 

Heuristics/Assumptions N/A 

Data privacy level Proprietary 
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Table 24: Data analysis for “driver-friendly dispatchable EV charging” use case 

 

3.4.4 Use Case AI Techniques Analysis 

The following tables describe, from a generic point of view, the techniques of AI that will be 
used in the Energy Grid Active Monitoring / Control Living Lab for the creation of AI 
Applications. 

 

Use Case Energy Grid Active Monitoring/Control Living Lab 

AI Application Service Driver-friendly dispatchable EV charging 

AI Service Forecasting of energy demand 

Data 

Sources 

IoT Devices 

Charging stations 

Electric vehicle OBD devices 

Near real-time smart meters 

Digital Twin Yes 

Data Type(s) String 

Data format JSON 

Data size Some KBs per day per device 

Data 

communication 

protocols 

REST API and MQTT 

Data 

availability 

Real-time 

Potential Bias More consumption during mornings 

Heuristics/Assumptions N/A 

Data privacy level Private / Open source 
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Table 25: AI techniques analysis for “move from reacting to acting in smart grid monitoring & control” 

use case 

 

Table 26: AI techniques analysis for “driver-friendly dispatchable EV charging” use case 

Use Case Energy Grid Active Monitoring/Control Living Lab 

AI Application Service 
Move from Reacting to Acting in Smart Grid Monitoring & 

Control 

AI Service 
Grid operation 

optimization 

Consumption 

prediction 

Generation 

prediction 

Outcome type 

Optimized 

electrical 
parameter 

(voltage, current, 
power…) 

Predicting values Predicting values 

Metrics: Acceptance / 

Failure Criteria 

>0.8 close to 

nominal values 

>0.8 close to real >0.8 close to real 

Training strategy Continuous learning Continuous learning Continuous learning 

Enhanced AI 

techniques 

N/A N/A N/A 

Inference approach Real-time Real-time Real-time 

Serving approach Rest API Rest API Rest API 

Use Case Energy Grid Active Monitoring/Control Living Lab 

AI Application Service Driver-friendly dispatchable EV charging 

AI Service Forecasting of energy demand 

Outcome type 
Predicting day-ahead energy consumption values related to 

smart meters collected data 

Metrics: Acceptance / 

Failure Criteria 

>0.8 close to real 

Training strategy 
Federated learning 

Continuous learning 

Enhanced AI 

techniques 

GPU 

Inference approach Real-Time predictions 

Serving approach REST API 
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4 Big Data and ML framework: IoT-NGIN 
MLaaS Architecture 

Throughout this section, the MLaaS platform to be developed and integrated over the IoT-

NGIN project is going to be described. First, an initial analysis of the state-of-the-art 
considering this kind of platforms is provided. Then, an architecture for the platform is 
proposed, which includes the definition of: 

• Actors of the platform 

• Use cases for the platform 

• Logical view of platform components 

• Sequence diagrams for each platform use case considering the components 

Then, an overview of how the data is managed in the platform following the BDVA 

architecture is provided in Section 4.3. Finally, the privacy-preserving federated learning 
framework that will be on top of the MLaaS platform is described. 

4.1 MLaaS state-of-the-art definition 

One of the promises of the “internet of things” is the use of device and sensor services to 

extract knowledge about how a system is performing and helps companies better 
understand what exactly is going on in various aspects of the system. The data from device 
and sensor services can be used immediately by a simple system, for example launching an 

alert if a value is above a specific threshold. However, the multiplication of these devices 
and sensors generates a growing amount of data and companies face the challenge of the 

5 V’s of Big Data: Velocity, Volume, Value, Variety, and Veracity. A simple system is no more 
able to cope with the complexity involved by these 5 V. New solutions are required to be 

able to react to complex data and to effectively and purposely captured valuable 
information from the data. With the development of new techniques, new algorithms and 
the increasing availability of computational power, it is now possible to not only get 

information about the current state of a system but also extract value from a huge amount 
of data and predict future states of a system.  This will help the stakeholders better understand 

what exactly is going on in various aspects of the company and better plan for the future. 

 Primary users of the ML techniques are data science professionals which include expert data 

scientists, citizen data scientists, data engineers and machine learning engineers/specialists. 
These people need a platform that can provide all the necessary components to work on 
data, train ML models, share models and deploy models. Implementing and maintaining 

such a platform is complex, time-consuming, costly and companies may lack experience. 
So, one trend in the industry is to provide this kind of platform providing all the necessary 

services to build and execute ML in a ready-to-use form. In addition, it can be built as a 
custom-tailored ML system for some specific use cases. Such a platform is commonly referred 

to as Machine Learning as a Service (MLaaS). Using MLaaS allows a company to reduce the 

time and cost of integrating ML into its development and IT environment. By using MLaaS, 

Data Scientist can upload their data and model for training at the MLaaS platform and can 
focus on their core competency, i.e. ML development without taking care of the underlying 

infrastructure which is then provided and managed by another identity (such as in an as-a-
service fashion). 



H2020 -957246    -   IoT-NGIN  

 
D3.1 - Enhancing Deep learning/reinforcement learning 

 

43 of 108 

 

There is no formal definition for an ML platform. For example, R. Bohm and G. Digital in [3] 

define ML platform as “Broadly speaking, a platform is a set of interconnected services 
designed to enable all the parts of an application to work together. These platforms not only 

provide basic services, but they also create ecosystems so that new components can be 
added, and components can be offered for sale”. In another report by Louis Dorard [4], 

different types of ML platforms are presented: Pre-trained models as a service, Vertical ML as 
a service, Semi-specialized machine learning as a service, ML development platforms, ML 
deployment platforms. In another report by Gartner [5], Gartner defines a Data Science and 

Machine Learning Platforms (DSML) platform as “a core product and supporting a portfolio 
of coherently integrated products, components, libraries and frameworks (including 

proprietary, partner and open-source)”. In report MLaaS: Machine Learning as a Service [6], 
authors wrote: ”Because multiple users will be using the same platform, computational 

resources can be shared or allocated on-demand, reducing overall costs. By specifying a 
well-defined interface, users can have access to the machine learning process efficiently 
from anywhere, at any time. Users must not be concerned with implementation and 

computing resources, focusing mainly on the data itself.” 

ML platforms can come in different formats. They can be based on open source or 

commercial software, and they can run on-premises or in the cloud. For example, the major 
public cloud actors like Microsoft Azure, Google Cloud Platform (GCP) or AWS have MLaaS 

offers to provide different AI services. Several software vendors are also offering the MLaaS 
platform. Most of the literature discusses MLaaS as being in the cloud. However, in the context 
of IoT where there could be millions of sensors, intermittent connectivity, sensitive or private 

data, it may not make sense nor be even possible to push all the data to the cloud. Also, in 
real-life situations such as health monitoring, emergency response and other latency-

sensitive applications, the delay caused by transferring the data or/and doing the prediction 
in the cloud may not be acceptable. Companies must decide what, when and where to 

send data versus keeping data locally and similarly must decide what, when and where ML 
model is trained, and prediction is done. 

This has led to the notion of Edge computing and Fog computing where some local resources 

can be used to process data. Edge computing and fog computing share a lot of similarities 
and the distinction is not always clear. With edge, computing happens where data is being 

generated, right at “the edge” of a given network. Edge computer is connected to the 
sensors and controllers of a given device and then sends data to the cloud.  Initially, Edge 
Computing paradigm devices had limited resources which limited its usage. Fog Computing 

is a new paradigm addressing this issue by providing a compute layer between the cloud 
and the edge. As explained in [7] Fog Computing has been defined in many ways. The 

definition from S. Yi, Q. Li, and C. Li in [8] fits well with the purpose of the IoT NGIN MLaaS: “Fog 
Computing is a geographically distributed computing architecture with a resource pool 

consisting of one or more ubiquitously connected heterogeneous devices (including edge 
devices) at the edge of the network and not exclusively seamlessly backed by cloud 
services, to collaboratively provide elastic computation, storage and other services either in 

remote locations or in a large number of clients nearby”. 

As stated in Machine Learning as a Service-Challenges in Research and Applications [9], 

there is no clear definition of what MLaaS is. Similarly, there are no standard functional 
requirements and no reference architecture for MLaaS. However, in most of the descriptions, 

the MLaaS platform provides services to store data, visualize data, perform Extract, Load, 
Transform (ETL), train ML models, allow transfer learning and leverage pre-trained model. 
Ideally, MLaaS must be scalable, provide substantial computational resources (e.g., high-
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performance graphics processing units (GPUs)) and allow for technical interoperability with 
other systems via standard APIs and standard network protocols. 

MLaaS comes with new security concerns. As a shared platform MLaaS faces the challenge 

of data privacy of the data and security of the overall system. Owners must be sure that their 
data and model are not stolen, compromised nor being used by unauthorized users. This 

area is subject to quite a lot of research. For example, in survey Privacy-Preserving Deep 
Learning on Machine Learning as a Service [10], Privacy-Preserving Deep Learning (PPDL) is 
presented as a possible solution to this problem for Deep Learning specifically for MLaaS. In 

addition, the MLaaS platform, being connected to the network and in the case of IoT possibly 
using new network protocols, is subject to both common and new network attacks. 

Evaluation in [11] of both the attacks and defences dimensions of an MLaaS system reveals 
that there is an increasing interest from the research community on the perspective of 

attacking and defending against various attacks on Machine Learning as a Service platform. 
IoT-NGIN will participate in this effort by developing privacy-preserving federated Machine 
Learning (ML) and deep ML/ reinforcement learning techniques to enable ML training 

without moving sensitive data from its original sites, overcoming legal or privacy constraints, 
while novel cybersecurity techniques will mitigate poisoning attacks and ensure early attack 

detection in on-device federated ML.  

4.2  IoT-NGIN MLaaS Platform Concept 

The following section details the architecture of the MLaaS framework from different 

perspectives: at the architecture level, at the actors level, at the components level and at 
the functionality level.  

4.2.1 IoT-NGIN MLaaS Concept 

Throughout this section the MLaaS platform is described at the architecture and business 

level, including the functional and non-functional requirements as well as the main 
interactions of the platform. In later sections the architecture is realized into use cases, logical 

components view and sequence diagrams. 

4.2.1.1 Business Context & Motivation 

One of the ambitions of Europe is to foster, strengthen and support the development and 

wide adoption of Big Data Value technologies to sustain the growth of Big Data and remain 
competitive. As stated in BDVA SRIA4.0, three dimensions (over seven) of a strong Big Data 

ecosystem relate to: 

• Data. The availability of data and access to data sources are paramount concerns. 

There is a broad range of data types and data sources: structured and unstructured 
data; multilingual data sources; data generated from machines and sensors; data at- 

rest and data-in-motion. Value is created by acquiring data, combining data from 
different sources, and providing access to data with low latency while ensuring data 

integrity and preserving privacy. Pre-processing, validating and augmenting data, as 
well as ensuring their integrity and accuracy, add value. 

• Skills. In order to leverage the potential of Big Data Value, a key challenge for Europe 

is to ensure the availability of highly and relevantly skilled people who have an 

excellent grasp of the best practices and technologies for delivering Big Data Value 
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within applications and solutions. There will be a need for data scientists and engineers 
who have expertise in analytics, statistics, machine learning, data mining and data 
management. These specialists should be combined with other experts who have 

strong domain knowledge and the ability to apply this know-how within organisations 
to create value.  

• Technical. Key aspects such as real-time analytics, low latency and scalability in 

processing data, new and rich user interfaces, interacting with and linking data, 
information and content, all have to be developed in order to open up new 
opportunities and to sustain or develop competitive advantages. As well as having 

agreed approaches, the interoperability of datasets and data-driven solutions is 
essential to ensure wide adoption within and across sectors.  

The goal of the MLaaS architecture is to define a hybrid edge-cloud MLaaS (Machine 

Learning as a Service) framework that will support these three dimensions by providing the 

data scientists and engineers with access to data and the tools they need for their role 

without taking care of the underlying infrastructure and by providing capabilities for real-time 
analytics, low latency and scalability in processing data. More information related to how 

the MLaaS platform follows the BDVA architecture can be found in Section 4.3: Data Storage 
and Data Management. 

4.2.1.2 High-level IoT-NGIN architecture 

IoT-NGIN aims to act as the engine that will drive the evolution to the next generation of IoT. 
As such, IoT-NGIN addresses multi-variate diverse network topologies and computing 

paradigms for IoT systems acroos a number of domains. With the increasing emergence of 
IoT devices and things, with diverse computing capabilities, computational loads could be 
executed even on device or offloaded to more powerful devices. At the same time, the 

energy efficiency constraints, combined with stringent delay requirement, depending on the 
underlying IoT application, often mandate for the computation to be executed as close as 

possible to the data sources. This has led to the adoption of edge computing, which usually 
refers to computation jobs being offloaded within the same LAN. However, heavier 

computations in less time-sensitive applications have led to the emergence of fog 
computing. In this paradigm, computation is done at more powerful devices in remote 
locations compared to the data sources, but still not referring to cloud resources. Last, but 

least cloud computational resources can be exploited, utilizing flexible plans of data centre 
resources.  

IoT-NGIN covers all three computing paradigms, as illustrated in the network topology of 

Figure 4. As shown in the figure, computation tasks can be executed at the edge, fog or 
cloud layers. Indeed, computation offloading can be performed directly from the edge layer 

to other edge devices or fog or cloud resources, but also from fog to cloud resources. 
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Figure 4: IoT-NGIN network topology 

The complete IoT-NGIN functionality can be mapped to the network nodes, as depicted in 

the draft meta-architecture figure included in the the Description of Action (DoA), which is 
illustrated in Figure 5. The architecture specifies the services offered both in IoT devices and 
in more capable edge / fog / cloud nodes of an IoT-NGIN powered system, supporting a 

modular and flexible combination of next generation (5G, mesh and fog) communications 
and federations of IoT systems and Distributed Ledger Technologies (DLTs), along with Big 

Data Analytics and privacy preserving federated ML for distributed intelligence. As shown in 
the figure, five flexible meta-architectural functional groups are foreseen, namely Federated 

Communications, Microservices and Virtual Network Functions (VNF), Federated Data 
Sovereignty, Federation of Big Data Analytics & ML and Human-Centred Augmented Reality 
Tactile IoT. 

The MLaaS function is plays a central role in the overall IoT-NGIN design, which includes 

various ML-based components. The MLaaS function is supported in the Big Data Analytics, as 

well as the primary ML-based components appearing in purple color in the figure.  

 

Edge

Fog

Cloud
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Figure 5: IoT-NGIN proposed architecture, DoA version 

 

4.2.1.3 IoT Device Classification for MLaaS 

The IoT Device is not part of the MLaaS platform per se, but it can be a consumer of the 

platform and can have strong interaction with it. As there are many diverse types of IoT 
devices there will be different levels of possible interactions between the IoT device and the 

edge/fog/cloud node. The services used from MLaaS platform will depend on the IoT device 
capabilities.  

The IoT devices could range from a simple Microcontroller (Arduino for example) to a large 

object with high compute capabilities (a Street Light or a Wind Turbine for example). Looking 
at the range of possible IoT devices, the characteristics of a micro-controller are: 

• Has low CPU and memory capabilities 

• Runs on battery which possibly should last several years 

• Has limited communication capabilities (only low-power wide-area network – LPWAN, 

for example) 

• Can only run simple ML model (TensorFlow Lite6, etc.) 

In addition, the characteristics of a Big Thing are: 

• Has higher (or at least decent) CPU and memory capabilities 

• Is continuously powered 

 
6 https://www.tensorflow.org/lite  

Edge / Fog / Cloud Node

https://www.tensorflow.org/lite
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• Has a lot of communication capabilities (4G/5G, Wifi, Ethernet, etc.) 

• Can use complex AI models (Tensorflow7, PyTorch8 models, etc.) 

As the IoT devices has increasing compute capabilities, it will be able to have higher 

interaction with the IoT-NGIN Edge node and higher potential autonomy. Figure 6 illustrates 
the differences in terms of capabilities between a simple IoT device (a micro-controller) and 

a bigger IoT device (a Robot) with regards to the services they can use from the IoT-NGIN 
edge node. 

 

Figure 6: IoT Device – Edge Relationship 

Indicatively, the micro-controller will not be able to use AR/Human centered UI/UX, micro-

apps or Blockchain technology in contrast to a Robot which will have enough capabilities to 
use these services. It may be useful to classify the IoT devices based on their capabilities in 
order to evaluate the potential interaction with the IoT-NGIN services and especially with the 

MLaaS platform. Table 27 presents a classification with some of the capabilities of the 
devices. 

 

 
7 https://www.tensorflow.org/  
8 https://pytorch.org/  
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Class Device type Can do prediction? Can do Federated ML? 

1 Microcontroller Prediction with only simple 

model and framework like 

TinyML 

Likely not 

2 Smartphone Prediction only with simple 

model 

Yes with simple model 

3 Affordable low-

powered computer 

(e.g.: Raspberry Pi) 

Prediction with model of 

medium complexity 

Yes with model of medium 

complexity 

4 Robot with medium-

powered computer 

Prediction with possibly 

complex model (image / 
video recognition) 

Yes 

5 Big Thing Prediction with complex 

model 
Yes 

Table 27: IoT device classification 

It is worth noting that even in the case that the IoT device cannot do prediction or participate 
in Federated Machine Learning, it may still be possible to perform such tasks using a Digital 

Twin that will mimic the behaviour of the device. 

 

4.2.1.4 MLaaS platform high-level overview 

Considering the network topology and the draft IoT-NGIN meta-architecture described in 
section 4.2.1.2 “High-level IoT-NGIN architecture”, the IoT device characteristics, as well as 

the IoT-NGIN requirements derived from the Living Lab use cases in deliverable document 
D1.1 “Definition analysis of use cases and GDPR Compliance” [2], the high-level architectural 

concept of the MLaaS platform is defined in this section. Specifically, Figure 7 maps the 
MLaaS functionality in the IoT devices, the Edge nodes and the cloud, highlighting basic 
interactions among them in the MLaaS workflow. These functionalities are mapped to logical 

platform components in Section 4.2.5 “MLaaS Platform Logical view". 
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Figure 7: MLaaS platform architecture overview 

From an architectural point of view, the platform provides the following functionalities and 

interactions, which are detailed and explained later throughout section 4.3: 

• A set of edge nodes providing the MLaaS functions. This set of edge nodes can be 

located in the same location or distributed over several locations. 

• Interaction with the Cloud: 

o The platform can interact with the cloud to download AI Models  

o The edge nodes may possibly use computation from the cloud when extra 
compute resources are required 

o The platform may send data to the cloud for data aggregation or data 
archiving 

• Interaction with the Development Environment of a consumer of the platform (Data 

Scientist, AI developer) 

o The consumer can use some of the development tools of the platform (Jupyter 
notebooks for example in the figure) 

o The consumer can use compute service from the platform directly or via the 
development tool of the platform 

o The consumer can update a Digital Twin that would be hosted in the MLaaS 

platform. The consumer can update the devices via a Continuous 
Integration/Continuous Delivery pipeline 

• Data Storage 

o The development environment can use the storage either to retrieve data (for 
training for example) or to store data (following ETL process for example) 
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o The Data storage can be used to store data (from sensor for example) by the 
Digital Twin (as illustrated in the figure) or directly by the IoT device in case the 
IoT system has no Digital twin 

o The Data Storage is also used for secondary purpose like storing ML from the 
library or ML template 

• Models Library 

o The ML library is used to store ready to use models by a consumer of the 
platform. These models could be used as is or for transfer learning. 

• Polyglot model sharing 

o The Polyglot model sharing component is a software that reads the Model 

library and transforms models into an standard format. It may also offer a 
transfer learning API. 

• API 

o The platform host standard API like Tensorflow or Pytorch so that a consumer 
can directly used these API from the platform 

• Development Environment 

o The platform will have a limited integrated ready to use Development 

Environment (like Jupyter notebooks) that will allow a developer to create AI 
Models without having to setup his own development environment, e.g. 

directly on the platform as a Service 

• Interaction from the Management Agent 

o Depending on user case and associated SLA, the platform can be monitored 
to ensure it is up and running and in good condition. Also the Monitoring 

Management Agent will ensure that the platform is up to date in terms of 
patching and software version. The Management Agent will also be in charge 

of ensuring the platform is and stays secure. 

• Platform Development 

o The platform may be provided by an entity who will be responsible to develop 
the platform, i.e. add new functionalities, perform major upgrades of some of 

the components, change components, etc. 

• Interaction with Digital Twin / IoT device 

o The Digital Twin or the IoT Device is not a component of the MLaaS platform 

but is is expected that it will have major interaction with the platform as it is 
described as part of the architecture of the solution. Such interaction is detailed 
in section 4.2.1.4.2 “Inference on IoT  Device ” and section 4.2.1.4.3 “Digital 

Twins 

• Interaction with a communication Layer 

o The platform will be using a communication layer provided by the underlying 

infrastructure to exchange data with external components like a Cloud (Public 
or Private), a Digital Twin or an IoT Device, a third party, external data sources, 
etc. It is especially expected that 5G will be supported by the communication 

layer. 

 

4.2.1.4.1 MLaaS Platform and Federated Machine Learning 

As derived from the draft IoT-NGIN meta-architecture, the platform should support Federated 

Machine Learning. In this context, the MLaaS Platform may have one or several of the 
following functions: 
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• In the case of several disjoint MLaaS platform instances, those instances will act as 

Edge Nodes using data from the Data Storage. The Cloud or one of the MLaaS 

platform instances would then be the Aggregator Node. 

• The MLaaS platform will act as the aggregator node in the case the Digital Twins or IoT 

Devices are the Edge Node 

• The MLaaS platform will provide Compute capabilities to a Digital Twin or IoT Device 

during the training process 

The exploitation of the platform will depend on the use case and the platform may have 

several roles (via separate services, for example).  

4.2.1.4.2 Inference on IoT  Device  

One of the functions of the MLaaS platform is to collect data sent by the IoT device. The IoT 
device may also request for inferences to the MLaaS platform. However another key function 
is to create AI models that can be loaded onto the IoT devices. Using these models, the IoT 

devices should be then capable of doing local prediction using local data (data from a 
sensor measurement and small cache for example). Such local prediction may be required 

if low latency is needed or when the device has lost connectivity to the edge node. 
Interaction between the IoT device and the MLaaS platform is illustrated in Figure 8. 

 

 

Figure 8: IoT Device – MLaaS platform interaction 

Apart from the device sending sensor data and receiving AI Model from the MLaaS platform 
the figure illustrates how the IoT device can work in an autonomous mode. The compute part 

(an application) of the device controls a sensor to retrieve some data. The data received 
from the sensor is then used with the ML Model do perform a prediction (Inference). Based 
on the result of the prediction, the IoT device may choose to perform an action, like 

activating an actuator for example.  
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4.2.1.4.3 Digital Twins 

One of the technological objectives of the IoT-NGIN project is to perform research towards 

a novel concept of DLT enabled Meta-Level Digital Twin (MLDT) to enable “by design” digital 
twins’ scalability, flexibility and trust. This research will be conducted as part of WP5: 

Enhancing IoT Cybersecurity & Data Privacy. The Digital Twin will not be as such part of the 
MLaaS platform. However it is expected that there will be interaction between the Digital 
Twin and the MLaaS platform. This section gives a simplified and short introduction of the 

Digital Twin concept and its possible interaction with the MLaaS platform. 

For the definition of the Digital Twin, we will use the definition from the Digital Twin 

Consortium9: “A digital twin is a virtual representation of real-world entities and processes, 
synchronized at a specified frequency and fidelity”. Using Digital Twins could present several 
benefits: 

• Digital twin systems transform business by accelerating holistic understanding, optimal 

decision-making, and effective action. 

• Digital twins use real-time and historical data to represent the past and present and 

simulate predicted futures. 

• Digital twins are motivated by outcomes, tailored to use cases, powered by 

integration, built on data, guided by domain knowledge, and implemented in IT/OT 
systems. 

The Digital Twin Consortium sees two categories of digital models: 

• A representational model which consists of structured information which generally 

represents the states of entities or processes. 

• A computational simulation model which is an executable model of a process and 

consists of data and algorithms that input and output representational models. 

Whatever the model is, a key function of a Digital Twin is to synchronize itself with the real 

world. This means: 

• The virtual representation should match more closely the real world. This can be 

achieved via observation mechanisms (sensors, laser scans, satellite imaging, radar, 

videos) 

• The real world should match the virtual representation of a desired state more closely. 

This can be achieved via intervention mechanisms (actuators, robots) 

• The real world should match the virtual configuration of a desired state. This can be 

achieved via regular update of the real world via for example a CI/CD pipeline. 

Several parameters could be used for the synchronisation. Which one are used and with 

which values depends on the context and would have to be decided on case-by-case basis. 

Example of possible parameters are: 

• Observational synchronization frequency 

• Interventional synchronization frequency 

• Frequency by mechanism (i.e. sensors and laser scans) 

The Digital Twin Consortium introduces the notion of a Digital twin system which is a way to 

implement a digital twin. It comprises functional subsystems that implement digital twin 

 
9 https://www.digitaltwinconsortium.org/ 

https://www.digitaltwinconsortium.org/
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system features. Figure 9, from the Digital Twin Consortium website, gives an overview of a 
Digital Twin System. 

 

 

Figure 9: Digital Twin System10 

In the context of MLaaS, a Digital Twin System may interact with the platform in different 

ways: 

• Detect, prevent, predict and optimize through real time analytics based on data from 

real device 

• Send request to the real device to activate an actuator following a prediction 

• Federated ML using private data 

• Update configurations of real IoT devices 

• Check integrity of real world (real state vs desire state) 

• Provide data privacy by keeping data local to the digital twin 

• Keep some of the data private and share some of the data with the platform. 

 
10 https://www.digitaltwinconsortium.org/  

https://www.digitaltwinconsortium.org/
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Figure 10: MLaaS platform interaction with Digital Twin and IoT Device  

From an implementation point of view the Digital Twin System could be from small digital twin 

(metadata only) to large digital twin (complete application/simulator). Dedicated container 
or application with multiple containers could be used to make the Digital Twin System. The 
Digital Twin System is not part of the MLaaS platform but complements the MLaaS schema, 

providing the required interface for the optimal utilization of the IoT devices. 

 

4.2.2 Actors  

The identification of the actors that will interact with the MLaaS platform is key for the 
specification of the use cases and the functionalities that will be provided. Table 28 and 
Table 29 describe the actors of the MLaaS platform, which can be separated into two main 

groups: human actors and non-human actors (systems).  
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Table 28: Human actors of the MLaaS platform 

 

Human Actors 

Data scientist / AI 

developer 

This actor will make use of the tools provided by the platform to: 

1. Analyse and process the data. 

2. Design and prepare AI models to be trained within the 

infrastructure. 

The actor may also use the platform to prepare an AI method or an 

AI Service. 

AI Application 

developer 

This actor is responsible for the creation of an AI Application by 

gathering a set of AI methods or AI Services that serve a common 

purpose. The AI Application may be offered as an AI Application 
Service, which can be consumed by other human or system actors. 

AI User / Integrator This actor will either consume single AI services or an entire AI 

Application Service offered directly from the platform. As an 
alternative, it will deploy AI Methods or AI Services into another 

infrastructure. 

End-user (e.g., 

farmer, factory 

operator, etc.) 

This actor refers to the final consumer, who is the one who benefits 

from the actual outcomes of the AI models and the one who will take 
different actions or decisions according to those results. 

Platform provider / 

administrator (hw + 

sw) 

This actor is the manager of the infrastructure, overseeing the in-

premise deployment of the platform as well as its maintenance and 
updates. 

Third parties / Data 

providers 

Refers to companies or other users that benefit externally from the 

platform capabilities.  
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Table 29: Non-human actors, either hardware or software, using the MLaaS platform 

 

4.2.3 MLaaS Platform Use Cases 

The key functionalities which will be implemented as part of the IoT-NGIN MLaaS platform are 

represented through use case diagrams. The actors identified in the previous section will be 
the users of these functionalities. The use cases will be the baseline for the definition of the 
internal platform architecture and the specification of the interactions with external 

components and systems. 

4.2.3.1 Data acquisition  

Figure 11 depicts the Data Acquisition platform use case as a UML diagram. It explains the 
functionality of the MLaaS platform when it comes to getting the data from different data 
sources.  

The use case is divided into five sub-use cases: 

1. UC1.1 Loads dataset: a Data scientist / AI developer should be able to load a dataset 

(connects to local data storage and gets the data) from within the MLaaS platform 
and perform typical operations on it included in the rest of UC1 use cases.  

2. UC1.2 Specifies dataset parameters: When loading a dataset, the Data scientist / AI 

developer should be able to specify some parameters to be applied to it, which 
should be previously defined in the MLaaS data templates. These parameters may 

include, for instance, the format of the dataset (structured data, images, etc.), the 
number of instances to load, among many others.  

Non-human actors 

Device (i.e. IoT 

devices, robots or 

drones) 

Generally speaking, any device that produces data that can be used 

to train AI Models or feed AI methods, services and applications. Also, 
they can directly embed the AI Methods / Services or consume their 

results.  

Data platform 

(e.g. used in the 

living labs) 

A cloud data provider or any other kind of data platform providing data 

from the cloud or edge. It could also refer to the general data sources 

of the MLaaS platform. 

AI Applications Applications (e.g. to be developed within the living labs’ use cases) that 

consume the offered AI models by means of AI Services or AI 

Application Services. 

Digital Twins Mimics of the UC devices or platforms, providing the right response when 

those are not available or are not desired to be accessed from the 
MLaaS platform (for example, due to a local electrical issue). 

Blockchain 

network 

The management of data in the platform can be integrated with a 

blockchain network to ensure data integrity immutability. 

(IoT-NGIN) 

Orchestrator  

Manager of the deployed instance of cloud-edge infrastructures. 
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3. UC1.3 Extracts data: Once the loading parameters are defined, the Data scientist / AI 

developer can extract the data (exports it to the platform) from the corresponding 
data source(s): a Data Platform, a Digital Twin or a Device. Extracting this data can 

be done in two ways:  
a. UC1.3.1 Retrieves batch information: The dataset is loaded once or in some 

subsets or batches into the MLaaS platform storage.  

b. UC1.3.2 Connects to data streams: The dataset is not loaded entirely but rather 

the data source sends the data periodically to the MLaaS platform storage, 

which handles the connection to the stream seamlessly.  
4. UC1.4 Feeds AI Methods and Services: Once the dataset is loaded and it has been 

processed by the Data pre-processing, a Data scientist / AI developer should be able 

to feed seamlessly an AI method from the data so that it is used as an ML model input 
for training or inference.  

In this use case the following actors participate: 

• Data scientist / AI developer: He or She should be able to load a dataset from one or 

some of the data sources and connect the dataset with an AI method.  

• Device: Real IoT Devices, robots or another kind of devices that send data in batches 

or a stream to the MLaaS platform. 

• Digital Twin: A data source provided by IoT-NGIN instead of the Devices that sends 

data in batches or a stream.  

• Data Platform: A data source that is not a Digital twin or a Device, but instead, for 

example, a cloud provider or any other data provider that sends data to the MLaaS 

platform.  

 

 

Figure 11: Platform Use Case 1: Data Acquisition 

 

4.2.3.2 Data pre-processing 

The Data preprocessing use case provides information related to how the analysis of the 

data is done in the platform and its preparation to be used as a source to train an AI model.  

The use case is divided into seven sub-use cases: 
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1. UC2.1 Exploratory Design Analysis: a Data scientist / AI developer should be able 

to use data analysis tools and techniques to investigate, analyse, and summarize 
the main characteristics of a dataset. Typical operations refer to detecting obvious 

errors, identifying outliers, understanding relationships, unearthing important 
factors, and finding patterns within data. 

2. UC2.2 Data annotation: data is annotated by a Data scientist / AI developer to 

prepare the raw data in order to be consumed by the ML platform. Example of 
annotation would be an image, video, text, audio annotation and 2D/3D 

bounding box. This may also include the division of the dataset into train and test 
sets.  

3. UC2.3 Data wrangling: a Data scientist / AI developer should be able to restructure 

and transform data into a standard format. Part of Data wrangling operations are: 
a. UC2.4 Data Cleaning: the source data is converted into cleaned data by 

removing incomplete, errors, noise, duplicates data and inconsistencies. 
b. UC2.5 Data normalization: any unstructured data and redundancies that 

can exist in the data set is removed and eventually the data are grouped 

logically in order to end up with more structured data. 
4. UC2.6 Data sampling: As it is not always possible to store the data in full or it is 

inconvenient to work with data in full, it could be faster to work with a compact 
summary. The Data scientist / AI developer may decide to obtain a smaller data 

set with the same structure from the full dataset. 
5. UC2.6 Data augmentation: value can be added to the data by adding information 

derived from internal and external sources. Some of the common techniques that 

can be used are extrapolation, tagging, aggregation and probability technique. 

In this use case the following actors participate: 

• Data scientist / AI developer: He or She should be able to perform various 

transformation on the dataset in order to prepare the data to be consumed by the 

ML platform.  

• Third-party: The third party may use the data from the platform and perform its own 

transformation on them. 
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Figure 12: Platform Use Case 2: Data pre-processing 

 

4.2.3.3 AI Modelling (edge) 

The “AI Modelling” use case provides the set of actions that are necessary in order to develop 
an AI model that can be further deployed and tested. The use case is divided into the 

following sub-use cases: 

1. UC3.1 Feature engineering: The efficacy of any ML model depends on successful 

feature engineering. This use case allows the Data Scientist/AI developer to derive 
better features from raw data, by enabling blending information together to make 

useful model inputs. 
2. UC3.2 Model selection: “There is an old theorem in the machine learning and pattern 

recognition community called the No Free Lunch Theorem, which states that there is 

no single model that is best on all tasks,” said Dr Jason Corso, who is a Professor of 
Electrical Engineering and Computer Science at the University of Michigan and the 

co-founder and CEO of Voxel5111. Via this use case, the Data Scientist/AI developer 
can select the algorithm that best fits their dataset, as well as their task. Based on the 
type of learning selected, the algorithm can change the shape it takes. The Data 

Scientist/AI developer can select among supervised learning, unsupervised learning, 
reinforcement learning and transfer learning. This use case is the generalization of the 

following use cases. 
a. UC3.4 Supervised Learning: Supervised learning involves the machine being 

trained on a given labelled dataset. The Data Scientist/AI developer can select 

the supervised learning algorithm in order to train accordingly. 
b. UC3.5 Unsupervised Learning: In this type of learning, the machine is trained 

over unlabelled datasets. The Data Scientist/AI developer selects unsupervised 

 
11 https://voxel51.com. 
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learning to let the machine find the links between the objects, potentially 
applying dimensionality reduction, where it reduces the number of variables to 
decrease the noise. 

c. UC3.8 Reinforcement Learning: Reinforcement learning allows the Data 

Scientist/AI developer to train their machine, by learning from their own success 

and failures. This use case allows the selection and application of algorithms 
performing reinforcement learning techniques. 

d. UC3.10 Transfer Learning: In this type of learning, training exploits the 

knowledge (patterns) learnt in one task to another related task, by actually 
retraining a pre-trained model in a different task than the original training took 

place. Through this use case, the Data Scientist/AI developer performs transfer 
learning. 

3. UC3.3 Model training: This use case provides the next step in model creation, which is 

the training of the model. In order to do so, the Data Scientist/AI developer defines 
the training set, on which the algorithm will be trained. This use case is the 

generalization of the following use cases. 
a. UC3.6 Federated Learning: In federated learning, the training procedure is a 

product of “coopetition” among a set of nodes, trading off cooperation and 

competition in deriving an aggregated trained model. The Data Scientist/AI 
developer may select this type of training through this use case. Moreover, the 

Device, the Data Platform and the Digital Twin interact with the use case, as 
they may select to perform training as federated nodes. 

b. UC3.7 Continuous Learning: Continuous learning embeds the idea of 

continually updating an ML model with new data as they become available. 
This use case enables the Data Scientist/AI developer to perform online 

training, while it provides the baseline for active learning and multimodal and 
multitask learning. Moreover, the Device, the Data Platform and the Digital Twin 

participate in the use case, as they may perform online training on their 
continuous data streams. 

4. UC3.11 Validation: The definition of performance metrics is valuable in the evaluation, 

comparison and analysis of results of training, which will help to further refine the ML 
models. Indicatively, the classification accuracy, which represents the number of 

correct predictions divided by the total number of predictions, and multiplied by 100, 
is an appropriate performance metric for classification problems. Also, the selection 
of validation dataset affects the model trustworthiness, overcoming the problem of 

overfitting. In this use case, the Data Scientist/AI developer defines the set of 
performance metrics against which the ML models will be validated, as well as the 

success criteria, i.e. the setpoints which will define whether the model can be 
considered appropriate for the use case it is aimed for. Also, through this use case, the 

validation takes place and the Data Scientist/AI developer is provided with the 
validation result. 

5. UC3.12 Model tuning: In this use case the Data Scientist/AI developer applies model 

tuning, by configuring a set of hyperparameters, such as coefficients penalties, 
decision trees, number of layers in neural networks, etc. Model tuning is required in 

order to derive more accurate predictions for different datasets. 
6. UC3.13. Create AI Method: In this use case, the Data Scientist/AI developer build saves 

the model and uses it to create an AI method. 
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Figure 13: Platform Use case 3: AI Modelling 

 

4.2.3.4 AI Model deployment  

The AI Model deployment use case defines the set of actions to be carried out in order to 
package, optimize and deploy an AI model into a target infrastructure.  

The use case is divided into four sub-use cases: 

1. UC4.1 Model Packaging: a Data scientist / AI developer should be able to put the AI 

models and their descriptions in one place and a standard format so that they can 

be easily shared and used through an API. This will enable to place the model in the 
corresponding AI services, which offer the API to the users. 

2. UC4.2 Model Optimization: The model should be validated before it is put into 

production, which means optimizing its parameters before doing the final 

deployment. In addition, the deployment of models on low-powered devices or 
constrained hardware may require performing some optimization techniques on the 
model so that it operates smoothly in that hardware. With regards to this, this sub-use 

case conforms to the set of actions and operations to optimize (i) the model 
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hyperparameters after doing a validation operation against a validation dataset, and 
(ii) the optimization of the model binary according to the requirements of the target 
deployment infrastructure.  

3. UC4.3 Model Deployment: a Data scientist / AI developer should be able to deploy 

the model to a device, a digital twin or a data platform once it has been packaged. 

The calls for inferences to this model are done via an API defined by the 
corresponding AI method.  

4. UC3.13 Creates AI Method: In order to deploy a model, it must be created previously 

the corresponding AI Method that calls the AI model in the background. 

In this use case the following actors participate: 

• Data scientist / AI developer: He or She should be able to package, optimize and 

deploy a model.  

• Device: Real IoT Devices, robots or other kinds of devices to which the data model 

can be deployed. 

• Digital Twin: A data source provided by IoT-NGIN instead of the Devices to which the 

data model can be deployed.  

• Data Platform: A data platform that is not a Digital twin or a Device, but instead for 

example a cloud provider or any other data provider to which the data model can 
be deployed to.  

 

 

Figure 14: Platform Use Case 4: AI Model Deployment 

 

4.2.3.5 Integration and Model Operation 

In Figure 15 we may observe the UML diagram for the Integration and Model Operation 

platform use case. This use case depicts how the trained ML models are integrated into AI 
services after an AI method has been created, and how those AI services are deployed for 

their integration in the living labs or any other third-party platform operating IoT-NGIN. In 
addition, this platform use case describes how the model operates once it has been 
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deployed. For that, different kind of actors will make use of it, some of them will even monitor 
its performance in production, as it is described below.  

The platform use case is divided into six sub-use cases: 

1. UC5.1 Creates AI Service: This sub-use case refers to the preparation of an AI service 

through loading the required libraries and frameworks for using the required AI 

method. The AI Application developer is in charge of creating this AI service by 
packaging the required libraries, as well as the AI method and the trained AI model, 
enabling seamless deployment in any compatible infrastructure.  

2. UC5.2 Deploys AI Service: Once the AI service has been created, it may be deployed 

in the target infrastructure by the AI application developer. This use case extends from 

the UC4.3 Model Deployment, described previously, so that the target infrastructure 
deployment requirements are properly addressed before running the AI service.  

3. UC5.3 Uses AI Service: The AI User / Integrator and any client’s end-user can use the 

AI service through this sub-use case. It includes the UC5.4 described next.  
4. UC5.4 Consumes Inferencing API: This sub-use case offers the deployed AI service API 

for its usage, either by the Digital Twins and/or IoT Devices deployed in the 
infrastructure or by external calls from other parts of the platform.  

5. UC5.5 Feeds AI method: By means of this sub-use case, the Digital Twins and IoT 

Devices will be able to feed the AI method of the deployed AI service, as input data 
for the AI model and/or as a request for inference (prediction or classification).  

6. UC5.6 Monitors Performance: The AI User / Integrator and/or the Data scientist / AI 

Developer could monitor the metrics of the deployed AI models by means of this sub-
use case. The inferencing API will be consumed to obtain the required data for the 

monitoring.  

In this use case the following actors participate: 

• AI application developer: Person in charge of creating the AI services, by loading the 

specific AI methods and AI models, and deploying them into the target infrastructure.  

• End-user: User or client of IoT-NGIN’s deployed MLaaS platform that consumes the 

deployed AI services.  

• Data Scientist / AI developer: Person that deals with the deployed AI models’ 

monitoring and uses the relevant metrics to perform UC3.7 Continuous Learning on 

the deployed AI models, if applicable.  

• Digital Twin: Entity consumer and/or feeder for the AI models. 

• Device: Real device consumer and/or feeder for the AI models. 

• AI User / Integrator: Person in charge of ensuring the correct usage of the AI services 

and monitoring the performance of the deployed AI models in the target 
infrastructure.  
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Figure 15: Platform Use Case 5: Integration and Model Operation 

 

4.2.3.6 Model Sharing 

Use Case 6 “Model Sharing” deals with making the model available to third-party developers 
in order to use the stored models in new applications or services or even use a direct API to 

make predictions using these models. This use case is realized via the following set of sub-use 
cases. 

1. UC6.1 Publishes model: The Data Scientist/AI Developer publishes the model, i.e. 

shares the model with a user or a group of users or publicly, giving them the ability to 
see and run the model. Specifically, the Data Scientist/AI Developer tags a stable 

version of their model or API serving this model and it is made available as a new 
release. 

2. UC6.2 Controls access: The Data Scientist/AI Developer controls the type of sharing, 

including “private” sharing with selected users or groups, as well as “public” which 
makes the model available with no additional access restrictions. 
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3. UC6.4 Discovers models: A Third-party (developer) searches ML models or APIs serving 

those models, which are available to them, based on their profile or access rights or 
availability restrictions of the models per se. This Third-party (developer) discovers 

models of their interest, being provided with data or metadata describing the model. 
4. UC6.5 Gets model: The Third-party (developer) has the option to get the model of their 

interest in order to use it, selecting a specific tag (release) of it. This includes 

downloading the binary model, in order to use it in the AI method, service or 
application development or a direct API to an AI method that uses this model. 

5. UC6.6 Checkout model: This use case is “included” in UC6.5 “Gets model”. It refers to 

Third-party (developer) being able to download locally the selected tag of the model 

or API serving the model. 
6. UC6.3 Monetizes model: This use case is not included in Use Case 6 “Model Sharing”, 

as it represents an optional case of the Data Scientist/AI Developer monetizing the 

model. Also, this use case involves the Third-party (developer) paying the specified 
remuneration fee, as part of the checkout process, after selecting and before 

downloading/being granted access to the model. 

 

 

Figure 16: Use Case 6: Model Sharing 
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4.2.4 Functional and Non-Functional Requirements 
for MLaaS 

In this section, both functional and non-functional requirements are elicited for the IoT-NGIN 

MLaaS platform, considering the platform use cases specified in section 4.2.3 “MLaaS 
Platform Use Cases” lists the functional requirements for the MLaaS platform. 

 



H2020 -957246    -   IoT-NGIN  

 
D3.1 - Enhancing Deep learning/reinforcement learning 

 

68 of 108 

 

Table 30: MLaaS platform functional requirements (1/2) 

 

IoT-NGIN MLaaS Functional Requirements 

Data Storage The platform should provide Data Storage. The Data Storage 

should allow for storing: 

1. Data from Data Ingestion 

2. Data for ML training 
3. Data for feature processing 

Data Visualisation The platform should provide an environment to perform data 

exploration and data visualisation 

Data Analytics The platform should provide an environment for applications to 

request prediction 

Data Processing The platform should provide an environment to perform data 

preparation 

Data Management The platform should provide a collection of tools that help control 

and manage the data storage effectively to achieve centralized 

data coherence. Data management tools support functions 
performing control, protect, organize, retrieve, search, data 

lifecycle, etc. of the data 

Feature engineering The platform should provide an environment to perform Feature 

engineering 

Data collection and 

ingestion 

The platform should allow for IoT devices or Digital Twin to ingest 

and store data in the Data Storage 

Model creation and 

training 

The platform should allow for creating ML model and perform 

training 

Model testing The platform should allow for testing ML models prior to their 

deployments 

Model Deployment The platform should provide tools for the deployment of the 

trained model onto IoT devices or Digital Twin 

Model library The platform should provide a library storage of AI models that 

can be used as-is or for transfer learning by the platform 

Support for 

Federated Machine 

Learning 

The platform should provide support for Federated Machine 

Learning 

Polyglot trained ML 

model sharing 

The platform should provide polyglot trained ML model sharing 

component where AI models can be shared with third parties and 

stakeholders entirely or by applying transfer learning 
methodologies 
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Table 31: MLaaS platform functional requirements (2/2) 

 

In addition, Table 32 and Table 34 list the non-functional requirements for the MLaaS platform. 

IoT-NGIN MLaaS Functional Requirements 

Interaction with Digital 

Twin 

The platform should be able to collaborate with a Digital Twin 

System or meta-level Digital Twins: 

1. To get access to data for Federated Machine Learning 

2. To send prediction to the Digital Twin 
1. To send command to the Digital Twin 

Search and Discovery The platform should allow clients to search for ML models and 

available (public) data 
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Table 32: MLaaS platform non-functional requirements (1/2) 

IoT-NGIN MLaaS Non-Functional Requirements 

Availability The platform should be able to run 7 days a week, 24 hours a 

day 

Data collection and 

ingestion protocols 

The platform should support open interfaces for data ingestion 

via REST, MQTT and/or CoAP transfer protocols.  

Data ingestion format The platform should support data representation in the JSON, 

XML and/or CBOR format 

Network 

communication 

Platform support for data ingestion protocols should be 

independent from the underlying network communication 

layer, e.g. 4/5G, LTE/NB-IoT, LPWAN, Ethernet, WLAN, etc. 

Platform protection The platform should provide Role Based Access Control (RBAC) 

for protected access to the platform 

Data protection at rest 

and in transit 

The platform should provide secure data at-rest and in-transit.  

Traffic should be encrypted with TLS or DTLS. 

Data sharing The platform should provide a secure, trusted and controlled 

way to share data.  Sharing should stay within the bounds of 
security and privacy policies defined by the stakeholders of the 

data 

Data privacy The platform should provide adequate protection to ensure 

privacy of the data 

Data type Platform should address data management across a data 

ecosystem comprising both open and closed data 

Provide GPU The platform should provide graphics processing unit (GPU) 

capabilities to accelerate ML training 

Model 

Operationalization 

The platform should allow adjustment of models to ensure their 

relevance over time (MLOps) 

Management The platform should allow to be maintained, monitored and 

managed 
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Table 33: MLaaS platform non-functional requirements (2/2) 

 

4.2.5 MLaaS Platform Logical view  

Considering the MLaaS requirements and the previously described platform use cases, the 

logical view of IoT-NGIN’s MLaaS platform was conformed as it is shown in Figure 17. The 
components of the platform are not designed to be a software element itself, but rather they 

represent a set of functionalities that serve a common purpose provided through different 
software and/or hardware procedures. They are represented in the part of the network 

(Cloud/Edge) in which they are expected to function. However, some components can be 
executed and perform tasks along the cloud-edge continuum, thus, they are represented in 
the middle of the figure. three main blocks can be identified as follows: 

• Orange boxes represent the functionalities that deal with AI models: training, 

deploying, optimizing, and sharing. The following components have been identified: 
o Model training: This represents the functionalities related to training an AI model 

with data handled by the platform in the Data Storage component and 
represents the use cases defined in Platform Use Case 3: AI modelling. Even 
though the training of those models is supposed to be federated, the 

aggregation operations of the federated learning servers can be executed in 
the cloud-edge continuum, so, in the figure, it appears in the middle of the 

network. Once an AI model is trained, its weights can be stored in the Models 
Library for later usage or sharing, or it can be directly deployed with the Model 

Deployment component. In addition, the Model Training component is 

IoT-NGIN MLaaS Non-Functional Requirements 

Scalability The platform should be scalable to ensure it can grow over time 

according to the number of requests.  

Regulatory 

requirements 

The platform should be compliant according to the data hosted into 

the platform (GDPR, HIPPA, etc.) 

Localization The platform should support the English language. Depending on the 

tools used it will possibly support other languages 

Implementation The platform should preferably be installed using Infrastructure as Code 

(IaC) 

Recoverability The platform should have backup mechanism to be able to recover 

data and models in case the platform must be reinstalled 

Open source The platform should be based on Open source components 

External access The platform should be able to exchange data with external platforms 

like public/private cloud, external data provider (weather forecast for 

example) or social media 

DevOps The platform should provide tools for Continuous Integration & 

Continuous Deployment (CI/CD) for deployment of the AI models into 

IoT-NGIN IoT devices 
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accessible from the Development Environment, and it works in cooperation 
with the Model optimization component.  

o Models Library: This component represents the functionalities related to storing 

the AI models’ weights in a database-like object. It will allow to verify the 
integrity of those models and to prevent disclosing any data related to the 

training phase, along with the capacity of loading and downloading.  
o Model deployment: It represents the set of functionalities related to deploying 

an AI model (comprised of an AI Service) for inference. It also enables the set 

of APIs that can be used to request inferences and the set of APIs to enable 
the monitoring of the model’s performance. In addition, it will allow using the 

continuous learning framework if the target environment can take advantage 
of this functionality. All in all, this component represents the use cases defined 
in Platform Use Case 4 “AI Model Deployment” and Platform Use Case 5 

“Integration and Model Operation”. Likewise, the Model deployment 
component is supposed to operate over the cloud-edge continuum; there will 

be cases in which the AI Model may be deployed directly on the IoT Devices 
or in the edge nodes, but in other cases, it may be deployed in the cloud 

instance of the platform.  
o Model optimization: With respect to Platform Use Case 4 “AI Model 

deployment”, this component is in charge of performing the required 

optimizations on the trained AI model to (i) validate the model 
hyperparameters against the validation data and (ii) to enable an optimal 

deployment on the target environment (different types of IoT Devices or Edge 
nodes that have different hardware capabilities). Thus, this component will 
enable the operation of those models optimally by leveraging a set of 

techniques implemented for (i) validation of the model’s parameters before 
production deployment, and (ii) adaptation of the model to the hardware of 

the production environment.  
o Polyglot model sharing: In addition to the rest of the operations with an AI 

model, the AI platform will define a component with the functionalities detailed 

in the Platform Use Case 6 “Model Sharing”. It will be in charge of sharing the 
model with third parties or other external users in different AI frameworks 

(polyglot).  

• Green boxes represent the functionalities to handle the data from the data sources: 

loading the data according to templates, performing data processing and storing the 
data in edge nodes. The following component conforms to the data-related 

functionalities of the platform: 
o Data Management: This component will conform to the main functionalities 

related to managing the data in the platform, allowing to access, view, modify 
and/or delete specific data to specific users, and to enable the operations in 

the ways explained in Platform Use Case 1 “Data Acquisition and platform” 
and Use Case 2 “Data pre-processing”, from a common point of view. Since it 
is comprised of a set of functionalities, this component is represented in the 

cloud, where the users have access from the Development Environment 
component. 

o Template Data Library: This component enables the acquisition and pre-

processing of the data according to some pre-defined templates, i.e. granting 
the users with pre-existing functionalities and schemes to load and visualize the 

data or to do some pre-defined operations over them.  
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o Data Acquisition: As defined in Platform Use Case 1 “Data acquisition”, this 

component will grant the users of the platform to load a dataset (or connect 
to a data stream) from the Data Storage according to some parameters that 

can be configured previously. These functionalities can be executed along the 
cloud-edge continuum.  

o Data pre-processing: Once a dataset is loaded, the data can be processed in 

the ways explained in Platform Use Case 2 “Data Pre-processing”, before 
feeding this data into an AI model. Similar to the Data Acquisition component, 

these operations can be carried out along the cloud-edge continuum. 
o Data Storage: This component represents the set of functionalities and 

capabilities of the platform to store the data locally, close to the edge. Not 
only that, but it also enables access to this data through a set of APIs or 
functionalities. The storage of the data in the MLaaS platform is supposed to be 

only on the edge, in order to preserve privacy and to prevent disclosing this 
data outside the scope of the local deployment.  

• Blue boxes represent the data sources of the platform, that send data in batches or a 

stream. The following main data sources of the platform have been identified: 
o IoT Devices: This represents the data sources of the platform and, possibly, 

consumers of the AI models.  

o Digital Twins: Similar to the IoT Devices, the Digital Twins may access the AI 

models for inference, and they can feed the Data Storage of the platform.  

Last, there is a white-marked component named “Development Environment”. This 

component will serve as the entry point of the platform for any user where, through a set of 
APIs and/or a graphical user interface (GUI), it will grant usage of the rest of the platform 

components and functionalities from a common place.  

 



 

 

 

Figure 17: MLaaS Platform Components - Logical view 



 

 

4.2.6 MLaaS sequence diagrams  

In this section, the sequence diagrams of the MLaaS platform are described following the 
UML pattern. The main purpose of these diagrams is to link each platform use case with the 
platform’s logical view in Figure 17, showing how the actors and components interact 

arranged in a time sequence way.  

 

4.2.6.1 Data acquisition  

Figure 18 depicts the sequence diagram for the data acquisition platform use case. The 
workflow is as follows: 

1. The first actor involved in this diagram is the Data Scientist / AI Developer, who 

interacts with the Data Acquisition component to perform some preliminary 

operations on the dataset to be stored or processed, such as setting the parameters 

for the following extraction processes.  
2. Once the preliminary parameters are set, the Template Data Library is used to store 

this information for later usage when the real data is received. There are two ways of 
getting this data: either directly from the Devices or the Digital Twins as a stream, or 

from the Data Platforms, which may also be as a stream or in batches.  

3. Finally, after the successful extraction of this data, it is stored in the Data Storage 

component, which should be local/close to the edge.  

 
 



 

 

 

Figure 18: Sequence diagram for Data acquisition use case 



 

 

4.2.6.2 Data pre-processing 

Figure 19 depicts the Sequence Diagram for the Data preprocessing platform use case. The 
workflow is as follows: 

1. The first actor involved in this diagram is the Data Scientist / AI Developer, who 

connects to the Development Environment of the platform before accessing tools and 

compute resources required for the data pre-processing. The Development 
Environment will check if the requester has adequate rights to use the platform. 

2. Once authorized in the platform, the Data Scientist / AI Developer will start performing 

Exploratory Design Analysis. He will load the data s/he wants to explore from the 

platform’s Data Storage. The platform will check if the Data Scientist / AI Developer 

has the rights to access these data. The Data Scientist / AI Developer will use data 
analysis tools and techniques available in the platform to investigate, analyse, and 
summarize the main characteristics of the dataset. This can be an iterative process 

where the Data Scientist / AI Developer refines her/his exploration of the data via 
several iterations. Once done the Data Scientist / AI Developer will save the updated 

data if they have been modified in the process. 
3. Once the Data Scientist / AI Developer has completed the Data Exploration, s/he will 

perform data wrangling to possibly restructure and transform data into a standard 

format. She ornHe will load the data saved in the previous step and will perform data 

cleaning and data normalization. Updated data are saved to the data storage. 

4. A second actor in this diagram is a third party that could want to use the data from 
the platform. This third party will request the data prepared by the Data Scientist / AI 
Developer and, if authorized, s/he will download the data from the data storage. 

5. The Data Scientist / AI Developer may want to augment the data with external data 

from a third-party source. She or He will request the third-party data and, if authorized, 

will load the data in the development environment. This can be an iterative process 
where the Data Scientist / AI Developer augments the data via several external 
sources. 

6. Once all data are fine, the Data Scientist / AI Developer will annotate the data to 

prepare the raw data to be consumed by the platform for ML training. Example of 

annotation would be an image, video, text, audio annotation and 2D/3D Bounding 
Box. Annotated data are saved in the data storage for future used for the ML training 

process. 
7. In the case, the full data are big for long term storage or it is inconvenient to work with 

data in full, it could be faster to work with a compact summary. The Data scientist / AI 

developer may decide to create a smaller data set with the same structure as the full 

dataset. The Data scientist / AI developer will perform data sampling and will store the 

sampled data on the data storage for future use for ML training for example. 
8. Once the data are ready, the Data scientist / AI developer will split the data into a 

training and a test set. 
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Figure 19: Sequence Diagram for Data pre-processing use case 
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4.2.6.3 AI Modelling (edge) 

The AI modelling process describes the activities following the Data Preprocessing tasks and 
focused on the delivery of an ML model which is appropriate for the predictive modelling 

problem in question. In IoT-NGIN, the ML modelling process includes the following steps: 

• Feature engineering,  

• Model selection 

• Model training 

• Model validation 

• Model tuning 

• Model saving 

The sequence of processes through AI Modelling that takes place in IoT-NGIN is analysed in 

the sequence diagram depicted in Figure 20 and Figure 21. The process starts with “feature 
engineering”, which refers to the definition of appropriate properties or calculations which 

can be used to extract useful insights over the given data set for a given predictive problem. 
The Data scientist/AI developer interacts with the Development Environment in order to 

define and apply a new feature engineering process over the dataset already acquired and 
pre-processed, e.g. via the Data Acquisition and Data Preprocessing processes. The feature 

engineering process is handled by Data Management, which undertakes to store the 
process in the Template Data Library and apply it on the dataset loaded by the Data 
Storage. After Feature Extraction is finished, the feature metadata are stored in the Data 

Storage and are also provided back to the Data scientist/AI developer. 

The next step includes the processes that lead to model selection, i.e. the model definition, 

training and assessment. First, the model hyperparameters are defined and the candidate 
model is stored in the Model Library. Then, the Data scientist/AI developer calls model training 

via the Development Environment and Model Training loads the model from the Model 
Library, as well as the data and features from the Data Acquisition and perform the model 
training. The trained model is stored in the Model Library and the result is returned to the Data 

scientist/AI developer. Then, validation takes place, after the Data scientist/AI developer’s 
call, which is passed to the Model Optimization. This component performs the validation of 

the model -taken from the Model Library- and the validation dataset -acquired via Data 
Acquisition. The validation result is returned to the Data scientist/AI developer. In case the 
validation has failed, s/he performs model tuning and the updated model hyperparameters 

are saved in the Model Library.  

If validation has been successful, the Data scientist/AI developer selects and saves the 

trained model in the Model Library. Now, the model is available for developing an AI method, 
using it for inference. 

  



 

 

 

Figure 20: Sequence diagram for AI Modelling use case (1/2) 



 

 

 

Figure 21: Sequence diagram for AI Modelling use case (2/2) 



 

 

4.2.6.4 AI Model deployment  

Figure 22 depicts the sequence diagram for the AI Model Deployment use case. The 
workflow is as follows: 

1. The Data Scientist / AI Developer starts by loading an AI method that has been 

previously created. 

2. The Data Scientist / AI Developer packages the AI model in a standard format and 

with a description. The packaged model is saved in the Model library so it can be 
shared and reused. 

3. Optionally, The Data Scientist / AI Developer may need to optimize the model for a 

specific use case like deployment on low-powered devices or constrained hardware. 

Once optimized the model is saved in the Model Library. 
4. Once the model is ready to be deployed, the Data Scientist / AI Developer will deploy 

the model onto the physical device or the digital twin or another data platform. 

Optionally (but preferably), the Data Scientist / AI Developer could use the CI/CD 

system of the platform to deploy the model onto the physical device or the digital 

twin or another data platform by updating a CI/CD repository associated with the 

device, the Digital Twin or the data platform. 
 

 



 

 

 

Figure 22: Sequence diagram for Model Deployment use case 

 



 

 

4.2.6.5 Integration and Model Operation  

Figure 23 depicts the Sequence Diagram for the Integration and Model Operation platform 
use case. The workflow is as follows: 

5. The Data Scientist / AI Developer starts using the Development Environment to create 

an AI service. It includes the AI model, loaded from the Models Library, and the AI 

Method corresponding to that model. Once the AI model is loaded and the AI 
method is prepared, the AI service is created encapsulating them through the 
Development Environment. 

6. Once an AI service is ready, it is deployed by the Model Deployment component, 

which is connected to the corresponding Data Storage. The AI service deployment 

takes place, according to the Data Scientist / AI Developer’s input, in the Living Labs 

of IoT-NGIN or any client Data Platform.  
7. The AI service can be operated in different ways. However, in order to do so, the AI 

model needs some input data, which can be obtained either directly from the 
Devices or Digital Twins, or via requests to the Data Storage. Similarly, the Devices and 

Digital Twins can get the inference either directly from the AI Service, or via reading 

the stored inference in the Data Storage. 

8. In addition, as the inferences are stored in the Data Storage, the AI model can be 

monitored by the Data Scientist / AI Developer and the AI User / Integrator. 

9. Last, the AI User / Integrator can make use of the AI Service, similarly, feeding or 

consuming the AI model in order to get inferences.  

 



 

 

 

Figure 23: Sequence diagram for Integration and Model Operation use case 



 

 

4.2.6.6 Model Sharing  

The Model Sharing processes ensure that a published model will be available to third parties 
for use. Model Sharing in IoT-NGIN is analysed via the processes depicted in the sequence 

diagram of Figure 24. First, the Data scientist/AI developer publishes their model via the 
Development Environment. Accordingly, the model metadata referring to the sharing 

options of the model, such as sharing scope (public/private) and permission, are updated in 
the Model Library.  

Some Third-party wishing to use a pre-trained model searches for models through the 

Development Environment. The request is communicated to the Model Library, which calls 
Polyglot Model Sharing for retrieving the models from the Model Library. The call returns the 

list of models, potentially filtered by the underlying technology, as there is polyglot support. 

Then, the Third-party selects a specific model version, again via the Polyglot Model Sharing. 

Last, the Third-party checks out the model, i.e. they download locally the model from the 
Model Library. 
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Figure 24: Sequence diagram for the Model Sharing use case 
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4.3  Data Storage and Data Management 

The European Big Data Value Strategic Research and Innovation Agenda (SRIA), published 
in October 2017, sets up the basis for the European vision of the complete data value chain, 

proposing the Big Data Value Reference model included in Figure 25. The figure also shows 
the mappings with IoT-NGIN MLaaS and the main areas where WP3 will work. 

 

Figure 25: Big Data Value Reference Model 

The horizontal components of the reference model are used to identify the foundational 

aspects that must be taken into account during the complete data management life cycle 
while the vertical elements depict cross-cutting topics and/or non-technical issues. As can 
be derived, it also includes relationships with other technologies like IoT, High-Performance 

Computing or 5G connectivity which are relevant for the IoT-NGIN project. 
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4.3.1 Horizontal concerns 

• Data visualisation and user interaction: presentation of the data so that they can be 

explored and understood by the final user or by the scientist. Interfaces must be able to 

represent huge amounts of multidimensional data in an intuitive fashion addressing the 
requirements of the users. Data visualisation techniques include data discovery, 

interactive and collaborative interfaces, interactive visual data exploration, etc.  

• Data analytics that extract value from the data deluge generated by the digital platforms 

and solutions. Analytics cover areas like near-real-time interpretation applying 
knowledge-based analysis, models for validation of trustworthiness of datasets and data 

sources, advanced business analytics and intelligence, the usage of Machine Learning 
to obtain predictive and prescriptive analytics, exploiting the potential of HPC 

infrastructures through High-Performance Data Analytics (HDPA) and the creation of 
scalable frameworks for quality-aware processing considering batch and streaming 
information and distributed architectures. 

• Data processing architectures that rely upon hardware infrastructures composed of 

heterogeneous devices and resources and which deal also with heterogeneous data, 
having to satisfy functional and non-functional requirements for a potentially high number 

of users, including components and technologies for processing data-in-motion and at 
rest. It considers specifically the need to adapt data processing architectures to 
environments including IoT devices and edge computing resources or executing big data 

workloads that require exploiting HPC resources or specialised hardware accelerators.  

• Data protection, which implies taking care of sensitive information and compliance with 

regulations. The application of techniques to protect data privacy must preserve at the 

same time the usefulness of the data. Data protection covers topics like usage control, 
auditability, scalable anonymisation techniques, dealing with heterogeneous data, etc.  

• Data management: semantic interoperability between heterogeneous data types 

collected and shared by different sources or platforms, harmonization of data formats 

and models, multilingualism, analysis of data quality and robustness, data lifecycle 
management and traceability. 

• Cloud and High-Performance Computing (HPC): convergence between Big Data and 

HPC to make it possible to run more computationally intensive applications including 

deep learning workloads. BDVA is exploring this trend utilizing a close collaboration with 
ETP4HPC and EOSC. 

• IoT, CPS, Edge and Fog Computing. IoT devices and cyber-physical systems have become 

a major source of information during the last years thanks to the progressive deployment 
of sensors and actuators in a wide variety of application domains. Although many of 

these devices are quite constrained in terms of hardware capabilities, some of them 
provide also enough computational power to allow running processing tasks directly at 
the edge or fog tiers. 
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Table 34: Mapping with Big Data Value Reference Model horizontal concerns 

4.3.2 Vertical concerns 

• Data sharing platforms, industrial/personal: the development of applications and services 

exploiting the data from a single individual or company is not enough anymore. In many 

use-cases, there are complex ecosystems with multiple stakeholders that establish close 

and symbiotic relationships. Also, the information collected from one actor can be 
relevant to other ones. Thus, data sharing and trading are going to become essential 
enablers for the development of data-driven systems in the near future. For industrial data 

platforms, new solutions should be able to guarantee secure and sovereign data 
exchange and monetisation. International Data Spaces (IDS) reference architecture has 

Big Data Value 

Reference Model 

IoT NGIN MLaaS platform 

IoT, CPS, Edge and Fog 

Computing 

BDVA is currently pushing a close collaboration with AIOTI for this 

area. IoT NGIN will strongly contribute to this area through the 

project’s results and the demonstration in the living labs. 

The Cloud and High-

Performance 

Computing (HPC), 

Related to IoT NGIN, HPC computing is not within the scope of 

the project. 

Data management IoT NGIN MLaaS will not be focused on data management 

although some tools will be integrated for data exploration and 

analysis. 

Data protection IoT-NGIN MLaaS will implement privacy-preserving Federated 

Learning, new functionality that will suppose an important step 
forward for the training of deep neural networks directly at the 

edge without having to exchange personalised datasets 
containing sensitive information. 

Data processing The project will specifically aim to innovate in this area since IoT 

NGIN MLaaS will be demonstrated in several use-cases that 
require ingest and process heterogeneous streaming 

information coming from IoT devices and smart objects. The 
resulting ML models will be optimised and deployed directly at 
different levels of the edge tier. 

Data analytics IoT-NGIN will address the complete life cycle of Machine 

Learning models from the data collection to the final 

deployment and inferencing, considering the specific needs of 
IoT-based systems and decentralised architectures including 

edge computing resources. The project will provide new 
mechanisms to enhance the models’ training process, i.e. self-
learning, federated learning. 

Data visualisation and 

user interaction 

Although IoT-NGIN MLaaS may integrate some well-known 

libraries and tools for visual data exploration, it is not one of the 

priorities of WP3. 
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become a de-facto standard for the implementation of interoperable embryonic data 
spaces. Regarding personal data platforms, the major barrier is the protection of privacy 
and avoiding abuses by companies. Personal data spaces should enable citizens to 

maintain complete control of the usage that third parties do of their data, being fully 
compliant with the provisions of the General Data Protection Regulation (GDPR). 

• Development – engineering and DevOps: Particularization of DevOps environments to the 

specific needs of data scientist and data engineers, new testing paradigms to increase 
the level of confidence of the resulting systems and to provide enough quality during 
operation in production environments. DevOps tools must also guarantee the productivity 

of the development and operation teams. 

• Standards: BDVA SRIA proposes to rely on already existing standards and also to support 

them with the outcomes of the projects under its umbrella and the different task forces, 

e.g., ETSI, ISO, IEEE, CNELEC, etc. The Big Data Reference Model is already aligned with 
the ISO Big Data Reference Architecture described in ISO IEC JTC1 WG9 20547-3 and it 
serves as the common ground for most European research projects that address Big Data 

issues. 

• Communication and connectivity: 5G is identified as the enabling technology that will 

provide communication and connectivity supporting the needs of BigData and AI 

applications. In addition, network management and automation could be improved also 
with these technologies, for instance, through the usage of machine learning to predict 
the status of the infrastructures and implement smart orchestration schemas. 

• Cybersecurity and trust: as it happens with the communications area, cybersecurity and 

BigData can benefit from each other. On one hand, data and metrics collected from all 
systems’ components, interfaces and communications links can be used to detect 

threats, attacks and anomalies. Even research has been done about their prediction 
which would result in safer and robust systems, which is required in many critical 

applications. At the same time, cybersecurity and privacy must be considered holistically 
by design, especially in those cases where personal or sensitive data is being collected 
and processed. Last but not least, the progress done during the last years in Artificial 

Intelligence techniques are enabling also new opportunities for adversarial attacks or 
data poisoning. Again, requirements identified concerning trustworthy AI must be 

enforced and even crystallized in new legislations and regulations. 



H2020 -957246    -   IoT-NGIN  

 
D3.1 - Enhancing Deep learning/reinforcement learning 

 

92 of 108 

 

Table 35: Mapping with Big Data Value Reference Model vertical concerns 

 

  

Big Data Value Reference 

Model 

IoT NGIN MLaaS platform 

Standards Standardisation will be explored through the activities of 

WP8: Impact Creation and Outreach. 

Communication and 

Connectivity 

The relationship between IoT NGIN MLaaS and 

communication technologies will be done through the 
interaction between WP2: Enhancing IoT Underlying 

Technology and WP3: Enhancing  IoT Intelligence. 

Cybersecurity The functionalities and services provided by IoT NGIN 

MLaaS will be used also by WP5 to mitigate poisoning 
attacks in IoT devices and to detect adversarial attacks. 
Federated Learning will be the main asset to innovate in 

the level of cybersecurity and trust of IoT-based systems. 

Engineering and DevOps for 

building Big Data Value 

systems 

The vision for DevOps and development methodologies 

will be explored in collaboration with WP6: IoT‐NGIN 

Integration & Laboratory evaluation. 

Marketplaces, Industrial 

Data Platforms and Personal 

Data Platforms 

Data sharing between several personal or industrial 

platforms is not within the scope of the IoT NGIN project. 

Data types BDV reference model identifies 6 types of BigData: 

1. Structured data. 

2. Time-series data. 

3. Geospatial data. 

4. Media, image, video and audio. 

5. Text including genomics representations 

6. Graph data, Network/Web data and Metadata.  

IoT NGIN will deal mainly with the first four data types as 

has been explained in subsection 3.3. Nevertheless, the 
platform will be applicable also to the rest of them. 



H2020 -957246    -   IoT-NGIN  

 
D3.1 - Enhancing Deep learning/reinforcement learning 

 

93 of 108 

 

5 Machine Learning, Deep Learning and 
Reinforcement Learning in IoT-NGIN 

So as to enhance the underlying IoT intelligence, in addition to implementing privacy-

preserving federated ML, IoT-NGIN plans to provide innovation in the AI and IoT world from 
two more perspectives: (i) enhancing the model’s training processes and (ii) improving the 
resulting models automatically. Undoubtedly, this supposes a challenge due to the high 

innovation expected in linking AI methodologies with the underlying IoT technologies. Even 
though the state-of-the-art concerning these two topics is already stocked in solutions, it is 

significantly hard to find real-world implementations. In this regard, throughout this section, 
firstly, it will be provided with an overview of Machine Learning techniques and, secondly, it 

will be described how the IoT-NGIN project plans to provide a solution to the enhancement 
of the intelligence over the IoT landscape, considering the use case needs described in 
Section 3 and the current state-of-the-art solutions, that will help in the development of the 

MLaaS components in the upcoming months.  

 

5.1 Overview and state-of-the-art of Machine 

Learning techniques  

Machine Learning is a scientific discipline within Artificial Intelligence that allows creating 

systems that learn automatically from data. Machine Learning algorithms can analyse large 
datasets, identify patterns and extract knowledge that can be used then for different tasks. 

Two main groups of ML algorithms can be identified depending on the type of learning: 
supervised and unsupervised. 

Supervised algorithms train models relying on labelled datasets, including features (i.e. input 

attributes) and labels (i.e. the output that will be predicted [12], [13]. Since the difference 
between the real value and the prediction can be obtained, it is possible to minimize the 

error. The models resulting from the training process are then able to obtain forecasts for new 
values. Supervised machine learning comprises classification where the goal is to predict to 

which category a new sample belongs, and regression, where continuous variables must be 
used as input. Examples of supervised learning algorithms are linear or logistic regression, 
decision trees, random forests, support vector machines (SVMs), Naïve Bayes and neural 

networks. 

Unsupervised algorithms infer relationships between input data [14], [15]. Clustering 

algorithms are a clear example of this method that group homogeneous elements in a set 
of clusters so that the degree of correlation between members of the same cluster is high 

and low inter-cluster. The most common algorithms are k-means clustering, PCA (principal 
component analysis), hierarchical clustering analysis (HCA), probabilistic clustering based on 
Gaussian Mixture Models (GMMs) or autoencoders. 

A variant of these two main groups is semi-supervised ML, where algorithms learn from 

datasets that are partially labelled [16], [17]. This, it is possible to reduce the effort and cost 

of the labelling, which is one of the main barriers for the development of some ML-based 
applications that need to deal with the huge amount of annotated data. Two main 
approaches can be also found within semi-supervised ML: semi-supervised classification 
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which enhances supervised classification and semi-supervised clustering for obtaining better-
define clusters than just using pure supervised classification. 

Deep Learning is an evolution of ML technologies that replicate the working principles of the 

human brain. For that reason, its models are based on neural networks that can work with 
multidimensional data and execute complex tasks with high accuracy on top of Graphical 

Processing Units (GPUs). For instance, Convolutional Neural Networks (CNNs) are commonly 
used for computer vision, while Recurrent Neural Networks (RNNs) have demonstrated great 
potential in speech recognition. Transformers are also becoming more and more popular 

due to the capacity to solve problems that imply the transformation of an input sequence to 
an output one.  

Reinforcement learning systems are based on algorithms that learn how to reach a certain 

goal through positive or negative incentives defined by the designer, following a cause and 

effect approach [18]–[20]. The advantage of RL is that it does not need to collect training 
datasets in advance, but the resulting models can learn in an online way. 

Transfer Learning (TL) aims to extract the knowledge from one or more source tasks and 

applies the knowledge to a target task. It is a solution to solve problems for which the 
collection of high-quality, complete, and accurate training and validation datasets is not 

possible. Thus, instead of training a machine learning model from scratch, an already 
available model pre-trained for another task is reused with a smaller and low-quality dataset 

[21].  

In addition, a comparison between these Machine Learning techniques is done in Table 36, 

which tabulates the main differences and challenges that each technique deals with.  

 



 

 

Table 36: Matrix comparing different ML techniques 

ML Technique Reinforcement Learning Online Learning / 

Incremental Learning 

Batched Machine Learning / Deep Learning  

Type of 

learning 

By rewards Supervised (*)12 Supervised Unsupervised Semi-supervised 

High-level 

definition 

Algorithms that aim to 

maximize the rewards 

obtained by an agent 
encouraged to take 
actions in an 

environment  

Algorithms that are able to 

adapt to new data 

sequentially and which 
compute the best model at 
every step 

Algorithms that 

learn to map the 

input data to the 
outputs (classes or 
values) 

Algorithms that are 

able to learn the 

data patterns without 
knowledge of the 
labels or values 

Algorithms that are 

able to learn the 

patterns of the 
data against a few 
labelled samples 

and a large 
number of 

unlabelled ones 

Learning 

procedure 

In real-time when a 

reward is received after 
the action was 
performed 

New adaptations are done 

incrementally and in real-
time as new data arrives 

A pre-defined 

dataset is fit entirely 
into an AI model 
until it is able to infer 

the classes or values 
as best as possible 

A pre-defined dataset is fit entirely into an 

AI model until it is able to discover the 
output 

Expected 

input data 

over time 

Context and reward after 

an action 
High variation  Low variation 

Main 

drawbacks 

Requires a very specific 

and active operational 

environment to obtain 
good results, depending 
directly on the rewards 

received 

Adaptations to new data 

need to be controlled: new 

adaptations may lead to 
catastrophic forgetting; too 
drastic adaptations may 

lead to bad results 

On the one hand, it needs a large amount of data to cover most 

of the data variation spectrum. On the other hand, it may lead to 

overfitting trying to cover all this spectrum. It may also lead to 
bad results when the training data is not representative enough 
or when it has a big bias towards one (or some) of the outputs 

 
12 (*) Could be unsupervised in some cases 



 

 

5.2  Privacy-preserving Federated Machine 

Learning in the MLaaS platform 

Traditional machine learning approaches demand the training data be centralized on one 

machine or central server. For this purpose, those approaches collect a vast amount of data 
from devices (smartphones, laptops, IoT devices) and transfer it to central servers for training. 

However, data owners are not often willing to share their data, because it may contain 
sensitive information, which is subject to the GDPR. Thus, data privacy is a major concern. To 

address this problem, Federated Learning (FL) is introduced by Google [22], which is a 
distributed machine learning approach.  

FL aims to build and train global models based on training datasets that are distributed across 

different remote devices while avoiding data leakage. Thus, as opposed to traditional 
approaches, FL inherently enhances privacy and security as the data is never processed on 

central servers, decoupling the machine learning process from the data sources.  

In practice, FL solutions train an initial, generic machine learning model in a central server, 

which is a baseline to start with. Afterwards, the server sends this model to the user’s devices, 

where the local copy of the model is trained using its own data. Then, the updated model 
parameters are sent back to the central server and the global model is updated. Therefore, 

FL approaches are capable of learning robust models from a huge amount of distributed 
data across devices without transferring and/or processing it on a central server.  

FL approaches can be applied in several application areas, in which data privacy is 

required, such as health care, telecommunications as well as IoT networks. The term devices 
are referred to entities that are participated in the communication network of federated 

learning. Smartphones can be viewed as devices that commonly used in the FL approach, 
to jointly learn users’ behaviour, while protecting their personal privacy by not sharing their 

data. The application in [23], learns a predictor in a large-scale smartphone network based 
on users’ text data. Organizations/institutes can also be treated as devices in federated 

learning. For instance, hospitals are organizations that private data of patients, that should 
remain local. FL architecture presented in [24] can reduce privacy leakage and implement 
private learning between the different organizations. Additionally, FL can also be used on IoT 

networks to ensure privacy, enabling on-device machine learning solutions without the need 
to store private data from end devices to a central server. 

Federated learning approaches can be categorized based on the distribution 

characteristics of the data [25]. The instances and the features of the data may differ among 

parties, so FL can be distinguished in horizontal FL, vertical FL and federated transfer learning, 
based on the way that data is distributed among parties in the feature and sample space. 
Specifically, at horizontal FL approaches the datasets to share the same features, but they 

differ in instances. While, vertical FL can be applied when the datasets share the same 
instances, but they present differences in features. Lastly, Federated Transfer Learning is 

applicable when the datasets differ in instances and features, with only a small portion of the 
features and instances overlapped.  

Initially, the FL was introduced for mobile and edge devices applications. Those FL settings 

are referred to as “cross-device” [26]. This FL setting is applied in many consumer digital 
products. For example, Google widely uses FL in the Gboard mobile keyboard [23], [27], [28], 

while Snips applies cross-devices FL for hotword detection [29]. Additionally, the great interest 
in FL has led to applications, which might involve a small number of relatively reliable clients 

to train a model. Specifically, these FL settings are mentioned as “cross-silo” and they are 
applicable when several organizations or companies share and train a common model, 
without sharing the data directly due to confidentiality and legal constraints. A cross-silo 
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setting can also be employed within a single company/organization when the data cannot 
be centralized between different geographical regions. Cross-silo applications have been 
explored in different domains, including drug discovery [30] and detection vaccine adverse 

event mentions [31]. Regarding the data partitioning, the cross-device setting is a horizontal 
FL approach, while the cross-silo can be either horizontal or vertical FL approach.  

In the case of centralized FL, a central server orchestrates all the necessary steps of the 

algorithm and coordinates the participating clients during the learning process. This central 
server is responsible to aggregate the received model updates as well as sending model 

updates to nodes. In some more collaborative learning cases, the use of a powerful and 
reliable central server might not always be available and desirable [32]. A potential 

bottleneck of centralized FL is the communication traffic jam that can be occurred since all 
the nodes must communicate with the central node [33]. 

This bottleneck can be addressed by the decentralized federated learning approaches, in 

which individual nodes can communicate with each other to obtain the global model. The 
key difference is that in decentralized FL the communication with the central server is 

replaced by peer-to-peer communication between individual clients. The topology of 
decentralized FL techniques is represented as a connected graph, where the nodes are the 

clients and the edges are the communication channels between two nodes. Thus, devices 
only communicate with neighbours. Blockchain can be characterized as a popular 

decentralized platform. Authors in [34] propose a decentralized FL architecture based on 
blockchain for global model storage as well as model update exchange. Additionally, [35] 
presents a blockchain-based privacy-preserving FL platform for IoT devices, which trains an 

ML model at customers’ data from various home appliances. Decentralized FL appears to 
outperform centralized FL, by reducing the high communication cost of a network with a 

central server.   

Although FL enables on-device machine learning, it does not itself guarantee security and 

privacy. The fact that the private data are not shared with the central server is an advantage 
without doubts, still, there are ways to extract private information from data. After the shared 
model is trained at the user’s device based on its own private data, the trained parameters 

are sent to the central server. Thus, it is possible to extract information about the private data 
from those trained parameters. For example, [36] demonstrates that it is possible to extract 

sensitive text patterns, like the credit card number, from a recurrent neural network that is 
trained on users’ data.  Therefore, additional methodologies are required to protect data 
from attack strategies, which are subject to privacy-preserving mechanisms on FL. The 

approaches that can be applied in FL for data protection are differential privacy, 
homomorphic encryption and secure multiparty computation.  

Differential Privacy (DP) is a method that randomizes part of the mechanism’s behaviour to 

provide privacy [37], [27]. For the FL scenario, a mechanism is considered the learning 

algorithm. The motivation behind adding randomness into a learning algorithm is to make it 
impossible to reveal behaviour patterns that correspond either to the model and the learned 
parameters or to the training data. Thus, the DP provides privacy protection against a wide 

range of privacy attacks (e.g., differencing attack, linkage attacks) [28]. The method of 
adding noise can result in great privacy but may compromise accuracy, therefore there is a 

trade-off between using differential privacy and achieving a high level of model accuracy. 
However, the authors in [29] present a method, which does not sacrifice accuracy to privacy. 

Secure Multiparty Computation (SMC) is a well-defined cryptographic technique that allows 

a number of mutually distrustful parties to jointly compute a function while preserving the 
privacy of the input data [38], [25]. In the case of ML applications, the function can be the 
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model’s loss function at training, or it could be the model itself at inference. The challenge 
of applying SMC on a large-scale distributed system is the communication overhead, which 
increases with the number of participated parties.  

Homomorphic encryption [39] secures the learning process by applying computations (e.g., 

addition) on encrypted data. Specifically, an encryption scheme is characterized as 

homomorphic, when standard operations can be applied directly to the cypher data, in 
such a way that the decrypted result is equivalent to performing analogous operations to 
the original encrypted data [40], [41]. For machine learning methods, homomorphic 

encryption can be applied when training and inference are performed directly on 
encrypted data. In scenarios, where large mathematical functions are implemented to 

cypher text space, the remarkable properties of homomorphic encryption schemes confront 
several limitations, related to the encryption performance. 

Several open sources frameworks and libraries have been developed to facilitate the 

widespread use of FL in machine learning. Google’s TensorFlow Federated13  provides 
functionalities with a comprehensive set of features, which can help to perform research and 

to implement FL models. Another library is PySyft, which was introduced by OpenMined14. 
PySyft is suitable for research in FL and allows the users to perform private and secure Deep 

Learning. PySyft is also used in PyGrid15, a peer-to-peer platform for federated learning and 
data privacy, which can be used for private statistical analysis on the private dataset as well 

as for performing FL across multiple organization’s datasets. Additionally, FATE16 (Federated 
AI Technology Enabler) framework supports FL architectures and secure computation of 
various machine learning algorithms. 

5.3 Enhancing Machine Learning techniques in IoT-

NGIN 

According to IoT-NGIN living labs, there are three major types of data to be handled by the 

platform: images data, structured data and time-series data, but other types of data could 
be also expected in future iterations. From the IoT-NGIN living labs requirements of the 

Artificial Intelligence techniques to be exploited, we can extract the high-level results 
collected in Table 37. Considering these results, as the data is not only coming in predefined 

datasets or batches of known size, but also as a stream, it is reasonable, then, to investigate 
the machine learning techniques that have been proved to work well with these types of 
data, and to define how they can be integrated into a platform such as the one proposed 

in this project. As explained previously, the implementations to be made following two main 
patterns: enhancing the training procedures and improving the resulting models 

automatically once deployed. In each pattern there are different kinds of techniques, some 
of them have already been overviewed in the previous section, so only how they would be 

managed in the MLaaS platform will be tackled, but other techniques, such as the 
optimization of the AI models, are contemplated in the following sections. 

 

 
13 https://www.tensorflow.org/federated  
14 https://www.openmined.org/  
15 https://blog.openmined.org/what-is-pygrid-demo/  
16 https://fate.fedai.org/  

https://www.tensorflow.org/federated
https://www.openmined.org/
https://blog.openmined.org/what-is-pygrid-demo/
https://fate.fedai.org/
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Table 37: High-level features of IoT-NGIN living labs relevant to Artificial Intelligence 

 

Living lab / Use Case Data Type(s) Outcome type(s) ML Techniques 

Smart City 

UC1 

Structured 

Images 

Timeseries 

Prediction 

Multi-class 

classification 

Multidimensional 

regression 

Unsupervised 

ML/DL 

Self-Learning 

(Auto-labelling) 

UC2 

Multi-class 

classification 

Multidimensional 

regression 

Unsupervised 

ML/DL 

Smart 

Agriculture 

UC4 

Images 

Structured 

Classification 

Unsupervised 

ML/DL 

Federated 

learning 

UC5 

Visual Mapping 

and Trajectory 

prediction 

Binary 

Classification 

Unsupervised 

ML/DL 

Computer Vision 

Techniques 

Industry 4.0 

UC6 
Structured 

Images 
Prediction 

Federated 

Learning 

UC7 
Structured 

Images 
Classification 

Federated 

Learning 

UC8 
Structured-time-

series 

Binary 

classification 

Anomaly 

detection 

Supervised ML/DL 

Federated 

learning 

Smart 

Energy 

UC9 

Structured-time-

series 

Classification 

Prediction 

Supervised ML/DL 

Continuous/online 

learning 

UC10 Prediction 

Supervised ML/DL 

Federated 

learning 

Online learning 
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5.3.1 Enhancing training processes 

Enhancing the training of the AI models can be accomplished from different standpoints. 

Although one of the most relevant factors, when performance improvement matters, is the 
selection of the underlying ML or DL algorithm, one cannot forget about the actual training 

process. It may also be enhanced through different procedures, like using hardware 
capabilities, such as using GPUs or other novel ML accelerators, or by improving the actual 
software execution of the algorithm by means of quantization or binarization techniques.  

Regarding the algorithm selection, the most influential factors to select one are: (i) the type 

of the training data and (ii) the type of outcome expected (classification, forecasting, 

anomaly detection). As for time series data, historically there have been applied different 
algorithms or network architectures depending on the task at hand [42]. The state-of-the-art 

shows that Recurrent Neural Networks (RNN), such as Long short-term memory (LSTM) 
networks [43], have proven to be one of the most effective architectures for time series data 
since they are designed to handle an internal state (memory) that grants them to understand 

the temporal connections between consequent inputs. Nevertheless, there has also been a 
success in using other architectures such as Deep Belief Networks, especially for forecasting 

tasks, or Convolutional Neural Networks (CNN), especially for classification tasks. In addition, 
for anomaly detection tasks, Autoencoders networks have had quite a success in fitting 
temporal data. Moreover, the diversity of time series datasets, as reported for instance in [44], 

shows that it is not possible to map only one kind of neural network with a specific type of 
time series dataset. Thus, in the context of MLaaS platforms that want to handle this kind of 

data, it is best to provide tools to build and test several kinds of neural network architectures, 
granting the user the freedom to select and try the one that could fit the type of the dataset. 

For that, there already exist several AI frameworks that already grant usage of these deep 
learning algorithms, such as the well-known Tensorflow [45] and PyTorch [46] frameworks. 
With respect to video/image data, neural network architectures have also been applied 

historically, and with a very high ratio of success. Undoubtedly, CNNs are one of the most 
applied architectures for this kind of issue, but the state-of-the-art shows that there exist lots 

of architectures that may be applied with results just as good as CNN’s. What’s more, a 
common approach is to combine different types of neurons and other kinds of methods such 

as pooling [47], which allows selecting the best representations of the convolutional neurons 
output, or batch normalization [48], that reduces the complexity of the output neurons with 
the intention of avoiding overfitting [49]. AI Frameworks like Tensorflow and PyTorch already 

provide tools to execute this kind of techniques on video/image data.  

Moreover, as stated in [50] and other similar studies, the particular design of the circuits that 

execute the artificial intelligence operations is shown to affect the performance in terms of 
training and inference speed. Graphical processing units (GPU) have been historically one 

of the hardware devices selected to improve the training speed of AI models, due to their 
effectiveness in parallel operations. However, nowadays there exist other kinds of hardware 
devices that may perform similarly or even better; for instance: Google’s Tensor Processing 

Unit (TPU)17. What’s more, using those devices for executing the ML tasks does not suppose 
major effort from the point of view of the AI Developer, as most of the AI frameworks already 

offer seamless integration with this kind of devices. Thus, the capabilities of an MLaaS platform 
would clearly be boosted when it grants the usage of these hardware accelerators with the 

 
17 https://cloud.google.com/tpu/docs/tpus  

https://cloud.google.com/tpu/docs/tpus
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supported AI frameworks. This will be considered for the developments to be carried out in 
the upcoming months of the project.  

5.3.2  Strengthening the performance of the ML 
models deployed 

Some IoT environments need their applications to tailor their performance at runtime, 
according to the variation of their data over time. Traditionally, data for training AI models 

has always been processed in batches, so the model has been aware of all the training data 
when computing the loss during the learning process. However, there exists also the case in 

which the data comes in a stream and, what is more, the variance of the data might be 
changing over time. This last scenario, which fits for instance in Twin Smart Cities Living lab or 
in the Smart Energy Living Lab, is not suitable for traditional machine learning techniques 

since this variation of fresh data makes pointless computing the loss on all the previous data, 
as it is not representative of the current data anymore. Just as the enhancement of the 

training procedures, there exist different ways to adapt the operational performance of the 
AI models, once they have been deployed, to the changes in their IoT environment. One 

approach to deal with this issue may be the so-called self-learning methodology, in which 
the AI models adapt themselves dynamically through different kinds of algorithms.  

One relatively common approach to adapt models to changes is the Incremental or 

continuous learning paradigm, where input data (a variable batch of samples) is 
continuously processed by the AI model without forgetting the already obtained knowledge 

and without repeating the whole learning process. However, not every machine learning 
algorithm can apply incremental learning [51] since some of them, especially some neural 

networks, tend to forget past patterns as new data arrives, a problem known as catastrophic 
forgetting [52]. Despite this, there has been a success in applying some machine learning 
procedures for incremental learning with streaming and time-series data, as in [53]. In 

addition, in this incremental learning context, automatic data labelling could be applied. 
With this technique, new data is processed by the model as it arrives, getting an initial 

classification for it, so that it can be used later on as labelled training data in subsequent 
training stages. Ideally, the confidence of the classification of each new sample is stored 
along with the sample, enabling a human annotator to verify the labels of the data in order 

to prevent using errors in the new training step. This procedure has the advantage of 
accelerating the initial data labelling phase, but it also has the inconvenience of the model 

being low accurate at the firsts iterations and, thus, producing some errors at the firsts 
inferences that must be fixed by humans annotators.  

Another approach to tackle the continuous adaptation of AI models is the machine learning 

technique named online (machine) learning, introduced in [54]. The main difference with 
other machine learning approaches is that the training examples are processed one at a 

time, which means that the loss is computed against only that sample. In the context of 
streaming data, each sample is processed by the algorithm as it arrives and, afterwards, the 

instance is discarded (not used anymore). There already exist some implemented algorithms 
to perform the online learning methodology, such as the Online Gradient Descent [55], or 

the updated version Adaptive Online Gradient Descent [56]. Despite the existence of these 
open-source implementations for this paradigm, they are not as extended as the other 
algorithms mentioned in the previous section and, what’s more, they have not been 

integrated with existing AI frameworks, but rather isolated implementations to fit one specific 
scenario.  
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Lastly, another state-of-the-art approach to strengthen deployed AI models is the 

reinforcement learning paradigm. In this context, an agent learns the behaviour of a specific 
scenario through dynamic interactions, in which each movement (inference) of the agent 

receives a reward representing how good was this movement according to the current 
context of the scenario. More specifically, every interaction of the agent starts with an input 

of the current state of the environment and, then, the agent chooses an action to generate 
as output. This action changes the state of the environment, and the value of this change, 
which is computed as a scalar according to a pre-defined formula, is fed back to the agent 

as a reinforcement signal [18]. In order for this agent to fit well into the scenario, it must 
choose actions that increase the sum of values of these reinforcement signals. Since the 

reinforcement learning paradigm differs from supervised learning in that it is not told which 
action would be best to take to obtain the best rewards in the long-term, it is key for the 

agent to receive rewards actively from the environment to fit well with it. This means that this 
methodology needs a very specific context in which this scenario of dynamic action-reward 
can take place actively. Usually, the reinforcement learning problem is phrased as a Markov 

Decision Process (MDP), but there exist different algorithms that do the actual 
implementation [19].  

As we have shown, and considering IoT-NGIN’s deliverable 1.1 [2], the self-learning context 

fits well with some of the Living Labs descriptions. Thus, the IoT-NGIN project, and more 

specifically WP3: Enhancing IoT Intelligence, will try to bring innovation also from this 
perspective along with the Federated Learning framework, by designing and implementing 
a solution that will integrate the streaming data from the Living Labs into the MLaaS platform, 

and will execute incremental learning, online learning and/or automatic data labelling 
algorithms on selected pilots suitable for them. 

However, because it is difficult to find real-world implementations outside the academic field 

that are integrated with most famous AI frameworks and, especially, due to this necessity for 

a suitable action-reward scenario, the implementation of the reinforcement learning 
paradigm in IoT-NGIN’s project will be studied in the next months, considering the Living Labs 
requirements progression and use cases evolution. 

In addition to making use of innovative machine learning techniques, the performance of 

the AI models can be strengthened in other ways. One of these means is the acceleration 

of the operations executed by the models, especially when the operational environment is 
at the edge of the network. Here, the constraints of the hardware that is in charge of 
executing those AI operations must be taken into consideration. Due to these constraints, 

some IoT environments cannot handle large AI models, since the computational and 
memory loads that are required to execute them might be too heavy for the existing 

hardware, leading to a large response time, or even no response at all. For this particular 
obstacle, there exist techniques that compress the AI models into lighter versions, which are 

more feasible for low-powered hardware. Examples of these techniques are, for instance: 
Channel pruning [57], which removes some of the weights of the layers of the AI model; 
activation function compression [58], which reduces the size of the activation layers of the 

neural networks; or model quantization [59], which reduces the floating-point operations of 
the AI model to integer-only arithmetic. These specific approaches have been already 

developed for some AI frameworks, such as the TensorFlow Lite18 SDK, which makes it possible 
to be integrated into IoT-NGIN’s MLaaS platform in the upcoming months. 

 

 
18 https://www.tensorflow.org/lite  

https://www.tensorflow.org/lite
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6 Conclusions 
This document has presented the work related to all WP3: Enhancing IoT Intelligence tasks 

until the ninth month of the project. It is clear that a focus has been put into Task 3.1 since it 
deals with the development of the MLaaS platform. However, results of the other tasks are 

included within the design of the platform itself and within the study of IoT-NGN living labs. 
This report will not only feed the upcoming activities of WP3 tasks, but also other tasks of the 
project that benefit from any Artificial Intelligence activity.  

Overall, the Machine Learning as a Service platform has been designed, and its main 

functionalities have been detailed through several use case diagrams and sequence 

diagrams. In addition, a logical view of the platform has been provided, in which the relations 
and interconnetions between the components of the platform have been explained. In 

addition to this, the federated learning framework to be implemented over the platform has 
been overviewed. Furthermore, the machine learning techniques to be implemented and 
applied on the living labs have been analyzed, in which a focus has been put on techniques 

related to enhancing the training processes and related to improving the performance of 
the AI models deployed.  

Although innovating in the field of IoT Intelligence supposes a great challenge, this 

deliverable contributes to the state-of-the-art with a considerable effort to facilitate the 

application of Machine Learning techniques, including deep learning, self learning and 
reinforcement learning, in the next generation of IoT. Upcoming deliverables of the work 
packge will boost these efforts by showing how the implementation of the relevant 

techniques fit into real-world scenarios, solving complex problems related to IoT.  
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