

© Copyright by the IoT-NGIN Consortium

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 957246

WORKPACKAGE WP1 PROGRAMME IDENTIFIER H2020-ICT-2020-1

DOCUMENT D1.2 GRANT AGREEMENT ID 957246

REVISION V1.0
START DATE OF THE

PROJECT
01/10/2020

DELIVERY DATE 30/09/2021 DURATION 3 YEARS

D1.2

IoT meta-architecture,
components, and
benchmarking

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

2 of 88

DISCLAIMER
This document does not represent the opinion of the European Commission, and the European

Commission is not responsible for any use that might be made of its content.

This document may contain material, which is the copyright of certain IoT-NGIN consortium parties

and may not be reproduced or copied without permission. All IoT-NGIN consortium parties have

agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the proprietor of that information.

Neither the IoT-NGIN consortium as a whole, nor a certain party of the IoT-NGIN consortium warrant

that the information contained in this document is capable of use, nor that use of the information is

free from risk and does not accept any liability for loss or damage suffered using this information.

ACKNOWLEDGEMENT
This document is a deliverable of IoT-NGIN project. This project has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement Nº

957246.

The opinions expressed in this document reflect only the author’s view and in no way reflect the

European Commission’s opinions. The European Commission is not responsible for any use that may

be made of the information it contains.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

3 of 88

PROJECT ACRONYM IoT-NGIN

PROJECT TITLE Next Generation IoT as part of Next Generation Internet

CALL ID H2020-ICT-2020-1

CALL NAME Information and Communication Technologies

TOPIC ICT-56-2020 - Next Generation Internet of Things

TYPE OF ACTION Research and Innovation Action

COORDINATOR Capgemini Technology Services (CAP)

PRINCIPAL

CONTRACTORS

Atos Spain S.A. (ATOS), ERICSSON GmbH (EDD), ABB Oy (ABB), INTRASOFT

International S.A. (INTRA), Engineering-Ingegneria Informatica SPA (ENG),

Bosch Sistemas de Frenado S.L.U. (BOSCH), ASM Terni SpA (ASM), Forum
Virium Helsinki (FVH), Optimum Technologies Pilroforikis S.A. (OPT), eBOS

Technologies Ltd (EBOS), Privanova SAS (PRI), Synelixis Solutions S.A. (SYN),
CUMUCORE Oy (CMC), Emotion s.r.l. (EMOT), AALTO-Korkeakoulusaatio

(AALTO), i2CAT Foundation (I2CAT), Rheinisch-Westfälische Technische

Hochschule Aachen (RWTH), Sorbonne Université (SU)

WORKPACKAGE WP1

DELIVERABLE TYPE REPORT

DISSEMINATION

LEVEL

PUBLIC

DELIVERABLE STATE FINAL

CONTRACTUAL DATE

OF DELIVERY
30/09/2021

ACTUAL DATE OF

DELIVERY
30/09/2021

DOCUMENT TITLE IoT meta-architecture, components, and benchmarking

AUTHOR(S) AALTO, EBOS, EDD, EMOT, RWTH

REVIEWER(S) RWTH, SYN

ABSTRACT SEE EXECUTIVE SUMMARY

HISTORY SEE DOCUMENT HISTORY

KEYWORDS IoT, Meta-architecture, architecture, pattern, view, design

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

4 of 88

Document History

Version Date Contributor(s) Description

V0.1 10/7/2021 AALTO First draft, Table of Contents

V0.2 16/7/2021 AALTO Background and analysis perspectives

V0.3 20/7/2021 AALTO Meta-architecture overview

V0.4 24/7/2021 AALTO

Architectural patterns conclusions, quality

vertical section. Updated meta-
architecture visualization.

V0.5 30/7/2021 AALTO
Updated commercial and EU research

analysis and data models

V0.6 9/9/2021 AALTO, EBOS, EDD, Integrated inputs from various parties

V0.7 10/9/2021
AALTO, EBOS, EDD,

SYN
Integrated inputs from various parties,

document consolidation

V0.8 23/9/2021

AALTO, CMC, EBOS,
EDD, EMOT, RWTH,

SYN

Integrated partner input. Added

components section and updated

architectural patterns.

V0.9 26/9/2021

AALTO, ABB, ATOS,

CMC, EBOS, EDD,
EMOT, RWTH, SYN

Submitted for peer review

V0.9.1 29/09/2021 RWTH Peer review comments

V0.9.2 29/09/2021 SYN Peer review comments

V0.9.3 29/09/2021

AALTO, ABB, ATOS,

CMC, EBOS, EDD,
EMOT, RWTH, SYN

Consolidated document

V0.9.4 30/09/2021 SYN Quality check

V1.0 30/09/2021 AALTO Final version

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

5 of 88

Table of Contents

Document History ... 4

Table of Contents ... 5

List of Figures ... 7

List of Tables .. 8

List of Acronyms and Abbreviations .. 10

Executive Summary .. 12

1 Introduction ... 13

1.1 Intended audience.. 14

1.2 Relation to other activities .. 14

1.3 Document Overview ... 15

2 Existing IoT platforms .. 17

2.1 Open-source perspective ... 18

2.2 Commercial perspective .. 22

2.3 EU research perspective ... 27

3 IoT architectural patterns overview and analysis... 31

3.1 Layered architecture ... 31

3.2 Microservices-oriented architecture.. 31

3.3 Event-driven architecture ... 33

3.4 Lambda architecture .. 34

3.5 Software-defined networking (SDN) .. 35

3.6 Edge computing .. 36

3.7 Wireless sensor networks architectures .. 36

3.8 5G network exposure ... 37

3.9 5G network slicing .. 38

3.10 Gateways .. 39

3.11 Distributed ledger technologies (DLT) ... 39

3.12 Serverless computing ... 40

3.13 Self-sovereign identities (SSI) ... 41

3.14 Data federation.. 41

3.15 Digital twins ... 41

3.16 Reference models .. 42

4 The IoT-NGIN meta-architecture .. 44

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

6 of 88

4.1 Definition.. 44

4.2 Key meta-architecture viewpoints... 44

4.3 Element view ... 47

4.4 Architectural Patterns Vertical ... 57

4.5 Quality Vertical ... 57

4.6 ML and AI layer ... 60

4.7 Compliance to the IoT-NGIN meta-architecture ... 61

5 The IoT-NGIN architecture ... 64

5.1 Mapping the IoT-NGIN architecture to the meta-architecture ... 68

6 Common IoT data models .. 71

6.1 International Data Spaces .. 71

6.2 W3C Web of Things (WoT) ... 72

6.3 FIWARE and ETSI Context Information Management: NGSI-v2 and NGSI-LD 73

7 Benchmarking and test reports .. 76

7.1 Methodology .. 76

7.2 Implementation of methodology for benchmarking .. 78

8 Conclusions ... 81

9 References .. 82

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

7 of 88

List of Figures
Figure 1: IoT-NGIN PERT chart. .. 15

Figure 2: IoT Layers [38]. .. 32

Figure 3: Microservices Architecture. .. 33

Figure 4: Event Broker components. ... 34

Figure 5: Lambda architecture elements... 35

Figure 6: Wireless Sensor Networks overview. .. 37

Figure 7: 5G network slicing structure. .. 39

Figure 8: Serverless computing architecture. .. 41

Figure 9: Digital Twins Architecture [49]. ... 42

Figure 10: Early model of IoT ARM and its functional view [51]. .. 43

Figure 11: IoT-NGIN Meta-architecture. .. 46

Figure 12: MLaaS Architecture, first version .. 61

Figure 13: The high-level architecture of IOT-NGIN. .. 64

Figure 14: IDS Information Model. Adapted from IDS ... 72

Figure 15: WoT Building Blocks .. 73

Figure 16: NGSI-LD and federated architecture. Adapted from NGSI-LD. 75

Figure 17: Agile methodology for product evaluation. ... 76

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

8 of 88

List of Tables
Table 1: Common architectural views.. 13

Table 2: IoT approaches and platforms selected for further study .. 18

Table 3: Open source platforms. ... 18

Table 4: OpenRemote Specifications ... 20

Table 5: Mainflux Specifications... 20

Table 6: Thingsboard Specifications.. 21

Table 7: Kaa Specifications .. 21

Table 8: DeviceHive Specifications ... 21

Table 9: Commercial IoT Platforms. ... 22

Table 10: Azure IoT Hub Specifications ... 24

Table 11: AWS IoT Core Specifications ... 25

Table 12: Google Cloud IoT Specifications .. 25

Table 13: PTC ThingWorkx Specifications .. 26

Table 14: Particle Specifications .. 26

Table 15: IBM IoT Specifications ... 27

Table 16: Cumulocity IoT Specifications ... 27

Table 17: European Research Projects relevant to IoT-NGIN. ... 28

Table 18: IoT-NGIN relevant research projects and their relationship with IoT-NGIN. 29

Table 19: Elements of the Things functional group. .. 47

Table 20: Elements of the Fog-Edge functional group. .. 48

Table 21: Elements of the Analytics functional group. ... 49

Table 22: Elements of the automation functional group. .. 49

Table 23: Elements of the Infrastructure functional group ... 50

Table 24: Elements of the Infrastructure/Cloud subgroup. .. 51

Table 25: Elements of the Infrastructure/Container as a Service subgroup. 52

Table 26: Elements of the Infrastructure/5G networking subgroup. ... 52

Table 27: Elements of the Federation functional group ... 53

Table 28: Elements of the Workloads functional group.. 54

Table 29: Elements of the Workloads/Services subgroup. ... 55

Table 30: Elements of the Workloads/Middleware subgroup ... 56

Table 31: Elements of the Workloads/Data subgroup. ... 56

Table 32: IoT-NGIN meta-architecture compliance matrix. .. 62

Table 33: The meta-architecture functional groups ... 62

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

9 of 88

Table 34: Compliance of the IoT-NGIN architecture with the meta-architecture; architectural

patterns. .. 66

Table 35: Compliance of the IoT-NGIN architecture with the meta-architecture; Quality

Vertical. ... 67

Table 36: Compliance of the IoT-NGIN architecture with the meta-architecture; Elements

View. .. 68

Table 37: Sample QoS metrics. .. 77

Table 38: UCs of IoT-NGIN. .. 78

Table 39: KPIs for UC1. ... 79

Table 40: Example of test report format for QoE. .. 79

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

10 of 88

List of Acronyms and Abbreviations
AAS Asset Administration Shell

API Application Programming Interface

AMQP Advanced Message Queuing Protocol

BLE Bluetooth Low Energy

CoAP Constrained Application Protocol

DDS Data distribution service

DLT Distributed Ledger Technology

DTLS Datagram Transport Layer Security

GE Generic Enabler

EA Enterprise Architecture

gRPC open-source Remote Procedure Call

IaaS Infrastructure-as-a-service

IAM Identity and Access Management

IoT Internet of Things

JWT JSON Web Token

KPI Key Performance Indicator

LL Living Lab

LSP IoT Large Scale Pilot

LWM2M Lightweight Machine to Machine

M2M Machine-to-machine

MCM Machine-cloud-machine

MQTT Message Queuing Telemetry Transport

MQTT-SN MQTT For Sensor Networks

mTLS Mutual TLS Authentication

NFV Network function virtualisation

NGSI Next-Generation Services Interface

NGSI-LD NGSI Linked Data

OPC-UA Open Platform Communications United Architecture

PaaS Platform-as-a-service

SaaS Software-as-a-service

SDK Software Development Kit

SDN Software-defined network

SMQT Secure MQTT

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

11 of 88

SSI Self-sovereign identity

TCP Transmission Control Protocol

TD Thing Description

TLS Transport Layer Security

UAT User Acceptance Tests

UDP User Diagram Protocol

UDT UDP-based Data Transfer Protocol

W3C The World Wide Web Consortium

WoT Web of Things

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

12 of 88

Executive Summary
After years of research, hype and steady growth, the Internet of Things (IoT) has lived up to
expectations and has entered into mainstream business use. The anticipated growth in the

next years is high, with Fortune Business Insights™ in its report, titled “Internet of Things (IoT)
Market, 2020-2027” [1] projecting the global IoT market size to reach USD 1463.19 billion by

2027. The same report suggests that significant push in the IoT market is expected by the
increasing demand for artificial intelligence and twin technology and precision farming
worldwide. Europe is leading the IoT market with IoT spending in Europe estimated to reach

USD 202 billion in 2021and continue to experience double-digit growth through 2025,
according to International Data Corporation's (IDC) Worldwide Semiannual Internet of Things

Spending Guide [2].

The Next Generation IoT as part of Next Generation Internet (IoT-NGIN) project introduces

novel research and innovation concepts, acting as the “IoT Engine” which will fuel the Next
Generation of IoT as a part of the European Next Generation Internet. A key project
objective is to uncover a patterns based meta-architecture that encompasses evolving,

legacy, and future IoT architectures.

This document constitutes Deliverable “D1.2: IoT meta-architecture, components and

benchmarking”, which is an output of Work Package (WP) 1, entitled “Next Generation IoT
Requirements & Meta-Architecture. The main achievements towards the definition of the IoT-

NGIN meta-architecture analyzed in the present document include:

• Identification and analysis of the state-of-the-art IoT platforms and frameworks,

covering open-source, commercial and EU research level perspectives.

• Identification and analysis of 16 distinct IoT architectures.

• An initial concept and technical specifications of the IoT-NGIN meta-architecture has

been defined around four key artifacts, namely IoT architectural pattern vertical,

domain horizontal, quality vertical, and element view.

• Detailed analysis of the individual components within the meta-architecture has been

conducted and compliance to the IoT-NGIN meta-architecture has been discussed.

• The IoT-NGIN architecture, complying to the meta-architecture, has been presented,

identifying fine-grained components across functional blocks for both the IoT and

Edge/Cloud nodes.

• Common IoT data models and standardization approaches have been identified to

ensure platform’s interoperability and adaptability.

• Initial test reports format and benchmarking methodology have been defined based

on Quality of Service to assess the performance of the system through already defined

KPIs, and on Quality of Experience to quantify the user experience.

Following the current IoT technological trends, as well as key project findings as they become

available, the IoT-NGIN meta-architecture is being continuously updated. The next version of
the IoT-NGIN meta-architecture, featuring such updates, is expected to be released in the
last quarter of 2022.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

13 of 88

1 Introduction
An architecture of a system is the structured set required to proficiently reason about the
system. The structures consist of elements, relations, interactions and properties of the system

under study. Traditionally in software engineering, architecture refers to software systems and
its elements. Architecture plays a vital role in complex system development and in the

system’s capability of inter system communication or of changing its hierarchy.

The meta-architecture takes a higher-level view and collects together architecturally

significant choices, patterns, components, viewpoints and quality attributes that need to be

considered when designing and implementing individual systems. The meta-architecture
provides a foundation for the architecture strategy and system design.

The aim of the meta-architecture work in IoT-NGIN is to provide a research-informed

framework for designing and implementing IoT solutions in different usage scenarios. The

meta-architecture collects key quality requirements, architectural patterns and high-level
system components. The meta-architecture provides an overall framework for individual
system implementations. The motivation is to enable reuse of existing IoT technologies and

solutions to new domains and assist structured, informed IoT platform design. Consequently,
the meta-architecture is designed to be extensible to make room for new technologies and

computing paradigms and allow the effective and seamless exploitation and exploration of
both historical and real-time IoT data.

The IoT-NGIN meta-architecture is based on analysis of current IoT platforms and standards.

The analysis of current approaches covered key open-source and commercial IoT platforms
and was further extended by EU research perspective covering most relevant EU research

projects in recent years. The architectural patterns included into the meta-architecture are
based on expert advice and knowledge identified in previous open-source, commercial and

EU research projects complemented by the research conducted within IoT-NGIN.

An architectural view represents the design of software system from a specific point of view.

The architectural views commonly used in software design are listed in Table 1. Viewpoints,

on the other hand, include reusable information, design patterns, templates, and
conventions to build and read a specific view. Viewpoints are valuable because one can

reuse architecturally valuable information in designs. This approach allows for better
management of complexity because viewpoints can be used to instantiate the views.

Following the ideas of views and viewpoints, the developed meta-architecture aims to build
and visualise a specific strategic viewpoint for IoT-specific applications.

Table 1: Common architectural views.

View Description

Context view Environment and stakeholder dynamics.

Functional view Functional architecture and critical component/elements.

Development view Source code, class structure, dependencies.

Information view Information flow and static information.

Item Deployment view Infrastructure and physical distribution.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

14 of 88

Item Operational view Operation, management, support of a system in production

environment.

Item Concurrency view Processes and threads.

1.1 Intended audience

The document could be especially useful to IoT stakeholders interested in adopting the IoT-
NGIN meta-architecture. IoT and edge hardware manufacturers, IoT solution providers, but
also 5G and AI-related stakeholders could get insights on the architectural patterns for their

fields of interest. Moreover, the document provides technical specifications, analyzes
architectural viewpoints and data models and introduces methodology for benchmarking

and testing, which could help IoT solution providers, technology providers and developers
enhance their IoT solutions, developments or products, adapting them into or extending the

IoT-NGIN meta-architecture.

Policy makers and regulation bodies are also among the interested stakeholders, since the

IoT-NGIN meta-architecture could be exploited for cross-domain applications at municipal,

national or regional level.

Finally, the report is useful internally, to the members of the development and integration

team of the IoT-NGIN consortium, along with the Open Call winners, but also to the whole
Consortium for validation and exploitation purposes. Useful feedback could be also received
from the Advisory Board, including both technical and impact creation comments.

1.2 Relation to other activities

Since this document collects the requirements and ratifies the technological and design

perspectives of the IoT-NGIN meta-architecture and the IoT-NGIN project architecture, it is
relevant to the majority of the technical project activities.

Indeed, with reference to Figure 1, depicting the project PERT chart, the work of WP1 (and

the meta-architecture in particular) directly affects the definition of activities in the technical
WPs of the project, implicitly hinting over design and technology implementation decisions,

offering guidelines regarding the network design (WP2), requirements regarding the global
use of Artificial Intelligence (AI) and Machine Learning (ML) in WP3, the introduction of

Augmented Reality (AR) and tactility to the IoT landscape (WP4), as well as the cybersecurity
and data privacy aspects ruling the IoT-NGIN operations (WP5). At the same time, the
requirements for the meta-architecture stem from the actual needs of the Living Labs and

their associated Use Cases (WP7) as well as from the overall technology integration work of
the project (WP6), particularly when it comes to addressing the needs of the manageability

perspective of the IoT-NGIN activities and deployments, and vice-versa.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

15 of 88

Figure 1: IoT-NGIN PERT chart.

Being a WP1 deliverable, this document is also relevant to the internal WP1 activities. Task 1.1

posed several functional and non-functional requirements to be covered by the meta-
architecture definition, whereas the Task1.2 activities formulated most of the deliverable
content. The verification framework was developed in the context of Task 1.3. Finally, Task 1.4

identified the relevant existing technologies, frameworks, products and projects that are
relevant to the scope of the meta-architecture definition and design. This document should

be considered as a living document, its contents being affected by the inherent
advancements of technology per se (identified in the context of Task 1.4) and of the IoT-
NGIN Living Labs (LLs) requirements evolution.

1.3 Document Overview

The present deliverable is divided into seven chapters, as follows.

Chapter 1 introduces the motivation and objectives of the deliverable. Moreover, it explains

the inter-relationships of this deliverable with other Work Packages of the project since the

defined meta-architecture will form the basis that the rest of the project will be built upon.

Chapter 2 provides an overview of several IoT technologies, platforms and solutions covering

all three perspectives, commercial, open-source and EU projects and it further presents

technological specifications of each platform.

Chapter 3 describes architectural patterns observed in the analysed platforms in detail

showing strengths and weaknesses of each one and suitability for various applications.

Chapters 4 is the main output of this deliverable. It explains the concept of meta-architecture

and gives a detailed explanation of the derived IoT-NGIN meta-architecture based on the

architectural pattern analysis described in chapters 2 and 3. This is the initial concept of the

meta-architecture that will be used in the implementation of the IoT-NGIN use cases. It also

presents the element view of the meta-architecture, which provides a general technological

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

16 of 88

view with a focus on its functional groups and individual components. Moreover, it presents

the non-functional architectural patterns vertical which discusses common quality attributes

included in the architecture. It also discusses the overarching machine learning and artificial

intelligence layer that is developed as a part of IoT-NGIN Machine Learning as a Service

platform. This chapter posits a preliminary set of criteria for IoT-NGIN meta-architecture

compliance. As IoT-IGIN uses existing and mature networks, compliance with several

standards was the main perspective of the discussion in order to ensure interoperability and

adaptability of the IoT-NGIN platform.

Chapter 5 presents the modular IoT-NGIN architecture, describing its components in every

functional group. The chapter also discusses the compliance of the IoT-NGIN architecture to

the meta-architecture defined in Chapter 4.

Chapter 6 describes various data models implementation options that are potential

candidates being compatible with the IoT-NGIN requirements whilst they are relevant to

data sovereignty and federated communications.

Chapter 7 provides the initial perspective towards benchmarking of the IoT-NGIN results by

defining test reports formats and benchmarking for the validation of the Key Performance

Indicators (KPIs). The chapter provides the methodology for the verification of the results and

focuses on two metrics, the Quality of Service, which assesses the performance of the

platform through the KPIs and the Quality of Experience, which quantifies the user

experience.

Chapter 8 concludes with the main findings and outputs of the report as well as an initial

perspective on the next steps towards the implementation of the meta-architecture in the

IoT-NGIN platform.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

17 of 88

2 Existing IoT platforms
To assess current state of the art in IoT architectures, this section analyses various identified
IoT technologies, solutions and approaches. The IoT-NGIN meta-architecture is constructed

based on these identified IoT platforms and standards. The architectural patterns included
into the meta-architecture are based on expert advice and knowledge identified in previous

open-source, commercial and EU research projects complemented by information provided
by IoT-NGIN project partners.

Most of the analysed entities in open-source and commercial perspectives can be labelled

as cloud-based IoT platforms, which complement their offering with on-premise and hybrid
services. Cloud IoT platforms offer versatile connectivity and device management, while

simultaneously providing capabilities for data ingestion and processing. Many cloud
platforms form bi-directional communications, enabling communication between the

devices and the cloud back-end services. IoT applications can be implemented with a
diverse set of heterogeneous IoT devices, which push sensor and event data to the cloud
through a network. In this task, the analysis of IoT solutions is focused on the following

characteristics [3]:

• Data communication and connectivity are requirements for remote orchestration of

devices and transferring of data. There is a profound need to have secure and high-

quality communication between the devices, applications and the cloud infrastructure.
The communication types are often referred to as different abbreviations: Device to
Cloud (D2C), Cloud to Device (C2D), Device to Device (D2D) also frequently referred to

(M2M), Device to Application (D2A) and Device to Gateway (D2G). The set of
communication types enhances the notion of complex communication in IoT. Data can

be collected, transmitted and stored in various layers and parts of the system. To answer
the challenge, cloud IoT platforms often contain a message broker for sending and

receiving events and messages from devices and gateways.

• Rules and business processing is mandatory in the event-based IoT environments. The

logical flow of data and information depend on the application and use case. A rule
engine or similar function is often embedded in the system to integrate the technical

flows with business logic and create useful action triggers.

• Integration with other platforms, devices, services and development tools unleash the

power of cloud IoT platforms and are the key reasons for their dominance. In this context,
integration is discussed as the general connector of the high-level components. Many of

the analysed technologies offer development performance and various business
interfaces through SDKs and APIs.

• Potential solution-specific features are analysed on a case-by-case basis. No technology

is identical and as a sub-objective of this analysis is not only to identify the recurrent
architectural approaches but also discover valuable solutions that can be applied to

the IoT-NGIN project. While the developed meta-architecture does not address the
specific technologies, the discoveries will be useful in other parts of the project.

• Security is one of the most important characteristics across other analysis categories.

Security is one of the cornerstones of IoT-NGIN, thus it is considered as a standalone

characteristic. The security features are highlighted especially in the device level, data
and communications and infrastructure security. In addition, some special cryptography

features with industry-wide adoption are included in the analysis.

• As in any business, cost is an important factor, but it is delimited out of the scope of this

analysis. It is still a crucial notion that design, building and operating costs differ largely

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

18 of 88

depending on the application, scale and the whole operation environment, such as
service providers and licensing.

Based on a review of state-of-the-art IoT platforms and other prior works, a number of

platforms presented in Table 2 were selected for further influencing the design of the IoT-

NGIN meta-architecture.

Table 2 shows an overview of the existing IoT approaches and platforms.

Table 2: IoT approaches and platforms selected for further study

Type Existing relevant projects

Open source FIWARE [4], W3C Web of Things (WoT) [5], DeviceHive [6], ThingsBoard

[7], Kaa [8], OpenRemote [9], Mainflux [10].

Commercial Azure IoT [11], AWS IoT [12], Google Cloud IoT Core [13], PTC

Thingsworkx [14], IBM Watson IoT [15], Cumulocity IoT [16], Particle
[17].

EU Research The IoT European Large-Scale Pilots (LSP) Programme [18] (CREATE-

IoT, SynchroniCity, MONICA, AUTOPILOT, ACTIVAGE), GAIA-X, INTER-

IoT, AGILE, other related projects identified by IoT-NGIN (SOFIE, NRG-
5, OPEN DEI, SOGNO, AI4EU, MATILDA, 5GCity, PRIMO 5G)

2.1 Open-source perspective

There are various drivers for open-source development, but the most significant are velocity
of innovation, focus on interoperability and vendor lock-in avoidance, and easier

experimenting. Open-source technologies often combine other open standards and robust
open-source implementation.

Table 3 below shows the analysed open source architectures and their general description.

Table 3: Open source platforms.

Name Description

FIWARE FIWARE is an open-source framework and platform that features to

build its components for smart solutions across the domains of Smart

AgriFood, Smart Cities, Smart Energy, and Smart Industry. FIWARE
provides IoT capabilities through cloud-based context information

management and big data services and is built around a FIWARE
Context Broker. FIWARE Generic Enablers (GEs) enable rapid
development of applications and services. GEs are often interfaced

with REST APIs, which allow third-party components to build complex
solutions, such as real-time data analysis and processing, predictive

maintenance, and language interpreters [4].

W3C Web of

Things (WoT)

WoT focuses on harmonizing the IoT landscape by developing and

extending existing and already standardised technologies. WoT is

based on building blocks that describe IoT devices and services,
referred to as the Things, at various levels.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

19 of 88

DeviceHive DeviceHive is an open-source IoT cloud service management

platform, licensed under the Apache License Version 2.0. It consists of

the communication layer, control software and multi-platform libraries
and clients. DeviceHive positions itself as a platform with versatile

deployment options in public, private and hybrid clouds [6].

ThingsBoard ThingsBoard is an open-source IoT platform for specializing in data

processing, and device orchestration. ThingsBoard is designed to be
scalable, robust and efficient. Yet, it minimises trade-offs in fault-
tolerance, durability and customization options. It offers connectivity

via standard IoT protocols and supports cloud and on-premises
deployments [7].

Kaa Kaa is an end-to-end IoT platform applicable to IoT projects of any

scale. It provides a wide offering of features for developers to build

applications such as smart products, flexible cloud-based device
management, or end-to-end data processing. Kaa Cloud operates on
the Platform-as-a-Service (PaaS) model. Kaa operates through distinct

endpoints that feed to Kaa protocol communication. Depending on
the application, the transferred information can be for example

command execution, data collection operation, or configuration
instructions [8].

OpenRemote OpenRemote is an open-source IoT platform that integrates a variety

of devices, assets and other data sources into a single asset and data
management solution. It allows designing applications and workflows

specific to customer problems. Visualizing and analyzing the managed
data is convenient and OpenRemote offers tools for reporting and

progress measurement and has easily accessible web user interfaces
and consoles [9].

Mainflux Mainflux is a microservice-based, high-performance and secure open-

source IoT platform with end-to-end development capacity of IoT
solutions, applications and smart products. With Apache 2.0 license,

Mainflux offers transparency, control, and support community for
testing, bug fixes and more [10].

Table 4 through to Table 8 below discuss in more detail, the characteristics and common

features of the platforms presented in Table 3.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

20 of 88

Table 4: OpenRemote Specifications

Feature Detail

General architecture Agent-based architecture

Rules Processing Rules Engine for automation: JSON and Flow Rules Object

Model. Prediction and Optimisation Models. Messaging
and streaming service.

Asset management Configuration, Location tracking, status manager.

Connectivity Protocol Support Agent. TCP/HTTP, MQTT, REST API

Manager, WebSocket endpoint. Edge Gateways, KNX,
ArtNET/DMX, Z-wave

Infrastructure & Deployment Cloud and on-premises. Docker images. Hosting as a

Service. Edge Gateways on ARM.

Security Multi-tenant solution. Multiple users and roles. Access

rights: public, private or restricted. Security OAuth. Web
component for Identity service.

Table 5: Mainflux Specifications

Feature Detail

General architecture Microservices with high-performance, scalability and

fault-tolerance. Domain model: Users, Things and
Channels. Scalable NATS broker for internal message
exchange.

Integrations Third-party integrations with enterprise systems (e.g. ERPs,

BI, CRM, SQL/noSQL databases, and other cloud services

such as analytics.

Connectivity Pub/sub multiprotocol messaging bridge, MQTT, HTTP,

WebSocket, CoAP, NATS.

Development & Deployment Mainflux Security server written in Golang. SDKs and client

libraries in C/C++, JavaScript, Python. Microservices

containerised by Docker and orchestrated with
Kubernetes.

Security Authentication and authorization with API keys and

scoped JWT. OpenID Connect with OAuth 2.0. Mutual TLS

Authentication (mTLS) with X.509. Nginx HTTPS reverse
proxy. TLS and DTLS load-balancing / termination. Vault
data encryption.

Edge capabilities Optimised hardware, Solid Run HummingBoard CBi -

Edge1 IoT Edge Gateway. Low memory footprint, low

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

21 of 88

latency, high performance, tolerance for temperature
range (-40° to 85° C).

Table 6: Thingsboard Specifications

Feature Detail

General architecture Microservice-based instances for ThingsBoard clusters.

Gateway for legacy connectivity.

Rules Processing Rule engine with event-based workflows. Main

components Messages, Rule Nodes, Rule Chains.

Connectivity HTTP, TCP, MQTT. REST API calls, WebSocket subscriptions.

Monitor device connectivity states. gRPC potentially
shifting to Kafka.

Integrations LORIOT, AWS IoT, IBM Watson, Azure IoT, SigFox, and

custom.

Security OAuth2 support, MQTT over SSL. Device authentication:

access tokens, MQTT credentials X.509 certifications.

Deployment On-premises and cloud.

Table 7: Kaa Specifications

Feature Detail

General architecture Flexible microservices architecture. Any component is

replaceable or customizable.

Data processing Structured/unstructured data. Data processing pipelines.

Integrated with databases such as Cassandra, MongoDB,

InfluxDB, and more

Connectivity MQTT, Sigfox, LoRa, NB-IoT, WiFi, BLE, Z-Wave,

2G/3G/4G/(5G), ethernet, gateways, custom.

Integrations REST APIs and NATS. Support for business tools like SAP,

Salesforce and more. Hardware: sensors, gateways,
industrial PLC, wearables.

Security Device communications are secured with TLS or DTLS.

Flexible credentials lifecycle management.

Table 8: DeviceHive Specifications

Feature Detail

General architecture Microservices.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

22 of 88

Connectivity REST API, WebSockets or MQTT protocol.

Integrations REST APIs and NATS. Support for business tools like SAP,

Salesforce and more. Hardware: sensors, gateways,
industrial PLC, wearables.

Security HTTPS, WebSockets. TLS for devices and apps. Separate

Auth service. Authentication is secured by JSON Web

Tokens (JWT).

Deployment Public, private or hybrid cloud resources. Docker and

Kubernetes deployment support. Kafka service

communication and load-balancing.

2.2 Commercial perspective

The major commercial IoT platforms included in review are presented in Table 9. These
platforms are provided by the biggest digital companies in the world and their feature set
evolves rapidly, so the description of the characteristics and features are based on the

information available at the time of review.

Table 9: Commercial IoT Platforms.

Name Description

Azure IoT Azure IoT is a large and complex end-to-end IoT portfolio. The three

most relevant platforms regarding the analysis are Azure IoT Hub,
Azure IoT Edge and Azure Digital Twins. IoT Hub is a PaaS message

hub for bi-directional communications between an IoT application
and related devices. Microsoft also offers Azure IoT Central, which is
a fully managed Software-as-a-Service (SaaS) for easy design but

less customization. Azure Digital Twins is a platform capable of
building digital representation of real things, locations, business

workflows, and people processes. The managed services offer a
variety of building blocks for building customised solutions in different

scenarios [11].

AWS IoT AWS has broad and deep IoT services, from the edge to the cloud.

AWS IoT offers AI integration, meaning efficient model creation and

deployment. AWS IoT is built on a secure and proven cloud
infrastructure and scales to billions of devices and trillions of

messages. AWS IoT integrates with other AWS services and solutions.
Based on AWS documentation, its offering is divided in three main
categories Device Software, Control Services and Analytics Services

[12].

Google Cloud IoT

Core

The key Google solution for IoT is Google Cloud IoT Core. Like Azure

IoT and AWS IoT, Google Cloud IoT is a managed service that
enables secure connection, management and data operations in

distributed device configurations. It is easily combined with the
functionality of Google Cloud Platform (GCP). Google Cloud IoT

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

23 of 88

Core and GCP offer together world-class ML and big data analytics
features for IoT applications [13].

PTC Thingsworkx ThingWorx Industrial IoT Solutions Platform promotes a diverse set of

capabilities that enable powerful solutions for design,

manufacturing, service, and industrial operations. Thingsworkx has a
special focus on Industrial IoT (IIoT), and it provides pre-defined

building elements for the IIoT use cases. The pre-configured solutions
cut time-to-market, provide flexibility and deliver value rapidly for
enterprise customers of all size. ThingWorx offers capabilities that can

be divided in five focus areas: connectivity, deployment, analytics,
device management and visualization. Their approach is slightly

distinct from other service providers, since the product offering is
divided. For example, other commercial products often join the

connectivity and device management in same elements [14].

IBM IoT portfolio IBM have three technologies of interest for the IoT domain, IBM Edge

Application Manager, IBM Maximo Application Suite and IBM

Watson IoT Platform. IBM Edge Application Manager presents an
autonomous management solution for edge applications that

require qualities such as scalability, variability and evolution. IBM
Maximo is platform for asset management, monitoring, predictive

maintenance, and computer vision. IBM Watson IoT Platform utilises
the AI and cognitive abilities of Watson AI. It included capabilities for
real-time data analysis, insight production through AI and ML.

Watson IoT can govern applications and device statuses: usage and
performance, anomaly detection, and data validation [15].

Cumulocity IoT Cumulocity IoT from Software AG is built to enable open, rapid

deployment and distributed processing. Cumulocity tackles
architectural complexity by promoting a singular architecture that

covers the infrastructure from edge of the cloud to the on-premises
assets. Cumulocity IoT differentiates itself with a special focus on

industrial equipment. The focus is highlighted by the support for field-
bus protocols such as Modbus, Can bus and OPC-UA. Additional

distinction is that Cumulocity IoT promotes no-code and self-service
approaches [16].

Particle Particle offering is a combination of IoT platform and hardware. The

product ecosystem of particle includes asset tracking, hardware for

prototyping and mass production, development tools and various
software APIs and libraries. The functional focus of IoT platform

includes IoT devices management, data pipelines, and tracking
systems. A special product is the EtherSIM, which is a global, scalable
and self-learning cellular connectivity. In the analysis of Task 1.2, the

most relevant products are Particle Device OS and Device Cloud.
Particle frequently is more data-efficient than its competitors. With

the CoAP over DTLS approach, they can hold up connection in
worse networks. For example, a MQTT connection over TLS/SSL
requires full 5K TLS handshake for a device re-connection [17].

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

24 of 88

Table 10 to Table 16 below discuss in more detail, the characteristics and common features

of the platforms presented in Table 9.

Table 10: Azure IoT Hub Specifications

Feature Description

General architecture Message broker and micro-service architecture. Device-

to-cloud telemetry, Per-device identity, IoT devices and
cloud

gateways. Lambda architecture (warm and cold paths)

for data processing.

Integration/interfaces Azure Event Hubs, Azure IoT Edge,

Custom third-parties connectors such as Thingsboard and

ThingWorx.

Data communication and

connectivity
HTTPS, AMQP, MQTT, WebSockets.

Security Device Provisioning Service (DPS) and

authorization. X.509/TLS-based Handshake

and encryption. Azure Active Directory for IAM. Key Vault.

Policy-based access control.

Infrastructure and

deployment

Public, private or hybrid cloud resources. Docker and

Kubernetes deployment support. Kafka service
communication and load-balancing.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

25 of 88

Table 11: AWS IoT Core Specifications

Feature Description

General architecture Publish/subscribe message broker

Rule/business processing MQTT topic stream for rule analysis and execution. Passed

through the pub/sub broker with device communication
protocols or Ingest feature to optimise data streams by

deleting the pub/sub message from the ingestion path).

Integration/interfaces Amazon Sidewalk, Alexa Voice Service, other Amazon

services such as AWS Lambda and S3.

Data communication and

connectivity
MQTT, MQTT over WSS, and HTTP, LoRaWAN

Security IAM roles and policies. Amazon Cognito Identity. AWS

security credentials. Authentication at TLS layer with X.509

certificate chain. Support for custom authentication. Data
protection with multi-factor authentication, SSL/TLS for

communication with AWS resources, logging with AWS
CloudTrail.

Table 12: Google Cloud IoT Specifications

Feature Description

General architecture Publish/subscribe architecture, complemented by GCP

pub/sub features. Main components are device manager

and protocol bridges for MQTT and HTTP

Integration/interfaces Google Big data analytics and ML services, BigQuery,

Bigtable, and thirdparty services.

Data communication and

connectivity

HTTPS, MQTT. Gateway (over the HTTP andMQTT) support

for example ZigBee and Bluetooth.

Security JWTs for short-span authentication between devices.

Public/private key authentication for verifying device

credentials over TLS 1.2. IAM with Cloud Identity, Google
Cloud’s built-in managed identity. Two-factor
authentication.

Infrastructure and

deployment

AWS cloud environment. AWS IoT Device Client, a device-

side reference implementation. AWS SDK and AWS IoT.

Device SDK provide APIs and tools. Google Cloud. REST
APIs for device registration, deployment, and operations.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

26 of 88

Table 13: PTC ThingWorkx Specifications

Feature Description

General architecture ThingWorx Connection Server, a monolithic server

application for device connections and message routing.

Integration/interfaces ThingWorx Flow: Microsoft Azure, SAP, Salesforce, Windchill,

Box. Separate Azure IoT Hub Connector for Azure IoT Edge.

Data communication and

connectivity
HTTP, SOAP, SQL, OData, Swagger, RAML, and OSLC.

Security Encrypted communications with SSL and TLS. Authorization

with agent-based communications. Support for plug-in
authentication, such as LDAP, active directories, and

custom solutions.

Infrastructure and

deployment

On-premise servers, cloud resources, and hybrid

environments. ThingWorx offers role based and user-
friendly IoT web applications. Users can view, analyse, and

react to IoT data in real-time.

Table 14: Particle Specifications

Feature Description

General architecture Pub/sub architecture. Webhooks.

Integration/interfaces GCP, Azure IoT Hub, InfluxData, QuestDB.

Data communication and

connectivity

Cellular 2/3/4G, Wi-FI REST APIs, CoAP. Server-Sent-Events:

Heroku, Amazon EC2, Google AppEngine etc.

Security RSA public-key pairs. DTLS over UDP, or AES over TCP.

Infrastructure and

deployment

Particle’s hardware, Device OS and Device OS OTA

updates.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

27 of 88

Table 15: IBM IoT Specifications

Feature Description

General architecture Publish/subscribe-like Broker.

Integration/interfaces IBM Cloud services such as Db2 Warehouse, Cloudant

NoSQL DB, Object Storage, Secure Gateway, or non-IBM
services with custom interfaces.

Data communication and

connectivity
HTTPS, MQTT, custom protocols.

Security Platform Service manage device connections and

security. OAuth server. Data security and integrity are
embedded in the IBM Cloud storage solutions.

Infrastructure and

deployment

IBM Cloud. APIs to manage device registration,

deployment, and operations. Distinct Analytics and

Blockchain services.

Table 16: Cumulocity IoT Specifications

Feature Description

General architecture Agent-based model Applications are either web-based

UIs or server-side microservices.

Integration/interfaces webMethods.io Integration, cloud integration solution

from Software AG. Through webMethods.io possible
integration examples are Marketo, Salesforce, Gmail and

more.

Data communication and

connectivity

MQTT (over WebSockets support), HTTP, REST, Modbus, Can

bus and OPC-UA.

Security Encrypted communications. HTTPS connections from

devices to applications.

Infrastructure and

deployment

Standard tenants hosted at AWS. Custom hosting

depending on the subscription. Microservices deployed as

Docker images.

2.3 EU research perspective

IoT-NGIN draws information from the EU research projects and applies it in various formats.
The research projects develop state-of-the-art technology that is not feasible for smaller
open-source projects or is not yet commercially exploitable. The researched technologies

might still have substantial effect on the future development of IoT. The IoT European Large-
Scale Pilots Programme (LSP) consist of several innovation consortia that conduct research

and development in the IoT domain.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

28 of 88

The projects work in IoT integration across value chains, enhancing scalability and focusing

on use-case contexts. Demonstrating in operational environments is also a crucial part of the

Programme and significant part of the projects listed in Table 17.

Table 17: European Research Projects relevant to IoT-NGIN.

Project Description

CREATE-IoT [19] CRoss fErtilisation through AlignmenT. CREATE-IoT focuses on the

synchronisation of projects and technologies, with an additional focus
on IoT Exchanges. CREATE-IoT aligns the innovation ventures with, for

example, the Alliance for Internet of Things Innovation (AIOTI). In
general, the objective is to advance collaboration between IoT
initiatives and promote IoT ecosystems based on open innovation.

SynchroniCity

[20]

Delivering an IoT-enabled Digital Single Market for Europe and Beyond.

SynchroniCity research on reference architectures and a framework

regarding “minimal interoperability mechanisms” or MIMs. The MIMS
take a neutral stance on service providers and technologies. The

project currently revolves around three MIMS: context information
management (CIM), common data models, and ecosystem
marketplaces. Future development includes concepts such as

personal data management and fair artificial intelligence.

MONICA [21] Management Of Networked IoT Wearables – Very Large Scale

Demonstration of Cultural Societal. MONICA demonstrates large scale
IoT in the domain of smart living. The technologies are using wearable

and interoperable sensors. The things are embedded into cloud
platforms that provide a variety of functionalities to build applications.

AUTOPILOT [22] AUTOmated driving Progressed by Internet Of Things. AUTOPILOT

develops new services and models for the mobility industry. The new
applications use autonomy as the base principle and build on top of

autonomous vehicles. Other autonomous driving applications such as
automated parking and dynamic digital maps.

ACTIVAGE [23] ACTivating InnoVative IoT smart living environments for AGEing well.

Effective use of existing technology is extremely important for large-
scale applications. Similar to IoT-NGIN, ACTIVAGE reuses and scales

open-source and proprietary IoT technologies. In addition, it develops
new interfaces to integrate the existing solutions and provide

interoperability between systems in smart living, especially in health
technology related to activity and ageing.

IoF2020 [24] Internet of Food and Farm 2020. IoF2020 focuses to enlarge IoT

adoption across the farming and food value chains. Sufficient,
efficient, and safe delivery of healthy food can be secured with the

newest technologies, even in harsh conditions. The project exploits a
symbiotic ecosystem of farmers, food producers, technology vendors,

and academia. IoF2020 is based on open architecture and
infrastructure bases on reusable elements, following the latest
standardization and security concerns.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

29 of 88

GAIA-X [25] GAIA-X is set to be an Infrastructure and Data Ecosystem according to

European values and standards. The core concepts of GAIA-X are

Digital and Data Sovereignty. In the GAIA-X project, the concept of
digital sovereignty is defined as "the power to make decisions about

how digital processes, infrastructures and the movement of data are
structured, built and managed". GAIA-X has three main technical

approaches: (1) Federation, (2) Self-Description and Policies, and (3)
Identity and Trust. IoT-NGIN closely aligns with the concepts and aims
to implement similar high-level objectives, all according to the

European Strategy for Data [26].

AGILE [27] AGILE (Adaptive Gateways for dIverse muLtiple Environments) is a

consortium that builds an extensible and versatile IoT gateway. The
gateway supports interoperability, IoT device and data management,

diverse IoT applications, and interfaces for third-party cloud services.
The most important design principle is modularity. AGILE is open-source,
and it will be embedded within an IoT project of the Eclipse Foundatio

[28].. AGILE has an emphasis on new developer communities. The
objective is that an intense collaboration leads to agile prototyping

opportunities and ultimately increases the adoption rate of the project.

U4IoT [29] User Engagement for Large Scale Pilots in the Internet of Things. The

objective of U4IoT is to build tools for the LSP projects for user adoption
and engagement. The tools include online resources, crowdsourcing,
various best practices and a privacy themed game for learning. In

addition, U4IoT examines societal, ethical and ecological perspectives
and makes recommendations on how to tackle barriers that hinder IoT

adoption. Education and sustainability requirements are along with the
key obstacles.

In addition to IoT projects listed above, some other EU research project might not be directly
related to IoT but there is a significant and interesting relationship between them and IoT-

NGIN. Those projects and their relation to the IoT-NGIN have been further analysed in Table
18 below.

Table 18: IoT-NGIN relevant research projects and their relationship with IoT-NGIN.

Project Relation to IoT-NGIN

SOFIE [30]

SOFIE (Secure Open Federation for Internet

Everywhere) develops a federated

blockchain platform. The platform offers
integrity, confidentiality and auditability of

data and actions through ledger-
independent transactions.

IoT-NGIN can adapt data privacy and data

sovereignty through the federated
blockchains and ledger-independent

transactions of SOFIE. IoT-NGIN can then
share its concepts and tools, digital services
data in a secure and open way.

NRG-5 [31]

NRG-5 is a leading project on the energy

vertical of 5G PPP/5G initiative. The project

IoT-NGIN benefits from NRG-5 expertise in 5G

and adapts the learnings in testing setups

and new services.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

30 of 88

advances the path of energy producers
and service providers into decentralised

energy systems and renewable energy,
paired with preventive maintenance.

OPEN DEI [32]

OPEN DEI project contributes to the EU

Digital Transformation strategy by providing
synergies, best practices, and increased
collaboration of regional and national

actors. OPEN DEI takes part in creating
common data platforms through unified

architecture design and applying the latest
industry standards.

IoT-NGIN harnesses the experiences of Open

DEI work on digitalisation of the energy

vertical. Also, OPEN DEI is a project partner
on data sovereignty with International Data

Spaces Association (IDSA) which benefits IoT-
NGIN.

SOGNO [33]

SOGNO is developing new cloud-native

technology for data-intense energy and

control systems. It exploits concepts such as
low-cost hardware, ML and 5G. In parallel,

RESERVE develops frequency and voltage
control for renewable energy.

Service implementations in IoT-NGIN based

on the SOGNO approach of low- cost
hardware, ML and 5G. The insights of
RESERVE project lay out the basis for electric

vehicle charging optimisation and smart grid
use case requirements.

INTER-IoT [34]

INTER-IoT focuses on reference meta-

architecture and reference meta-data

model to form guidelines and base for
interoperability system across IoT use cases.
The designed reference model and

architecture are both based on the
Lighthouse project IoT-A. INTER-IoT

introduces Functional Groups and
Functional Components as means to define
relevant structure and details. Examples of

the Functional Groups are Security,
Communication and IoT Service. Each

Functional Group consist of more detailed
Functional Components [35].

INTER-IoT provides a reference model, meta

data model and reference architecture that

align with the research interests of IoT-NGIN.
The structure of INTER-IoT inspires meta-

architecture development.

AI4EU [36]

AI4EU promotes a sharing platform for

various AI assets, such as high-level services,

components, learning and testing datasets
and high-speed computing resources. The

platform is based on the Acumos AI
platform developed by the Linux
Foundation.

IoT-NGIN applies the existing knowledge in

federated ML and data privacy. In addition,

partners involved in both projects can bring
insight to running use case pilots.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

31 of 88

3 IoT architectural patterns overview and
analysis

This section provides a list of identified IoT architectural patterns, combining the ones
identified in the review phase described in Chapter 3 and the new IoT-NGIN specific ones.

IoT-NGIN provides unique addition of patterns such as Distributed Ledger Technologies (DLTs)
and 5G capabilities in IoT communications. These patterns are not meant to be exclusive or
exhaustive. Different patterns can be combined in actual implementations to achieve a

solution for a product or service in questions. Also, as technologies and solution architectures
evolve, the meta-architecture will accommodate these changes in future versions.

3.1 Layered architecture

Layers of isolation are an abstract architectural concept similar to separation of concerns in
software engineering. The core idea is that changes in one layer do not affect other layers.

Even in the worst case, the changes should be isolated to associated layers. As an abstract
concept, layer is a selected analysis viewpoints and different reference architectures consists

of different layers. An example of layering is presented in Figure 2.

Each layer should be independent and handle other layers as "black-boxes", only having the

information about the required interfaces and data formats. For example, the isolation
concept allows to switch between different protocols for increased performance in network
layer, but the change does not affect higher level services or the user interfaces.

Overall, the layered architecture pattern is a valid general-purpose solution and serves as an

excellent starting point for many applications. One of its benefits is that other more specific

patterns can be attached into the layered model, making it easier to derive detailed
conclusions and actions. The downside of the pattern is that it tends to point towards

monolithic applications [37].

3.2 Microservices-oriented architecture

Microservices architecture is a common software architectural pattern, often interpreted as

part of service-oriented architecture (SOA). Today however, microservices are such a

dominant pattern in software and system development that it is interpreted as distinct from

SOA.

Microservices are independent services that can operate on various system levels. Each of

these has its specific purpose or task and microservices can be seen as single self-contained

deployable entities. Complex systems can thus be built by composing a multitude of such

services (Figure 3). The service should then only serve a single functionality with a defined

interface. This has the practical impact, that a small development team can create and

maintain such a service with only minimal dependencies to other business units. This also

alleviates the replacement of such services with a better-suited implementation without

affecting the whole system.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

32 of 88

Figure 2: IoT Layers [38].

The requirement for self-containment usually requires the service to be stateless as well.

Shared state is achieved via databases, which are connected to the services.

Communication with microservices often happens through APIs or message queuing based

on common protocols such as http or mqtt.

This architecture pattern can enable massive horizontal scaling, as the services can run on

(even locally) independent hardware. Load balancers and content delivery networks can

effectively distribute the load onto the services, which can also be dispatched quickly to

react to variances in demand.

On the other hand, the encapsulation increases the complexity, which this makes

debugging, and system overview harder. Managing a scalable deployment of a system

build from a multitude of independent services is therefore not an easy task. As the services

communicate via network protocols, a reduced performance and increased latency

compared to monolithic software has to be considered.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

33 of 88

Figure 3: Microservices Architecture.

Comparing to the layered IoT architectures, microservices can be discovered from almost
every layer, but are often part of the core application infrastructure and deployed in cloud
environments. For example, AWS facilitates architecture migration to cloud-based

microservice infrastructure. Concurrently, the wide adaption of Linux containers and virtual
machines enable to maintain customised execution environments. The microservice

development has also paved the way for different software deployment services, such as
Docker and more high-level container management systems such as Kubernetes.

3.3 Event-driven architecture

The entire IoT industry is built around different events, action triggers and asynchronous
communication. Event-driven architecture embeds the characteristics into an architectural

pattern that offers scalability and flexibility. The building blocks of event-driven architecture
are distributed, single-purpose components that produce, process and receive various types

of events.

The pattern frequently builds on top of two core elements, mediator and the broker.

Mediator concept is used in applications that require complex process steps or

management that benefits from central event processing. It can implement supporting
components such as event ques or event processing pipelines.

Yet, the communication between the services and applications is more often performed by

a broker (or a message broker). Often the message broker implements a pub/sub
architecture, which is seen across the open-source and commercial solution. The broker

handles event-based requests from connected sensors, devices and other sources and vice
versa, enabling transmitting actions and messages back to the event sources. Event chaining

in the message broker then orchestrates the message to the right microservice, function or
interface. Feasible implementation models include centralised and federated designs. The

broker also contains required event channels that handle the data transfer and information
flow. The event channel can consist of message queues, message topics, or both. MQTT has
become almost the de facto standard in message brokering and it is implemented in various

services [37].

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

34 of 88

Figure 4: Event Broker components.

3.4 Lambda architecture

Many of the IoT-related use cases share characteristics that drive the need for new data

processing capabilities and components. Lambda architecture is new architecture that
consists of real-time data processing and batch data processing. The capabilities of Lambda

architecture include:

• Process streaming data generated by sensors and edge devices.

• Scalability and elasticity: handle a growing number of edge deployment reliably, in

real-time or in frequent batches.

• Enable storage and management for big data, enable pattern analysis and selection

of optimal machine learning models.

• These requirements differ from the requirements that drove the development of

traditional data warehouses based on relational database technologies.

The division into speed and batch layers and focus on the data processing is distinctive for

this pattern. The concrete lambda architecture consists of various typical IoT components,

such as devices, gateways and event hubs. The pattern is subject to different variants and
selecting the specific elements depends on the domain and environment. Existence of

legacy components and limited network coverage. It is important to note that often the
elements are architectural or design patterns themselves [39]. Figure 5 illustrates the elements
of a Lambda architecture.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

35 of 88

Figure 5: Lambda architecture elements

In the context of IoT-NGIN, edge devices are examined as the key component in

architecture pattern. Gateways and Hubs (event-driven brokers) are also stand-alone
patterns. In addition, Machine Learning (ML) in IoT is often analysed either as a separate
domain itself, or as a specific design pattern of architectural patterns.

3.5 Software-defined networking (SDN)

SDN is a solution for effective network management and deployment that is based on a

centralised network perspective. The number of stakeholders and users in the core network
infrastructure is increasing alongside the growing number of heterogeneous devices in the
network. SDN provides network operators and users with new resource control methods that

help to develop use case specific solutions.

SDN focuses on separating the responsibility of the control plane from the data plane,

enabling custom and real-time configuration of network control at the device level. A
general view to SDN includes infrastructure, control and application layers. The layered

architecture is complemented with API definitions of northbound and southbound APIs.
Control and application layer are interfaces with the northbound API, and the southbound
API connects the infrastructure and control layers. Eastbound and westbound APIs do exist

for interfacing between network controllers, but these horizontal APIs are rarely used in
architecture design.

SDN embeds well to the general layered-architecture pattern, and it includes monolithic

tendencies since its object includes enforcing centralised control. However, in the network
infrastructure context SDN is already being applied in the ultra-distributed edge cloud

environments because it provides excellent flexibility and manageability. SDNs can also be

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

36 of 88

leveraged at the aggregation of unstructured data, global network monitoring, optimizing
the efficiency and management [40].

3.6 Edge computing

Edge computing architecture consists of networking hardware, edge devices, and client

software that power computing and processing at the edge of a cloud. The edge resides in
between centralised servers and end-user clients. The main advantage of edge computing
is that data is processed at the network edge, and more centralised cloud server

infrastructure, e.g. data center only receive the processed data. Transferring data back and
forth causes a heavy load to the network and introduces security and privacy concerns.

Thus, the approach will save network bandwidth and reduce the amount of energy lost in
the transmission.

The distributed nature of the edge brings it close to the end-user and can provide lower

latency because the time to access data storage and perform data transfer is shorter. Edge
computing can also ensure an increased level of end-to-end security since it has more

control over the device connectivity, which is often vulnerable to several types of attacks. In
general, edge computing is a more potent option for IoT applications than traditional

centralised cloud computing services. The largest cloud vendors have identified the current
development and most of them offer mature edge computing capabilities. Valid examples

include AWS IoT Greengrass, IBM Edge Application Manager or Cumulocity IoT.

There are other perks such as location awareness that can be built into the edge application.

Since the devices are located on the network edge, the applications are already aware of

the location information and context, which makes development easier. There is also a rapid
need for extensive, high-performance and application specific IoT infrastructure. Network

infrastructure and edge computing paradigms are at the center of solving the challenge. In
parallel with 5G development, network management needs to be further developed. In this

context, software-defined networking (SDN) and network function virtualisation (NFV) are
potential concepts. To summarise NFV, it can offer tools for edge implementation in
distributed or constrained conditions. Through resource virtualisation, NFV provides

mechanisms for mobility management, device authentication, fault-tolerance, and
management of data and mobility [41]. NFV is linked closely to IoT-NGIN, and it is presented

as a key pattern in the meta-architecture of the project.

3.7 Wireless sensor networks architectures

Wireless sensor networks (WSNs) are built out of compact, portable and power-restricted

sensor nodes. In the IoT domain, the sensor nodes are the connected “things”. The nodes
include information that can be transmitted across radio links and gateways into various

locations, Internet servers, or client devices (Figure 6). The sensor networks are the base for
many applications that include interaction between an environment and user through any
kind of sensor or actuator. WSN development includes work in sensor, microcontroller and

transceiver technologies. It inspires a set of real-time application scenarios such as
environmental control, military surveillance or healthcare systems.

The sensor nodes can monitor the collected data that is then transmitted forward with

actions called hopping. The prevalent communication mechanisms include single-hopping

(or direct hopping) and multi-hopping. In multi-hopping, sensor nodes are not required to

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

37 of 88

establish direct communication with base stations. Rather, the data is transmitted in several
steps, reducing the responsibility of a single node which in turn results in a more stable

network connection. Multi-hopping is more power-efficient than single-hopping and offers
more potential for IoT applications [42].

Design alternatives for WSNs are proactive or reactive communication. For a proactive

approach, sensor nodes are continuously listening and periodically sending signals,

regardless of the actual need. The proactive approach requires more power and is not as
efficient as the reactive mode, which only reacts to certain predefined events and signal
thresholds. The notion of proactive and reactive WSN design resonates well with the

development of microservices. The proactive mode can be linked to more complex
applications through analogies of event-driven architecture, message brokers, and NFV.

Figure 6: Wireless Sensor Networks overview.

3.8 5G network exposure

Increasing digitalisation is occurring in many vertical sectors. For example, industry

manufacturing processes need to be automatised in order to increase productivity and
reduce delays/faults. Besides, the consumers require improved user experience for online

gaming. These and other use cases can be enhanced by exposing 5G resources.

Exposure means that new applications will benefit from the abstraction of underlying

resources. In this way, the complexity of telecom networks can be hidden, and application

developers can focus on the application logic development, which makes it possible to bring
applications or new services faster to the market. It is foreseen that edge computing

applications will especially benefit from the 5G resource exposure. The following 5G
resources can be exposed to non-telco applications and services:

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

38 of 88

• 5G network exposes connectivity and mobility network capabilities traditionally

available to the network operator solely.

• Communication services such as messaging, audio and video calling can support

services in different verticals.

• Operational and business support system functions that handle operational and

commercial management aspects of exposed network services and capabilities
can be exposed to applications.

• Telecom networks provide runtime execution environments that may host virtual

network functions (VNF) and non-telco applications. Accordingly, applications may

require different edge computing platform elements such as cloud computational,
networking and storage resources.

3.9 5G network slicing

5G network slicing is a critical IoT-capability that enables optimisation of IoT and 5G networks.
SDN and NFV are important concepts that support scalable and flexible network slicing.

The Network Slice Management is done through an Application Function, which in 3GPP

specifications is called Network Slice Management Service (NSMS) or Network Slice Subnet

Management Service (NSSMS) that support different use cases defined in TS 28.531. A slice
subnet is considered different segment of the end-to-end system e.g. Radio-access network

(RAN) subnet, Transport subnet (TS), Core subnet (CN). NSMS provides an interface to create,
activate, terminate slices in the network and perform feasibility checks before creating new
slices. The NSMS will interact with different modules in order to create, delete and modify the

network slices. Each subnet module (RAN, TS, CN) will utilise different technologies such as
CN might utilise network orchestrator based on OpenStack and Kubernetes to create new

5GC instances.

The NSMS will allow the network operator to create slices for isolating IoT-NGIN traffic and

assign different resources. 3GPP has defined in TS 29.641 the data structure to define the
features supported by the slice. Moreover, the QoS and other parameters that will require
resource allocation will be defined when creating the slice as part of the slice data structure.

Thus, the slice information is maintained by the data structure that includes nested structures
described in TS 28.541 that includes nested and inherited data structures as shown in Figure

7 [43].

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

39 of 88

Figure 7: 5G network slicing structure.

3.10 Gateways

IoT gateways are closely linked to edge and cloud computing and enable communication
between sensors, controllers, devices and cloud. Edge devices can be labelled as field

gateways. The field gateways are specialised devices or general-purpose server hardware.
Responsibilities of field gateways include device control and management of data

processing and M2M communication. In general, gateways act as a building block and
other devices can be attached to it to build larger systems. A field gateway is often located

in a fixed environment and close to sensors and actuators. There is a distinction between
traffic routers and field gateways since the gateway actively manages information processes
in the network [44].

Field gateways can connect to external surfaces, often through cloud gateways. Cloud

gateways orchestrate the two-way communication from devices and edge to the wider

network infrastructure. The network space can be private or public, depending on the
application. The cloud gateway can be a distinct physical device, or a virtual version

embedded in the cloud infrastructure. In this context, the cloud is perceived as the
distributed computing, data storage, and network infrastructure that is not in the immediate
reach of the operating environment and independent of the connected devices. NFV can

be applied for cloud gateway to isolate the cloud gateway and connected entities from
other network traffic, thus increasing security and privacy.

Gateways enable connectivity through standard and custom protocols, including MQTT and

HTTP, Zigbee or Bluetooth. Many platforms support design with gateways, for example,
OpenRemote and Azure IoT. Mainflux offers its own MFX-1 IoT Edge Gateway. Gateway

technology is also an ongoing research interest to many projects, such as AGILE.

3.11 Distributed ledger technologies (DLT)

Distributed ledger technology (DLT), such as blockchains, is an emerging paradigm that is
getting increasing public and research attention. DLTs form distributed peer-to-peer networks
in which non-trusted users are able to interact and perform transactions without controlling

intermediaries. A number of blockchains, especially cryptocurrencies and other digital assets

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

40 of 88

are based on public ledgers, but also private ledger services developed by enterprises do
exist. DLTs are not yet widely adopted in the IoT industry, but the research of the topic is

accelerating as the technologies mature.

Then main features of DLTs include data immutability, distributed consensus mechanisms and

data replication. Public DLTs are, in general, secure and offer high availability. It is important
to note that DLTs have a lot of variances in terms of achieved functionality. DLTs take differing

approaches on the technology and common trade-offs include latency, type of consensus
algorithms, security, and performance (transactions per second). An interledger or inter-DLT
method can then be helpful in building complex systems as it allows data exchange

between DLTs. Multiple (different) DLTs, each with their own strengths, can then be used
together in a single system, thus improving the security, performance, and other properties

of the system. Hash-locks and time-locks are among the cryptographic mechanisms that can
be used together with the interledger approach to ensure that operations successfully

complete in all the linked DLTs. As effective M2M communication is becoming more common
along 5G and autonomous devices, DLTs offer potential in securing and federating
transactions performed by heterogeneous smart devices [45].

3.12 Serverless computing

Serverless is a computing and architecture model where compact pieces of code are

executed in a cloud environment without the need to control the resources on which the
code runs (Figure 8). The executed application logic can include functions such as are data
ingestion, queries, device updates, or message alerts. The computing runtimes are often

referred to as Function as a service (FaaS). Despite the name, serverless does not indicate
an absence of servers. It focuses on the fact that operational concerns such as resource

provisioning, monitoring, maintenance, scaling, and fault-tolerance are sourced to a cloud
provider. Serverless architecture is compatible with many other patterns, such as event-

driven architecture and lambda pattern features such as stream processing [46].

Serverless computing is not yet widely adopted across the analysis perspectives. For

example, successful open-source projects focusing on serverless are infrequent. One

explanation is that efficient and scalable serverless computing requires a vast amount of
infrastructure resources. The largest cloud providers are competing on the domain with AWS

Lambda, Azure Functions, and Google Cloud Functions. It is often more cost-effective to
design solutions based on proprietary solutions with the necessary tools. For example, AWS
Lambda implements functions that can run special runtime environments in language

customised containers. Competing with highly refined computing resources such as AWS
Lambda is difficult, but many of the approaches can be adopted in custom solutions.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

41 of 88

Figure 8: Serverless computing architecture.

3.13 Self-sovereign identities (SSI)

The goal of the self-sovereign identities [47] is to give user control over its identities, allowing
identities to be generated without a reliance on the external party. This allows the users to

generate and use the identities without any external party monitoring this activity over
multiple service, a huge improvement to the privacy of the users. Decentralised Identifiers

(DID) are self-sovereign identifiers which are user generated and usually derived from the
user’s public key. Verifiable Credentials (VCs) are related technology, which allows
expression of claims about the subject, in a similar manner as the traditional attribute

certificates. In contrast to traditional identifier and certificate solutions, however, DIDs and
VCs emphasise self-sovereignty and are machine readable, allowing automation.

3.14 Data federation

IoT-NGIN federation methods enable on-the-fly adaptation and processing of
heterogeneous data and control messages. The federated approach for secure cloud

framework and on-device ML processes are a core part of the federation activities. In
general, only necessary communication data should be transmitted and the original sensor

and source data is held at local data storage. Secure, trusted, and open data sharing will
be achieved through Inter-DLT technologies. In addition, zero-knowledge techniques for ML
models verification without conveying any information apart from the model data

ownership.

3.15 Digital twins

The Digital Twin Consortium (DTC) defines a digital twin as: “A digital twin is a virtual

representation of real-world entities and processes, synchronised at a specified frequency

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

42 of 88

and fidelity”. There is no exact definition or consensus on what features such a digital twin

should entail. The features offered by a specific digital twin implementation is largely use

case dependent. The definitions provided by different standardization bodies also reflect this.

The Industrial Digital Twin Association defines digital twins as: “A digital twin is a digital

representation of a physical or nonphysical asset or process from the real world in the digital

world”. In practice this could mean any information including, but not limited to, physics-

based models, analytical models, time-series data and historians, transactional data, visual

models, and computations [48].

A collection of typical features that make up a digital twin is given in Figure 9. Each of these

features may be implemented as its own component i.e., a microservice or a monolithic

application. It can be argued that the core problem involving digital twin systems is the

question of how to efficiently link these components together to facilitate the creation of a

distributed and decentralised system of interconnected digital twins which would support

new use cases enabled by advances in 5G, IoT, and ML/AI technologies.

Figure 9: Digital Twins Architecture [49].

IoT-NGIN is taking a meta-level digital twin approach to this problem which can be
deployed on top of existing digital twin implementations. The additional meta-level

layer abstracts the implementation details, providing a unified interface for higher
level operations, for example applications utilizing decentralised security aspects
such as DIDs and verifiable credentials. Similar ideas can be found in existing ‘digital
twin’ standards such as the Asset Administration Shell (AAS) and the Web of Things
(WoT) Thing Description (TD).

3.16 Reference models

Reference models or reference architecture is a high-level architectural abstraction that
includes essential building blocks and design rationales. The reference architecture should

link functional requirements, quality attributes, and the design activities in system
development, standardization, interoperability, and architecture evolution. An example of
IoT Reference Architecture is presented in Figure 10.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

43 of 88

Meta-architecture is highly related to the concept of reference architecture. The key

difference is that as meta-architecture is a second-order meta-framework, it builds out of

architectural patterns, instead of design patterns. Including the design patterns in the
development process lowers the abstraction level by one. When architecture design shifts

focus to the implementation of functionalities, the meta-architecture can transform into a
reference model. The meta-architecture in includes conceptual analogies from reference

architecture design, such as developing different functional groups and sets of software,
hardware, and system components [50].

Figure 10: Early model of IoT ARM and its functional view [51].

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

44 of 88

4 The IoT-NGIN meta-architecture
The aim of meta-architecture work in IoT-NGIN is to provide a research-informed framework
for designing and implementing IoT solutions in different usage scenarios. The meta-

architecture collects together key quality requirements, architectural patterns and high-level
system components. The meta-architecture provides an overall framework for individual

system or solution architectures realised in actual implementations.

The IoT-NGIN meta-architecture is based on analysis of current IoT platforms and standards.

The analysis of current approaches covered key open-source and commercial IoT platforms

and was further extended by EU research perspective covering most relevant EU research
projects in recent years. The architectural patterns included into the meta-architecture are

based on expert advice and knowledge identified in previous open-source, commercial and
EU research projects complemented by information provided by IoT-NGIN project partners.

4.1 Definition

An architecture of a system is the structure set required to proficiently reason about the
system. The structures consist of elements, relations, interactions and properties of the system

under study. Traditionally, in software engineering architecture refers to software systems and
its elements. Architecture possesses a vital role in complex system development and in the

system’s capability for inter system communication or to change its hierarchy.

The meta-architecture takes a higher-level view and collects together architecturally

significant choices, patterns, components, viewpoints and quality attributes that need to be

considered when designing and implementing individual systems. The meta-architecture
provides a foundation for the architecture strategy and system design. In a sense, a meta-

architecture can be considered as a strategic architecture construct that acts as a starting
point for architecture design, aiming at reducing the overall complexity of the process, while

hinting over good design principles.

The meta prefix indicates an architecture of a second order or kind, namely an architecture

of architectures. Thus, a meta-architecture is a living collection of architectural patterns, that

are paired with expandable application domains and related quality attributes. In other
words, a meta-architecture is an orchestration of architecturally significant approaches.

Derived concrete technical architecture instances must conform with the principles,
constraints and elements of the meta-architecture and do not need to be mapped explicitly.

4.2 Key meta-architecture viewpoints

The four aspects characterizing meta-architecture are scalability, openness, security, and
monetization:

• Scalability: Standalone IoT-focused 5G optimisation through a secure edge cloud

micro-services platform achieves scalability by design. Secure by design federation of
communications and data support the objective.

• Openness: The meta-architecture is open to further extensions and architectural

patterns as technologies mature and new patterns and components emerge.

Technically, any IoT platform could be joined to the federation scope through
compatible and open interfaces. Implementation will base on Self-Sovereign

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

45 of 88

Identities (SSI), that divide technical participation, trust anchors and business
relationships into distinct entities.

• Security: Security is a cornerstone of any viable IoT implementation. Security measures

can be implemented using different approaches, such as inter-DLT traceability.
Regardless of technical implementation, security should be seen as of paramount

importance.

• Monetization: The concept of data sovereignty builds improved tools to control

security boundaries and privacy policies. In combination with regulations and legal
constraints, the meta-architecture should embrace new business models, for example

in smart contracts and contractual data sharing.

Technology objectives of the meta-architecture include defining a scalable, secure, open,

federated and decentralised IoT meta-architecture that can be applied in varying use
cases, including sensing, actuation, and smart behaviour of intelligent devices. Support for

monetization and new business models is also integral part of the IoT-NGIN project. The meta-
architecture supports domain horizontals providing actual IoT-NGIN use cases realizing
actual architectural patterns.

The meta-architecture artifact is designed around four key artifacts: IoT Architectural Pattern

Vertical, Domain Horizontal, Quality Vertical, and Element View. Each of the artifacts can be

customised according to the architectural design needs and context. The elements of the
meta-architecture are selected based on state-of-the-art prior work in the IoT domain. The

meta-architecture provides a foundational framework for further development and there is
room for evolution as technologies and implementations mature. For example, the quality
attributes represent a large variety of possible non-functional quality requirements at the

highest level. The quality features do not presumably need a lot of customization, rather the
framing gives room for application-specific details.

Notably, in the meta-architecture view depicted in Figure 11, the Elements view is vertically

supported by ML-powered AI technologies. This is of particular importance to the meta-
architecture; with the number of interfacing platforms, devices and computational

environments (e.g. near- and far-edge, fog, cloud) constantly rising, the next generation of
IoT platforms and services is expected to arrange means for the operation of intelligent

services based on ML capabilities. To this end, we consider that almost every composing
element of the meta-architecture should be provided with the ability to make use of relevant

AI services. In this context, ML as a Service operations are expected to emerge as necessary
abstractions of such a modality, allowing for distinctive ML-related technologies to operate
transparently in the physical-digital continuum on one hand (e.g. abstracting the link

between physical and digital twins) and on the edge-fog-cloud continuum on the other.

H2020 -957246 - IoT-NGIN

D1.2 - IoT meta-architecture, components, and benchmarking

46 of 88

Figure 11: IoT-NGIN Meta-architecture.

47 of 88

4.3 Element view

The Element View provides a general technological view to the meta-architecture, with a

focus on functional groups and components. Indeed, the functional groups are used to
aggregate the functionality of the related components and, implicitly, provide an indication
related to the objective of the group. The various elements have been further grouped with

the use of labels, depending on the element’s context. As also depicted in Figure 11, five
distinct labels have been, thus far, identified, tailored to different element functionalities,

namely Management, Data, Device capabilities, Infrastructure and Security. Note that the
labels are color-coded to improve the readability of the meta-architecture and simplify its
visualization. The approach of combining the functional grouping and component labels

aims to bring the technology objectives to a more tangible level, also directly linking the
technological or implementation design decisions closer to the quality attributes.

Indicatively, security is important at every level of architecture but in IoT-NGIN there is special
consideration in network security and secure edge framework. Similarly, under a data

perspective, security is highly reflected in data sovereignty and integrity.

In the context of the meta-architecture and with reference to Figure 11, the following

sections detail the identified functional groups and their composing elements. It is worth

highlighting, again, that in all cases, it is assumed that AI services could (and should wherever
possible) potentially be used to optimise the operation of all the functional groups, subgroups

and elements presented below, as well as of the IoT platform-hosted application services. As
the optimisation could be considered as an ubiquitous concern, spanning from 5G resources

optimisation to predictive maintenance of the supporting hardware; the importance of
ubiquitous AI is pertinent to almost all IoT platform scopes.

4.3.1 Things functional group

The Things functional group contains the elements related to the management,

orchestration and proper application support of the far-edge IoT devices. In general, the
latter may comprise a vast variety of devices, spanning from tiny sensors or semi-autonomous
gateways to on-premises private infrastructures. Table 19 tabulates the elements that have

already been identified as parts of the meta-architecture.

Table 19: Elements of the Things functional group.

Icon Element Label Description

Device provisioning Infrastructure

The platform should be able to

bootstrap the devices that are
going to be interfacing with it.

Smart devices Device capabilities

The platform should be able to

properly identify the capabilities of
the interfacing IoT devices.

Digital twins Device capabilities

The platform should be able to

support digital twins’ functionality,

to enable high-availability and
what-if scenarios.

Communications Device capabilities The platform should be able to

support the various communication

48 of 88

channels exposed and supported
by the IoT devices

IAM Security

The platform should embed IAM

functionalities to prevent
unauthorised access and (re)use of

resources.

Data Sources Data

The platform should be able to

support a variety of data sources,
depending on the hosted

applications use cases.

4.3.2 Fog-Edge functional group

The Fog-Edge functional group refers to the ability of a platform to support, at edge or fog
level, the execution of computationally (CPU- or GPU-wise) expensive applications on behalf

of the platform-interfacing IoT devices. This typically implies the ability, at both device and
platform level, to offload computing tasks from the devices to the edge/fog infrastructures
in a secure and transparent way, then receiving and exploiting the processes results at

device/far-edge level.

Table 20: Elements of the Fog-Edge functional group.

Icon Element Label Description

Edge

processing
Data

The platform should be able to support edge processing

(at compute level), lightening up the far-edge devices
from the execution of heavy computational operations,

via off-loading.

ML / Deep

learning
Data

Same as edge processing but related to supporting

(possibly GPU-requiring) intensive machine learning
operations (e.g. model training with data sovereignty
considerations).

The ability to support this functional group in a secure, transparent, trusted and reversible

manner will, eventually, deepen the integration among the devices, the edge, the fog and

the cloud, leading to the emergence of a continuum of processes at the spatiotemporal
domain, abstracting the IoT applications from their supporting infrastructure. Ideally, support
for edge processing should be also accompanied by a simultaneous upgrade of the

underlying wireless networking technology interconnecting the far-edge with the near-edge
devices, ideally implying the existence of a slicing-enabled 5G network, towards reducing

roundtrip communication delay and increasing the available bandwidth in order to be able
to accommodate various types of network traffic, depending on the use cases to be served

by the IoT platform.

4.3.3 Analytics functional group

Arguably, the data offered by IoT infrastructures and services are widely considered to give
rise to new business models and opportunities, particularly when combined with network

edge processing [52]. The same holds for the data stemming from the platform operation;
logs and error reports processing could give rise to predictive maintenance, sizing and

49 of 88

resource management considerations that are essential for the healthy operation of a next-
generation, large scale IoT platform. The analytics functional group is meant to support the

ingested data refinement and transformation into valuable information insights through data
analytics processes and assistive technologies. To assist the relevant data value unveiling,
support for business intelligence operations and interactive dashboards are considered, as

briefly presented in Table 21.

Table 21: Elements of the Analytics functional group.

Icon Element Label Description

Business

Intelligence
Management

The platform should be able to offer controlled

business intelligence services regarding the
incoming data with respect to the core platform

per se.

Dashboards Management

The platform should be able to offer graphical

user interfaces in the form of dashboards to assist
the data value discovery processes.

It should be noted that, in general, application-specific analytics services are expected to

be served at application level (in the context of the Edge processing element of the Fog-
Edge functional group as well as the Cloud and Container as a Service subgroups of the

Infrastructure functional group described in 4.3.5) rather than at platform level.

4.3.4 Automation functional group

In the era of microservices, cloud native computing and 5G, it is essential to automate
infrastructure and application provisioning, integration, and management. Indeed,

considering the urge for rapid and scalable service deployments and granted the inherent
management and platform integration requirements of the Edge-Fog functional group

elements, the need to automate the platform operations and configuration is pertinent. The
elements of the Automation functional group, briefed in Table 22, are related to enabling
this automation perspective of a next-generation, edge-friendly IoT platform, catering on

one hand on the proper operated services exposure and, on the other, on the management
of the platform, per se, and of its hosted applications. In all cases, a container-like operation

runtime is assumed, in line with the cloud native foundation definition [53], even though the
container runtime could be relative to other, more edge-friendly technologies such as
unikernels [54].

Table 22: Elements of the automation functional group.

Icon Element Label Description

Service

Broker
Management

The platform should be able to provide simple

integration of its services directly within the

supported application platform.

Container

Orchestration
Infrastructure

The platform should expose management

interfaces towards its easy setup, configuration
and maintenance, but also towards simplifying

the deployment of new applications and
services.

50 of 88

The most well-known open source container orchestration framework at the time of writing

this document is Kubernetes [55] which, at the same time, also offers service brokerage.

4.3.5 Infrastructure functional group

The infrastructure functional group contains elements related to the entirety of the

infrastructure supporting the IoT platform bootstrapping, configuration, management and, in
general, operation. An edge-oriented next generation IoT platform obviously needs to

manage and build upon a variety of infrastructures including (usually virtualised) compute,
storage, and network as well as other existing systems and infrastructures. Considering,

further, the need for container-based operations (as per the Automation functional group)
and the networking requirements implicitly imposed by the Fog-Edge functional group
(essentially 5G with slicing support), the coordinated orchestration is as pertinent as ever.

Table 23: Elements of the Infrastructure functional group

Icon Element Label Description

Existing

systems
Management

The platform should be able to integrate with

existing systems and infrastructure components.

Infrastructure

Services
Infrastructure

The platform should be able to adopt new and

manage existing infrastructure elements at the

computing, network, and storage domains.

Existing

codebase
Infrastructure

Like the existing systems, the platform should be

able to integrate with existing codebase.

N/A Cloud Subgroup

The platform should be able to interface not only

with (far- or near-) edge, but also with cloud
components and applications hosted on the

cloud. The Cloud subgroup contains the relevant
elements.

N/A
Container as

a Service
Subgroup

Tightly interconnected with the Container

Orchestration element of the Automation
functional group, the Container as a Service

subgroup allows for the API-based exposure of
container-based IaaS services.

N/A
5G

Networking
Subgroup

The platform should be able to integrate and

seamlessly support 5G capabilities such as 5G
network slicing, Time Sensitive Networking and

optimal 5G resource allocation.

In the following sections, the elements of the Cloud, Container as a Service and 5G

Networking subgroups are discussed.

4.3.6 Cloud subgroup

An Edge IoT platform is, by definition, meant to be interoperable with more powerful cloud
infrastructures, the computationally (in terms of GPU or CPU) intensive tasks being offloaded

to the cloud, if the accompanying latency requirements allow such an offloading process.
Instead, in the cases where the latency requirements of a service are too strict, then the

51 of 88

applications execution should stay at fog/edge level. Table 24 summarises the elements of
the Infrastructure/Cloud subgroup that caters for such modalities.

Table 24: Elements of the Infrastructure/Cloud subgroup.

Icon Element Label Description

Applications Infrastructure

The platform should be able to interconnect with

cloud platforms at application level.

Services Management

The platform should be able to transparently

manage their cloud parts, in the exact same way

as the (near- or far-) edge ones.

In essence, the elements of the cloud subgroup imply the emergence of an edge-fog-cloud

continuum, according to which, the applications should be able to be functionally operable
regardless of the hosting execution infrastructure; in this way, load migration is rendered
transparent, and the applications are granted with scalability and dynamicity (as to their

performance) features.

4.3.7 Container as a Service subgroup

In tandem with the Container Orchestration element of the Automation functional group

(see section 4.3.4), the Container as a Service subgroup elements ensure that effective
infrastructure resources management and coordination is rendered possible, including
Cluster management per se, Container operations (hosting and deploying containers),

Container security and, of course, image repositories, as depicted in Table 25.

52 of 88

Table 25: Elements of the Infrastructure/Container as a Service subgroup.

Icon Element Label Description

Cluster

Management
Management

The cluster supporting the platform should be

manageable, in an easy, comprehensive, and

predictable manner.

Container

security
Security

The cluster should be able to reduce the attack

surface of the containerised applications to the
minimum (at least under a firewall perspective)
and ensure policy-based security of the

containers.

Containers Infrastructure

The platform should be able to operate under a

containerised (including unikernels and relevant
lightweight resource abstraction technologies)

manner, only.

Image

repositories
Infrastructure

The platform should have access to a set of

image repositories so that the deployment of

containers and their updates are possible.

It is worth mentioning that the Container as a Service subgroup comprises functionalities that

are common in cloud-native environments as well. Indeed, among the most prominent
projects graduated by the Cloud Native Computing Foundation [56] there exist several
projects related to the aforementioned elements, such as Kubernetes (for container

orchestration and cluster management), Containerd [57] (as a minimal Container runtime),
OpenPolicyAgent [58] and Linkerd [59] (as policy based security and service mesh,

respectively), TUF [60] (for managing container updates) etc, validating the need for such a
subgroup.

4.3.8 5G networking subgroup

Networking lies at the core of every edge-oriented platform, interconnecting the physical

world (devices, things) with the digital one (edge infrastructures). As real-time data is the
driving force behind the vision of IoT, we need to make sure that this data is handled in a

secure and trusted manner to be processed, while, at the same time, minimizing the end-to-
end communication delays.

Table 26: Elements of the Infrastructure/5G networking subgroup.

Icon Element Label Description

5G

capabilities
Infrastructure

The platform should have access to 5G

networking capabilities, ideally accompanied
with slicing and time-sensitive networking

features, particularly to be able to satisfy the strict
requirements of industrial IoT applications.

IoT gateways

Device

capabilities

To enable IoT communications, usually device-

to-device or device-to-cloud, the platform

should integrate IoT gateways with support for
simple data filtering towards enabling
visualization and complex analytics are required.

53 of 88

Network

Security
Security

The platform should be able to exploit the entire

set of 5G network security features such as end

to end encryption, active cyberattacks
prevention (effectively mitigating security and
privacy threats under 5G), etc.

Secure Edge

Framework

Device

capabilities

In tandem with the Edge-Fog functionality group

elements, at network level, the devices should

have the ability, to consume such services.

In any case, the existence of the infrastructure/5G networking subgroup elements, reassure

that the edge-centric vision of IoT-NGIN regarding next-generation IoT platforms is, actually,
plausible.

4.3.9 Federation functional group

The Federation functional group, targets at ensuring scalability, availability, and stability of

the next generation of IoT services as well as sovereignty and transparent control of data
and data streams. Data access should be, on one hand, controlled but, on the other, data
are exploited to unveil their maximum potential. The elements and subgroups of the

Federation functional group ensure that access to services and data is offered to the end-
users regardless of their location or the time-of-service request and that the quality of

experience (QoE) they enjoy is acceptable at all times. Table 27, below, tabulates the core
elements and subgroups of the Federation functional group.

Table 27: Elements of the Federation functional group

Icon Element Label Description

Monitoring Management

The platform should provide enough tools and

services enabling real-time active monitoring so
that optimisation actions may be performed as
soon as possible, and downtime/degraded

performance periods are minimised.

DLT Infrastructure

To support data non-repudiation and support the

ledger and inter-ledger processes, the platform
should feature DLT support, e.g. in the form of
blockchains-flavoured applications.

Identifiers

and Identities
Data

The platform should be able to either provide

identity management services or catalyse the

secure use of self-sovereign identities, at
federation level.

Data Storage

services
Data

The platform should provide, at federation level,

data storage services towards increasing
efficiency, reliability, and performance.

Data Sharing Data

The platform should offer structured services

towards data sharing in an open, transparent

manner. The data sharing features should be
available at federation level.

54 of 88

Federation

Interfaces
Management

The platform should support the federation by

appropriate federation management interfaces.

It should be highlighted that the Federation functional group and subgroup elements are

meant to orchestrate data/control flows, data streams, services, and infrastructure at
federation level. However, at the same time, multiple levels of control contexts should be

available, so that (data or identity) sovereignty is respected at all times, e.g. data sharing
services should be available at federation level, however one should be able to apply more

restricting sharing policies for accessing certain data contexts e.g. though the definition of
edge-level access.

4.3.10 Workloads functional group

The term “Federation” implies platform consistency across the entirety of the operations of

the platform at computational level, also known as workloads. Since data operations play a
central role in next-generation IoT platforms, platform workload consistency spans not only
the offered web services but, also, the handling of the data operations, in general, including

data management lifecycle, in particular. Under that perspective and considering the
diversity of devices and protocols formulating the current (and future) IoT landscape,

protocol management towards effective interoperability is of paramount importance. The
subgroups of the Workloads functional group that ensure the aforementioned “platform

consistency” from a workload perspective are tabulated in Table 28.

Table 28: Elements of the Workloads functional group.

Icon Element Label Description

N/A Services Subgroup

The platform should be able to operate and

expose application services and manage their

integrations at federation level.

N/A Middleware Subgroup

Should support multiple middleware-based

adaptation services, so that different protocols
and technologies may be supported, at

federation level, boosting the platform
interoperability.

N/A Data Subgroup

The platform should be able to securely manage

and offer services related to data and metadata
streams management, in various contexts and

modalities.

As expected, due to their inherent federation-oriented nature, the various subgroups of the

Workloads functional group directly interface with the Federation functional group elements,
in an attempt to achieve graceful, orchestrated coordination of the offered services. In the

following sections, the elements of the above subgroups are briefly described.

55 of 88

4.3.11 Services subgroup

The first consideration of a workload federation are the exposed services, building up the
core of the IoT platform computational environment, including the core platform services
and the hosted (user-oriented) ones. Apart from the services operations, the integration

potential scope is crucial so that an ecosystem around the IoT platform can boom. Table 29
highlights the elements of the Services subgroup.

Table 29: Elements of the Workloads/Services subgroup.

Icon Element Label Description

Apps Data

The platform should be able to host, operate and

expose the functionality of applications and

services in a transparent manner, catering for
their performance optimisation.

Microservices Management

The platform should be able to operate on top of

and support microservices-oriented
architectures.

4.3.12 Middleware subgroup

In tandem with the data-oriented character of the Federation/Workloads subgroup and the
Integrations element of the Federation/Workloads/Services, the ability to interact with the IoT
environment in a variety of ways (implying the use of different protocols) is critical. The

Workloads/Middleware subgroup elements focus on the interoperability potential of the
platform, considering not only the classical client-server, HTTP-based protocols but, also,

other technologies, friendlier to IoT scopes relevant to self-organization and data security
and sovereignty. Table 30 summarises the elements of the subgroup.

56 of 88

Table 30: Elements of the Workloads/Middleware subgroup

Icon Element Label Description

Application

Servers
Infrastructure

The platform should be able to run application

servers hosting arbitrary technologies and

protocols.

Blockchains

Device

Capabilities

To support the DLT (Blockchains) services

potentially offered by the platform (e.g. for SSI or
to ensure data non-repudiation in mission-critical
operations), the devices interfacing with the

platform should feature hardware and software
able to support (preferably hardware

accelerated) blockchain operations.

Connectivity Data

In order for the IoT devices to interface with the

platform and vice-versa, compatible
communication capabilities should be featured
in both ends. Ideally, this element should be

linked with 5G capabilities, hinting towards the
Fog-Edge functional group and the

infrastructure/5G Networking functional group.

M2M Services

Device

Capabilities

Since the interfacing among the devices and the

edge/cloud nodes should be automated,

machine-to-machine communications should
be, mutually, supported.

4.3.13 Data subgroup

Having considered the communications and services part of the federation workloads, the
final step towards achieving operation is to, actually, enable low-level data operations, per
se, both from an infrastructural point of view but also from the data and metadata

management perspective. The Workloads/Data subgroup elements, briefly described in
Table 31, outline the relevant functionalities that should be considered.

Table 31: Elements of the Workloads/Data subgroup.

Icon Element Label Description

Data Storage Data

The platform should expose federated data

storage services, ensuring that the data is always

available, in the modality required (e.g. block
storage services, object storage services).

Data Security Security

The platform should be able to assure that the

data is secured throughout their entire lifetime,
including transmission, manipulation, storage

and, in general, access.

Data Streams Data

The platform should be able to cope not only

with batches of data but, also, with a variety of

57 of 88

data streaming technologies, to support the
vision of real-time computing.

Metadata

management
Data

The platform should be able to offer services

related not only to data but, also, to metadata,
so that data preselection, selection and

processing is accelerated, and feature
extraction is facilitated.

4.4 Architectural Patterns Vertical

The Architectural Patterns Vertical part of the IoT-NGIN meta-architecture summarises several
architectural viewpoints that have been identified and can be applied, at design level, to

drive the deployment of effective, efficient, adaptive, performant, secure and private IoT
platform services and applications. The identified architectural patterns cover all the possible

aspects of a next-generation IoT platform, effectively leading to the introduction of several
of the functional groups, subgroups, and elements of the meta-architecture’s Element view.

Further, all the identified architectural patterns contribute, in many ways to the satisfaction
of the Quality Vertical elements, documented in section 4.5.

The already identified architectural patterns are shown in Figure 11 and have been detailed

in section 3.

4.5 Quality Vertical

The quality attribute vertical illustrates the generic functional and non-functional
requirements of the IoT-NGIN meta-architecture. These attributes can be prioritised through
different means and in function to the selected combination of patterns and use cases. The

Quality Vertical is of great significance since it summarises architectural design needs that
are common to many of the use cases.

4.5.1 Security

The essence of IoT is in the connectivity and data transmission between a diverse set of

devices and services. While the IoT field helps to build a smart and digital world, it means that
the technology is exposed to many adversaries. The core security themes of IoT are [61]:

• Confidentiality. Confidentiality guarantees that only authorised entities are allowed to

view, edit and use data throughout its life cycle.

• Integrity. The data is not tampered with by any non-authorised entity. Integrity is

critical in IoT because tampered or malicious data can affect operational activities
and cause large-scale disruption or danger to end-users. Mechanisms such as access

control and false data filtering schemes aid in ensuring data integrity.

• Availability. IoT data, devices and services should be available when requested.

Depending on the application, high availability of “five nines”, or 99.999 percent

could be required, translating to 5.26 minutes of downtime per year. Many
applications depend on real-time communication or data processing, and if the real-
time principle is under threat, the effect can be severe. Denial of service (DoS) attack

is a general method used by adversaries.

• Identification and Authentication. By using identification, unauthorised thing entities s

cannot connect to IoT devices or networks. Authentication then ensures the validity

58 of 88

of transmitted data and the validity of the client or device requests. Many open-
source and commercial IoT platforms offer embedded IAM tools.

• Privacy. Only the owner of the data can control the data or services, other entities

cannot access or process the related information. Privacy is important in IoT since
many users share the same devices, services and general infrastructure.

• Trust. Trust is a characteristic that bases on the other security features. The trust takes

place between the IoT devices, between devices and applications, and between

end-users and services. IoT-NGIN can build trust in its technology platforms by
adapting inter-DLT technologies and applying industry standardisation in the

federation infrastructure.

4.5.2 Interoperability

Interoperability is one of the most vital topics across the IoT field. Traditionally interoperability
has been defined as a ability of two or more systems or components to exchange information

and to use the information that has been exchanged. As the concept is broad,
interoperability can be categorised into several levels: device, network, syntactic, semantic,
cross-platform, and cross-domain levels. The architectural patterns partly address the

interoperability problem space. For device level, gateways and communication protocols
solve connectivity challenges. SDN and edge processing focus on the network level.

Technologies such as REST, semantic web services, or WoT attempt to build enhances
syntactic and semantic interoperability [62]. Cross-platform and cross-domain

interoperability can be achieved with combination of methods, such as open interfaces,
inter-DLTs, and ultimately adopting governance guidelines using, for example IDS.

4.5.3 Data sovereignty

Traditionally sovereignty is linked to authoritative and institutional claims, and thus data

sovereignty frequently addresses different kinds of data flows through national regulations
and laws. Data sovereignty is perceived as a concept where individuals, organizations,
communities, and other groups should be able to have control over their data.

Data sovereignty is a complex and essential requirement in the next generation of the

Internet and IoT. The complexity arises from the fact that data sovereignty can be applied

to any applications that transport data across geographic locations. It includes concepts
such as the role of national governments and their influence on data that is stored in

domestic or foreign clouds, geographic and Indigenous data sovereignty, and patient
health data sovereignty.

4.5.4 Scalability

Applications in the IoT domain should scale up horizontally and vertically. Horizontal

scalability is adding the number of devices to a network and vertical scalability increases the
performance of a single device or application. Infrastructure must also allow a growing
number of user requests and actions. More complex data ingestion, transmission, processing

and analysis is causing heavy pressure for solutions in data storage, communications, and
analytics. Furthermore, scalability in IoT is restricted by factors such as lack of open and

coherent standardization, protocols, and device and service discovery [63]. The ultimate
goal of IoT-NGIN is to provide means for full horizontal scalability with stateless applications

and full vertical scalability at the cloud level.

59 of 88

Federation of ML and deep learning models and performing training operations locally and

on the network edge can considerably increase the scalability of applications related to

predictive and behavioural analytics.

Utilizing Inter-DLT instead of a single DLT or blockchain can also increase the scalability of DLT

applications. In addition, the new federation models might have an indirect scalability

impact on use cases unrelated to DLTs. The reasoning is that through the openness of the IoT
platforms, more collaborators can participate in the ecosystem, which accelerates adaption

rates for certain technologies, for example, more efficient data communication protocols.

4.5.5 Flexibility

Flexibility is a quality attribute that can be linked to many other attributes. In IoT-NGIN context,
flexibility has close relations with semantic interoperability, performance and manageability.

IoT applications should withstand changing environments, for example, technologies,
interfaces, constraints and development methods, among others.

The meta-architecture artifact contains innate flexibility since the building blocks are not

locked into static sets of use cases or architectural patterns. IoT-NGIN creates a DLT-enabled
meta-level Digital Twin (MLDT) that allows on-usage interpretation and application of data

and information.

4.5.6 Performance

Performance is a complex topic in IoT because the field consists of many different

technologies. Performance evaluation can target devices, networks, protocols, middleware,
platforms or more specific building blocks such as service integration.

Other common IoT data processing characteristics are message parsing, statistical and

predictive analysis. IO operations are also a significant part of IoT data flow, and many
applications need external access to data storage or messaging services. Frequently used

performance metrics for Distributed Stream Processing Systems (DSPS), such as Storm, Flink or
Spark, are: latency, throughput, jitter and CPU/memory utilization. Similar metrics are
applicable to IoT-NGIN since many use cases are related to real-time stream data processing

[64].

4.5.7 Reliability

Reliability is a system design challenge arising from various factors. In IoT, the unpredictability

of the environment is one of the biggest factors, alongside inconsistent end-user input and
usage. Key reliability requirements are the heterogeneity of the IoT nodes and network, in
parallel with resource-awareness and environment dynamism.

The reliability requirement must address errors in hardware, software, and data. Especially

the data component regularly contains detection, transmission and analysis errors that lead

to false information. One additional dimension is that the severeness of the errors differs in
magnitude. Some are errors are minor, while other faults can lead to system failures or poor
user experience. Open challenges are to efficiently address both correlated and

unpredictable failures.

IoT-NGIN focuses on network reliability and provides standalone 5G networks for massive

Machine Type Communications (mMTC). In mMTC data and control signals are re-
transmitted to improve reliability in packet reception.

60 of 88

4.5.8 Manageability

Manageability in IoT is commonly related to device management challenges. From the
meta-architecture viewpoint, the manageability aspect highlights only general and
technology-agnostic approaches. On the application level, implications and direction for

certain technologies need to be considered on individual bases. The manageability
challenge is also linked to the domain horizontal, where use cases differ on the scope and

management needs.

4.6 ML and AI layer

ML and AI verticals in IoT-NGIN meta-architecture (Figure 11), conforms to the Artificial

Intelligence and Big Data services provided by the project. Machine Learning as a Service
(MLaaS) platform will enable the application of AI in different use cases, living labs, and any

IoT platform planning on leveraging Machine Learning and/or Big Data technologies on its
use cases. This MLaaS platform will run on Edge Cloud nodes and it will be able to deploy ML

models on IoT Devices seamlessly as presented in the left hand side of Figure 11.

The presence of AI in the IoT-NGIN meta-architecture is ubiquitous and its functionality may

be shared among the rest of the components in the meta-architecture. Even though the

execution of ML tasks is bounded to fog-edge nodes, the infrastructure shall be able to
escalate the operations to (i) the 5G network as part of the Secure-Edge framework, to (ii)

the cloud as an application, or (iii) as a container managed by the CaaS (Container as a
Service), depending on the requirements of the ML tasks and the target environment. Thanks
to this infrastructure interoperability, the ML tasks can be connected to other components of

the meta-architecture. This means that the ML operations will be able to access the data
storage and the data streams that are federated, as well as to access the data sources

themselves. It is important to mention that these ML operations will be supported by Edge
processing capabilities when they are available. In this regard, the infrastructure shall be in

charge of giving access to processing power to the ML tasks at any time, leveraging on fog-
edge nodes the execution when possible.

IoT-NGIN has already made progress on the MLaaS platform, which are described in

Deliverable D3.1 [65]. The first version of the architecture for this platform is presented in Figure
12. The MLaaS architecture design is compliant with IoT-NGIN’s meta-architecture. First, the

MLaaS edge nodes, which represent the fog-edge nodes in the meta-architecture, are
where most ML-related operations will take place. What’s more, the edge nodes of the

MLaaS are designed to work in a federated manner, as described in the meta-architecture,
supporting the development of a federated ML framework. In addition, even though it is not
represented in the figure, the MLaaS edge nodes operations are supposed to be either

enclosed within the Secure Edge Framework of the 5G network. An anouther option is to
utilise a container managed by the “Container as a Service” component of the infrastructure

in the meta-architecture. Secondly, the edge nodes are directly connected to the IoT
Devices for (i) deploying ML models and (ii) accessing data sources directly, a representation

similar to the “fog-edge nodes” connection to the “Things” component in the meta-
architecture. Thirdly, the MLaaS architecture may access cloud resources of the network, just
as represented in the “Infrastructure” component of the meta-architecture. Further

information regading details, actors, platform use cases, requirements, logical view and data
management procedures, in UML shape, is collected in D3.1.

61 of 88

Figure 12: MLaaS Architecture, first version

All in all, the MLaaS architecture design not only is compliant with the meta-architecture, but

it also provides an innovative model of the next generation of IoT Intelligence, where Artificial
Intelligence capabilities are federated and distributed among the edge nodes, providing

new means for the application of machine learning models across different environments.

4.7 Compliance to the IoT-NGIN meta-

architecture

The inherently generic nature of the IoT-NGIN meta-architecture allows modelling practically
all IoT-relevant architectures, in a consistent manner. Under a more contextualised

perspective, though, the meta-architecture should, eventually, guide the design of next-
generation IoT platforms, networks and applications, also hinting towards the steps required
to transform a “traditional” IoT platform approach into a next-generation one.

Indeed, several of the IoT-NGIN meta-architecture notions and technology spaces (mostly in

the form of elements), as presented above, are drawn from existing, traditional IoT platforms.

In IoT-NGIN, we argue that, to ensure compliance with the identified meta-architecture
principles, elements from all three different meta-architecture views should be adopted,

though the level of adherence differs among the various views.

Table 32 gives an overview of the compliance matrix of the IoT-NGIN meta-architecture and

which elements of the meta-architecture should be adopted by an IoT platform so that it

may be considered compatible with the meta-architecture.

62 of 88

Table 32: IoT-NGIN meta-architecture compliance matrix.

Meta-Architecture view Compliance baseline

Quality vertical ALL elements/requirements should be satisfied.

Architectural patterns vertical At least one should be adopted1.

Element View All security elements should be present. For each one of

the first-level functional groups, at least one element

should be adopted.

Underlying ML/AI Desirable, not necessary.

As per Table 32, all key elements should be adopted at design level from the Quality vertical

(see section 4.5). Indeed, the Quality vertical dictates the principal values that every next-
generation IoT architecture should build on, so that is relativity under both a technical and a

business perspective may be claimed. Elements such as security and data sovereignty are
always pertinent, particularly in the era of GDPR, and should not be overviewed. Similarly,

scalability, flexibility and performance considerations should be considered to guarantee
viability at business level, in tandem with interoperability, reliability and manageability.

Dissimilar to the Quality vertical case, the Architectural pattens vertical comprises several

design patterns and notions, each one introduced to address different IoT designs and
specifications. Granted the heterogeneity of the IoT use cases and the diverse landscape of

the application requirements that would need to be served by a framework compliant to
the IoT-NGIN meta-architecture principles, it is not possible to distinguish a concrete set of
architectural patterns that should be adopted. However, at least one should be employed,

to ensure that the design of the IoT platform at hand relies on existing, verified patterns that
have been previously employed. Notably, granted that the list of patterns is not exhaustive

and more will be added as a result of the Technology watch activities of the project, it is
possible that another pattern (e.g. a cloud-oriented design pattern like the Ambassador [66]

or the Choreography [67]) is considered by the IoT platform at hand. In such a case, omitting
the already identified patterns in favour of a non-acknowledged one is considered
acceptable.

Finally, with respect to the Elements view, at least all first-level functional groups should be

adopted, namely at least one element from each of the functional groups should be

employed, the security-related elements being necessary. Indeed, the IoT-NGIN meta-
architecture first-level functional groups and their necessity is tabulated below.

Table 33: The meta-architecture functional groups

Functional Group Necessity

Infrastructure
Infrastructure provisioning, bootstrapping and management is

necessary for allowing applications to properly operate.

Federation

Granted the (horizontal) scalability requirement stemming from the

Quality vertical, support for federated orchestration at compute and
data level is deemed necessary.

1 With the exception of the identification of new patterns that have not been (implicitly or explicitly)

considered by the relevant work. See below for details and discussion.

63 of 88

Workloads

In tandem with the Infrastructure and the Federation functional

groups, the workloads functional group represents the necessity to

optimally manage the hosted application and data workloads.

Things

The Things functional group functionalities cover the necessity to

manage not only the platform-oriented workloads, but also the device

ones.

Fog-Edge

The Fog-Edge functional group is necessary to achieve effective

communication and secure task offloading (towards lowering the cost
and increasing the capabilities of the supported IoT devices)

Automation

Granted the expected rise in the design complexity of the offered IoT

platform services, the Automation functional group represents the
needs to easily install and dynamically (automatically) manage the

provided platform instances.

Analytics
To uncover the value of the underlying platform-collected/generated

data, it is important to feature analytics toolboxes.

Regarding the underlying ML/AI layers serving not only the platform functionalities but also

the potentially hosted applications, their employment is desirable but not entirely necessary.
However, the vision of IoT-NGIN regarding next-generation IoT platforms accompanied by

self-optimizing functionalities clearly hints towards their global adoption.

64 of 88

5 The IoT-NGIN architecture
The IoT-NGIN architecture follows the path laid by the meta-architecture, exhibiting an
extensible, modular design that allows the decoupled deployment of functionalities and
services under a semi-orchestrated manner. Moreover, its design allows provisioning either in

the form of Software as a Service (SaaS) or Platform as a Service (PaaS). Figure 13, below,
depicts the IoT-NGIN architecture.

Figure 13: The high-level architecture of IOT-NGIN.

As shown in Figure 13, the IoT-NGIN high-level architecture may be split into the following

groups of components:

• Federated Communications (brown colour): realisation of communication and

resources management functionalities, consisting of a set of IoT/5G optimisation

functions (e.g. 5G relays optimisation, slicing, integration of TSN components), M2M
and Further Enhancement to Device-to-Device (FeD2D) enhancement by reducing
CCI between devices which share the same uplink, along with network resource

management and self-aware IoT resources. Instead of a single communication
technology, independent and different communication protocols may be used in

parallel and, where it is possible, to replace one technology with another, offering
dynamic network connectivity. IoT-NGIN integrates virtual networking management

tools (e.g. Management and Orchestration – MANO – frameworks aligned with the
ETSI NVF specifications [68]) to directly manage dedicated network slices, with specific
characteristics to meet highly demanding digital services requirements.

• Micro-services and VNFs (turquoise colour): a “living” collection of functionalities,

implemented as container-based micro-services or unikernels. IoT-NGIN works on a
novel Secure Micro-Services Execution Framework implementing operational tasks in

5G - MCM
Communications

5G Communications

Em
b

ed
d

e
d

 C
yb

e
r

Se
cu

ri
ty

&

 D
at

a
P

ri
va

cy

Resource Self-awareness &
Dynamic Network Connectivity

Blockchain-DLT Client

Distributed Trained
ML Models

Micro-Apps

Fog – M2M
Communications

5G Network & Resources Management

AR/Human Centered UI/UX

Migrated micro-services
or VNF instances

Sandbox Sandbox

Micro-Services & VNF

Secure
unikernels

Secure Micro-Services & VNF
Execution Framework

VNF &
Microservice
Repository

Vulnerabilities
Detection

Sensing, Streaming
& Actuating

5G Dynamic
Slicing

5G Network
Management

Resources
Management

Existing
“closed” IoT

Platforms

Digital
Twins

Federated Data Sovereignty

Big Data Analytics & ML

Inter-DLT Transaction Layer

DLT Mining

Federation Adapters

DLT Mining

Smart
Contracts

Privacy Presenting
Federated ML

Transfer Learning &
Dynamic Self Learning

Polyglot Trained ML
Model Serving

Prescriptive/Predictive
Data Analytics

IoT Device Edge Cloud Node

Semi-autonomous Real-time Operation

Human & Context Centered Micro-Applications

65 of 88

close interaction with the micro-services. The framework comes with native thread-
safety considerations, its implementation being ongoing using the RUST programming

language [69]. This unique framework will enable migration and hosting of both
unknown/potentially malicious and fully trusted/digitally signed micro-services
instances. Of course, the management of the relevant micro-services and VNFs is laid

upon the responsibility of the adopted MANO framework, using Kubernetes as the
virtual infrastructure manager (VIM) of choice. This approach allows IoT-NGIN to

operate using the latest standards at the level of network management, coupled with
state-of-the-art, cloud-native technologies with respect to data and container

orchestration. Particularly when it comes to data management, the project has
already considered the employment of cloud-native data storage solutions (via the
combination of the rook [70] and ceph [71] frameworks) to ensure reliability,

replicability and scalability as to the data lifetime management.

• Federated Data Sovereignty (orange colour): To make the IoT-NGIN architecture as

scalable as possible, IoT-NGIN adopts some of the emerging Decentralised Identifier

(DID) and Self-Sovereign Identity (SSI) technologies and applies them to enhance
data sovereignty and privacy. The security of data sharing federation will be based
on DLTs. However, instead of using a single DLT, the IoT-NGIN federation uses an inter-

DLT approach, where multiple independent and different distributed ledgers may be
used in parallel and where it is possible to gradually replace one ledger technology

with another, if needed. At the same time, by exploiting the SSI technologies (either
coupled with DLTs or not), IoT-NGIN allows effective identity management without

depending on external identity management systems, essentially giving the end-users
with control not only of their data, but also of their identity. Interestingly, within the
context of IoT-NGIN, the SSIs are co-designed together with the meta-level Digital

Twins, so that on one hand the control of the identity of the physical twins does not
change hands, at the same time guaranteeing (virtual) device identity uniqueness at

federated level.

• Federation of Big Data Analytics & ML (purple colour): In the context of IoT-NGIN, a ML

as a Service (MLaaS) framework is being designed and developed, offering ML/AI
services to the entirety of the IoT-NGIN platform components, but also the hosted

applications. The IoT-NGIN MLaaS framework is based on state-of-the-art open-source
frameworks (Kubeflow [72]), essentially implementing common ML operations such as

pre-processing, training, model serving and inference, on demand. The ML pipelines
are employing a continuous integrated approach towards the emergence of “live”

models, even in batch learning cases. Beyond the state of the art semi-supervised
and unsupervised deep learning/reinforcement learning techniques and privacy
preserving federated ML transfer learning are implemented to train ML models while

keeping the IoT data in their original locations, and unsupervised cross-context transfer
learning (e.g. cross-context AI by design), with inline adaptive self-learning is studied

in order to improve the resulting machine learning models. Moreover, ML- and zero-
knowledge proof-based cybersecurity components based on Generative Adversarial

Networks (GANs, [73]) are developed to identify malicious IoT nodes and data
poisoning attacks, as well as timely identify intrusion detection [74].

• Human-Centred Augmented Reality Tactile IoT (dark red colour): IoT-NGIN has a

special focus on the enhancement of human-centred IoT devices discovery,

recognition, and novel ambient intelligence-based control, combining physical
access, user rights/groups and IoT ownership. To this end, IoT NGIN strives towards the

generation and maintenance of a repository sharing IoT-AR enhanced UX/UI SW
components, tools and libraries to 3rd Parties.

When it comes to compliance with the meta-architecture, the adopted architecture re-uses

many of the architectural patterns, as tabulated below.

66 of 88

Table 34: Compliance of the IoT-NGIN architecture with the meta-architecture; architectural

patterns.

Architectural Pattern IoT-NGIN architecture consideration

Microservices-

oriented architecture

IoT-NGIN architecture foresees a cloud-edge execution

framework supporting container- and unikernel-based loads in a
secure and trusted manner. The microservices are adopting the

emerging paradigm of CaaS (Container-as-a-Service)

Event-driven

architecture

The IoT-NGIN MLaaS framework employs event-driven

architectures and technologies (such as Apache Kafka [75]) to
orchestrate in real-time the various ML pipelines and
management operations.

SDN IoT-NGIN relies on the use of container- and unikernel-based

technologies, orchestrating them with the help of Kubernetes. The

internal communications of the various components are heavily
relying on SDN, as do the network interfaces exposed by the 5G

network slicing framework developed by IoT-NGIN.

5G network exposure In the context of IoT-NGIN, the following 5G resources will be

offered for experimenting in the laboratory: network and

operational management capabilities and cloud infrastructure
resources.

5G network slicing IoT-NGIN works on the emergence of an open 5G network slicing

framework able to dynamically manage the end-user

requirements in terms of performance or reliability (at network or
service level) and match them with the available resources at
operator level.

DLTs From IoT-NGIN point of view, DLTs are important for many reasons.

IoT-NGIN has a vision for systems open to everyone. DLTs allow

parties that do not fully trust each other to collaborate in a single
system without requiring a (costly) trusted third party to facilitate

the cooperation. DLTs also provide a high degree of automation
through smart contracts and similar technologies.

Self-Sovereign Identities (SSI) provide a technology to separate

technical participants from other trust elements and relationships.
Security by design is fulfilled with inter-DLT traceability and

demonstrated with a DLT-based meta-level digital twin (MLDT).

SSI SSI is used as an identifier solution to improve privacy, security,

automation, and to give users more control of their identifiers. In

particular, they are used as identifiers and credentials for the
Digital Twins.

Data federation IoT-NGIN relies on state-of-the-art technologies and frameworks to

ensure consistent data availability at the spatiotemporal domain,

also catering for data storage reliability employing virtual storage
replicasets and associated infrastructure allocation rules.

Digital twins In the context of IoT-NGIN, digital twins are employed to facilitate

interaction of the platform with their physical twins (and vice

67 of 88

versa), increase service reliability and boost the performance of
data services provisioning. Coupled with DLTs and SSIs, meta-level

Digital twins are employed to increase lifetime trackability and
traceability.

Similarly, the IoT-NGIN architecture is compliant to the Quality Vertical requirements, as per

Table 35.

Table 35: Compliance of the IoT-NGIN architecture with the meta-architecture; Quality Vertical.

Requirement IoT-NGIN architecture consideration

Security In the framework of its security considerations, IoT-NGIN employs

beyond the state-of-the-art approaches (GANs) to identify

intrusion detection at network level and, also, to identify
fraudulent behaviours at the level of local ML models poisoning.

To further fortify the next-generation IoT platforms, IoT-NGIN
employs ML-powered “perimeter defence” in the form of dynamic
honeypots deployment and auto-configuration, in tandem with a

network-level vulnerability crawler targeting at uncovering
possibly vulnerable IoT nodes or services, then feeding the

dynamic honeypots deployment service to trap the attack agents
into attacking the wrong IoT nodes/services and exposing
themselves.

Interoperability Interoperability is one of the key considerations of IoT-NGIN

technology design when it comes to interfaces specification and

data models selection. Section 6 presents an indicative set of data
models and interfaces that have been considered at project

level.

Data sovereignty IoT-NGIN employs DLTs and SSIs to ensure that end-users have

control of their data. By means of the inter-DLT technologies

adopted and advanced in the context of the project, end-users-
based, dynamic rules for data sharing at local or global level will

be rendered possible.

Scalability The design of IoT-NGIN heavily relies on cloud-native principles,

deeply adopting a carefully designed stateless, micro-services-
oriented architecture governed by state-of-the-art, open-source
container-orchestration technologies (Kubernetes). This allows IoT-

NGIN to scale not only horizontally but, also, vertically, being able
to consume more resources when the computational load is high

and less resources, otherwise.

Flexibility The IoT-NGIN architecture is flexible since practically all IoT-NGIN

components may be removed and substituted with others, if

needed. Interoperability at interface and data model level should
ensure that integration of the newly introduced components is

seamless.

Performance As per the scalability requirement, at compute level, IoT-NGIN is

able to horizontally scale and make use of all the available
computational resources. At the same time, the IoT-NGIN

68 of 88

architecture prioritises 5G when it comes to networking; combined
with network slicing, the architectural considerations regarding

network performance are state-of-the-art. Finally, when it comes
to the MLaaS IoT-NGIN framework, GPU acceleration is natively
supported at both design and implementation level.

Reliability The technology stack on which the IoT-NGIN architecture is built

allows for the determination of replicasets (with configurable

minimum, normal and maximum instance number) at the level of
both service provisioning and data storage (at both block and

object level). Combined with the high-availability features of 5G
networks in the context of slicing, we consider that the reliability
requirement is, by design, satisfied.

Manageability The IoT-NGIN architecture and technology basis heavily depends

on open-source, open-API-based frameworks, known for their

manageability (e.g. [76], [77]). The same goes for the direction of
the project’s 5G network exposure API research as per §3.8.

5.1 Mapping the IoT-NGIN architecture to the

meta-architecture

Finally, when it comes to compliance with the Elements View, Table 36 highlights the relevant

considerations at architectural level.

Table 36: Compliance of the IoT-NGIN architecture with the meta-architecture; Elements View.

Functional Group IoT-NGIN architecture consideration

Infrastructure The IoT-NGIN architecture is flexible and can accommodate existing

platforms and services and exhibits cloud-native support at
technology level to host and optimally manage and services

applications. Supported elements:

• Existing systems

• Infrastructure services

• Existing codebase

• Cloud/Applications

• Cloud/Services

Federation The IoT-NGIN architecture treats DLTs as first-class citizens when it

comes to data management and sovereignty. Further, by supporting
SSI, it fully complies to the Identifiers and Identities element. The use of

the cloud-native technology stack for the compute and data
management (Kubernetes, rook and ceph), satisfies the requirements
posed by the Monitoring (with the help of Prometheus [78]), Data

storages, Data sharing and Federation interfaces elements. Elements
supported:

• Monitoring

• DLT

69 of 88

• Identifiers and Identities

• Data storages

• Data sharing

• Federation interfaces

Workloads At service level, IoT-NGIN relies on a microservices-oriented

architecture to offer its services. Further, several DLT (blockchains)

protocols are considered (particularly in the context of inter-DLT-based
communications). Further, at the level of federated communications,

M2M services are considered. Last, at data level, the architectural
support for the emergence of a data federation managing the entire
lifecycle of data starting from the physical storage perspective (e.g.

distributed block storage) and concluding on multi-faced data
security considerations (e.g. via DLT employment, detection of

network intrusions, detection of fraudulent ML model poisoning
activities etc.) and metadata management (based on the ontology-

based meta-level digital twins’ data interfaces). Practically, all
elements are supported:

• Workloads/Services

• Workloads/Microservices

• Middleware/App server

• Middleware/Connectivity

• Middleware/Blockchains

• Middleware/M2M

• Data/Storages

• Data/Data Security

• Data/Data streams

• Data/Metadata

Things IoT-NGIN relies on digital twining, employing various data sources as

input. Further, it supports IAM at OAuth2.0 level and supports various
type of access communication technologies, with an explicit focus on
5G. Elements supported:

• Smart devices

• Digital twin

• Communication

• IAM

• Data sources

Fog-Edge The IoT-NGIN architecture performs research towards an edge-

friendly, ML-powered 5G network configuration management stack,
assisted by the MLaaS framework. Further, it caters for the existence of

a secure edge cloud execution framework tailored for containers and
unikernels. Elements supported:

• Edge processing

• ML/Deep learning

70 of 88

Automation IoT-NGIN relies on Kubernetes as a resource orchestration framework

to manage the secure edge cloud execution framework. Elements

supported:

• Container orchestration

Analytics IoT-NGIN features (in its application development context),

dashboard support for monitoring the platform components and the
hosted applications performance. Elements supported:

• Dashboards

Concluding, the IoT-NGIN architecture fully adheres with the requirements of the meta-

architecture and could, therefore, be considered as compliant.

71 of 88

6 Common IoT data models
Cross-organizational and cross-platform data sharing requires common data models which
define the syntax and semantics for data exchange. There are several existing data model
implementation options that are compatible with the IoT-NGIN requirements and relevant to

federated data sovereignty and federated communications.

In IoT-NGIN domain, probably the most important framework to consider is the International

Data Spaces Association (IDSA) and its standards as the IDSA is creating a secure and
sovereign data economy for Europe and global markets. In context information

management frameworks, FIWARE NGSIv2 and ETSI NGSI-LD are potential options for IoT-
NGIN. WoT can also be applied by using its building blocks and standardised approach to
metadata.

6.1 International Data Spaces

The International Data Spaces (IDS) is a virtual data space that utilises mature standards and

technologies in the data economy. According to IDS, a data space is a set of IDSA governed
relationships between trusted partners that can be used for secure and sovereign data
exchange, certification and governance across diverse organizations. IDS enables cross-

organization business processes and transactions and secures the data sovereignty of the
owners of the data.

The strategic requirements of IDS are trust, security, data sovereignty, data ecosystems, data

apps and standardised interoperability. Research and development based on guidelines

such as open development processes, re-use existing components and standardization work.
The objectives and activities of IoT-NGIN align with IDS, thus many of the guidelines and
solutions of IDS can be adopted by the project.

IDS has developed a reference architecture model, which consists of business, functional,

process, information and system layers. In addition, the reference architecture model has

three main perspectives of security, certification and governance. The process and
information layers combined with certification and governance perspective complement

the technologies in IoT-NGIN. For example, the information layer consists of an Information
Model with several representations, illustrated in Figure 14.

72 of 88

Figure 14: IDS Information Model. Adapted from IDS

The Conceptual Representation is a high-level, conceptual, and technology-agnostic
overview analogous to the meta-architecture artefact. The Declarative and Programmatic

Representation provide more details. IDS Ontology offers analysis and requirements which
are based on W3C Semantic Web standards and other modelling vocabularies such as DCAT

or ODRL. Programmatic Representation focuses to provide linkage between commonly used
software tools, practices and technologies, and the IDS Ontology.

6.2 W3C Web of Things (WoT)

WoT focuses to harmonise the IoT landscape by developing extending existing and already
standardised technologies. WoT is a protocol independent-technology and consists of

various building blocks, illustrated in the Figure 15.

WoT Things Description (TD) is an information model and representation format for semantic

metadata. The objective for TD is to become "the HTML for smart things". WoT is a protocol

independent technology. Binding templates provide a build-in mechanism to define how
prevalent protocols such as HTTP, MQTT, HTTP, CoAP can be mapped to the WoT abstractions

and interactions in the level of the Thing properties, actions and events. WoT Security and
Privacy Guidelines are for general security guidance at the level of the public networks. The
guidelines vary from implementation to secure configuration of Things. WoT Scripting API is

JavaScript runtime environment for IoT applications, like web browsers. In the context of this
study and the developed meta-architecture, WoT is a promising technology that can

connect abstract architectural concepts to concrete things and is as a technology-agnostic
option [5].

73 of 88

Figure 15: WoT Building Blocks

6.3 FIWARE and ETSI Context Information

Management: NGSI-v2 and NGSI-LD

6.3.1 FIWARE NGSI

FIWARE NGSI API integrates platform components within any platform marked as “Powered

by FIWARE”. It permits the complying applications to edit or ingest context information. Using
GEs is optional, but the Context Broker is required in all FIWARE applications. The Context

Figure FIG visualises the GE landscape at high-level. Regarding interfaces, FIWARE NGSI API
aligns with the ETSI NGSI-LD standard.

Managing context information is the main objective of FIWARE [4]. In this case, context refers

to the operating environment of IoT system and information about its entities, which produce
applicable information for system development. The context information consists of varying

data sources such as a sensors networks, actuators, services and third-party applications. The
following list is an example set of GEs in a Smart Agriculture project [79]:

• Orion Context Broker (OCB): Orion is a C++ implementation of the NGSIv2 REST API.

The context information management includes functions for context elements such
as build, update, queries, device registration and more. OCB have a lot of useful
features, for example cross origin resource sharing (CORS), multi tenancy, and

transparent metadata attachment.

• Cygnus is a GE that persists data sources from third-parties and creates historical views

of the data. It is based on Apache Flume, a technology that is responsible for design

and execution of data collection. A persistence agent operates the data flow
through listener receiving data, channel transmitting the data after Flume event

transformation, and a sink which stores the Flume events. Examples of supported NGSI-

74 of 88

like context data: HDFS, MySQL, MongoDB, Kafka, DynamoDB, PostreSQL,
Elasticsearch, Arcgis.

• Intelligence Data Advanced Solution (IDAS) GE offers an interpreter between the IoT

communication protocols and NGSI standard. The available interfaces include
LWM2M over CoaP, JSON, UltraLight over HTTP/MQTT, and object linking for OPC-UA.

• Wilma is a PEP Proxy that manages access control in application back ends. Only

permitted users can access the GEs. It is often combined with other security

components such as Keyrock which is OAuth2.0-based users and devices identity
manager, with Single Sign-On and Identity Federation functions.

6.3.2 ETSI NGSI-LD

European Telecommunications Standards Institute (ETSI) defines the NGSI-LD information

model which provides context information format and interfacing for NGSI-LD-based
applications. The information model defined data representations, APIs and common

vocabularies for the API. The context information can map a term string into concept
identifiers of URIs. NGSI-LD is capable of several representations, such as entity, property,
relationship, context source, and subscription representations. The LD notation of the NGSI

protocol stands for linked data since NGSI-LD is built on top of JSON-LD, which is a linked data
format of JSON. Linked data applications frequently utilise a concept called "triples". A triple

consists of a subject, property, and value. Data graphs can be built out of the triple sets and
processed with various graph-based methods or graph processing APIs. JSON-LD offers a

formalised representation of linked data through JSON. One effective way to process graphs
in general, that applies to JSON, is tree structures. Many dominant programming languages
offer built-in tree traversal algorithms that can be extremely efficient. An essential capability

of JSON-LD is appending data with context information and transforming the values in a
format that allow simple and efficient processing. An optimal outcome is a JSON-like data

graph structure, in which conversion between linked data and editable JSON data is trivial
[80].

The NGSI-LD Information Model links to high-level Core Meta-model and Cross-Domain

Ontology. The lower-level domain-specific ontologies are a point of interest for meta-
architecture. For example, IoT-NGIN can potentially use the Smart Appliances REFerence

Ontology (SAREF) Ontology and map it to the NGSI-LD Information Model. Conveniently,
SAREF incorporates extensions for the domains of Smart City, Smart Agriculture, Smart Energy

and Smart Industry 4.0.

NGSI-LD API can be adapted into versatile architectures and in general, the NGSI-LD includes

minimal architectural assumptions. A suitable example regarding the meta-architecture is
federated architecture with NGSI-LD. For example, applications that aim to federate existing
technologies and domains can exploit the method. In a smart city scenario, distinct

departments in an organization of a major city operate unique Context Broker-based NGSI-
LD infrastructures. However, smart city applications need to retrieve information from a single

source of truth. Entire application domains can be defined as access points through Context
Brokers, instead of requiring a separate Context Source for every application entity.
Information domains are appended to Context Registry and provide the context that can

be matched with queries regarding specific topics. As an example, rather than registering
individual buildings to the registry, the added information could represent specific building

types in a city district. The Federation Broker identifies the domain Context Brokers offering
accurate information and forwards the queries and requests. Figure 16 demonstrates the

NGSI-LD building blocks of a federated architecture.

75 of 88

Figure 16: NGSI-LD and federated architecture. Adapted from NGSI-LD.

76 of 88

7 Benchmarking and test reports
In this section, the format of the test reports, as well as the benchmarking methodology to
be followed in IoT-NGIN project for the validation of the KPIs will be defined. The
benchmarking of the verification framework is heavily based on Quality of Service (QoS) and

Quality of Experience (QoE); two metrics that can be utilised to validate the project
outcomes in terms of user experience and performance. This section provides the initial

approach for the verification framework benchmarking of IoT-NGIN, however, a more
elaborated version of the methodology, which will also be fine-tuned to the UCs’

requirements, will be provided in D1.3, at a later stage.

The verification framework benchmarking considers technical parameters within the scope

of QoS, which assess the performance of the system through the KPIs, and quantifies the user

experience via QoE. Other methodologies, such as resource scaling, cross-domain
interaction and IoT-NGIN platform testing as a whole, will also be investigated to satisfy Task

1.3 objectives and in light of future developments.

7.1 Methodology

The methodology for the benchmarking of the verification framework is based on the scope

and objectives of the project, with particular emphasis been given on each specific UC. The
development process considers the Agile model, which consists of multiple cycles of

designing, building, testing, and reviewing a product or service continuously. Agile
development has numerous advantages, including the nature of the process which is made

to constantly adapt and improve the product and the continuous user engagement and
feedback [81]. The development of the system is finalised once successful scoring is
achieved on User Acceptance Tests (UATs).

Figure 17: Agile methodology for product evaluation.

7.1.1 Quality of Service

QoS is the tool for measuring the overall performance of a service, with particular focus on

the attributes that can be observed by the end-user of the network. Thus, to successfully
quantify QoS, parameters such as packet loss, bit rate, transmission delay, and jitter are

monitored. Moreover, QoS is utilised for controlling and handling network resources by setting
priorities within the network based on the type of data. In essence, QoS can be defined as a
set of actions that allow for the management of network resources and the tool for

managing the network with respect to the application, the user, and data flows. Finally, it
can be used as a mechanism that ensures a certain level of performance for a data flow.

77 of 88

QoS can provide the network administrator with the ability to manage the system effectively,
by performing actions such as adjusting the order of handling packets or managing the

traffic flow [82].

In this project, the QoS can be evaluated through a number of metrics by assessing the

quality of the provided service in system and device levels. Specifically, metrics that can be

utilised for the assessment of QoS on a system level are the following:

1. System quality: the quality of the sensor network can be evaluated as a whole based

on the quality of the data provided after a query.
2. Delay: measured during data collection from nodes.

3. Bandwidth: Assessing the capacity of a sensor network in sending data over a link.
4. System lifetime: Indicates the longevity of the system.
5. Resource optimisation: A metric that is defined by the ability of the system to efficiently

allocate its limited resources within a society and thus optimise its resource utilisation
by maximising the social welfare.

On a device level, the following metrics can be used:

1. Quality of IoT devices: Assessment of the accuracy and sensitivity of the

measurements provided by the IoT devices.
2. Energy consumption: Assessment of the energy consumption of the system, which is

particularly important for wireless sensor networks (WSN), as the lifetime of the devices

is dependent on it.
3. Bandwidth: Measurement of the bandwidth usage of the IoT devices.

4. Data volume: Amount of data generated by IoT devices.
5. Trustworthiness: Assesses the reliability of the sensor in the scope of delivering

accurately and timely measurements. This metric is associated with the quality metric
mentioned earlier.

An example template for QoS evaluation is presented in Table 37. For IoT-NGIN, the QoS

parameters will be defined once all the components for each UC have been identified and
characterised.

Table 37: Sample QoS metrics.

Traffic

class

Technology

attributes

Time Preciseness Accuracy

Response

time

expected
by users

Delay Jitter
Data

rate

Required

bandwidth

Loss

rate
Error rate

7.1.2 Quality of Experience

QoE is a metric based on the user satisfaction or annoyance, which focuses on the overall
service experience holistically. According to the European Telecommunications Standard

Institute (ETSI), QoE is defined as a method for measuring performance according to users
based on subjective and objective phycological measurement, for the use of a product or

a service [83]. The concept of QoE has emerged from the field of telecommunications, in an
effort to quantify the user experience while using a service and therefore, to understand the

user’s overall quality requirements. Although QoS remains a powerful tool for evaluating a

78 of 88

service in terms of performance, current services and functionalities thar are offered within
the IoT domain are user centric. Thus, QoE becomes essential for obtaining feedback by the

end-user [84].

The following factors can be evaluated through QoE:

1. Usability: The rate at which users can use the product and achieve their goals

effectively and efficiently.
2. Usefulness: The ability of the product to fulfil the user’s needs and/or preferences.

3. Transparency: The ability of users to view the performed actions.
4. Effectiveness: The ability of users to complete their tasks.

5. Efficiency: The effort that is required by the users to complete their tasks.
6. Accessibility: The ability of multiple groups of people to use the product.
7. Personalisation: Individualisation of the product based on user’s needs and

predefined preferences.
8. Learnability: The effort required by the end-user to use the product.

7.2 Implementation of methodology for

benchmarking

Table 38 lists all the UCs that will be examined under IoT-NGIN project, as they have been

defined in D1.1. The UCs are spread across four verticals, namely smart cities, smart
agriculture, Industry 4.0 and smart energy. In spite of the common goal the project has on

the aforementioned areas, each vertical has its own particularities and hence, the
benchmarking has to be designed to fulfil the needs of each one and in some cases, to be
tailored for a specific UC. Moreover, it also depends on the specific group of people involved

in each UC, as the actors and users for each case could be regulatory authorities or
companies, managerial personnel and employees, general public, or a combination of

these categories.

Table 38: UCs of IoT-NGIN.

Use case Title Vertical

UC1 Traffic Flow Prediction & Parking prediction Smart cities

UC2 Crowd management

UC3 Co-commuting solutions based on social networks

UC4 Crop diseases prediction. Smart irrigation and precision

aerial spraying

Smart agriculture

UC5 Sensor aided crop harvesting

UC6 Human-centred safety in a self-aware indoor factory

environment
Industry 4.0

UC7 Human-centred augmented reality assisted build-to-

order assembly

UC8 Digital powertrain and condition monitoring

UC9 Move from reacting to acting in smart grid monitoring

and control
Smart energy

79 of 88

UC10 Driver-friendly dispatchable EV charging

UC1 is considered as an example in this section, which aims at efficient traffic flow prediction

and parking availability, in order to decrease traffic jams and bottlenecks. To this end, in this
UC a model will be developed that:

• Aids the driver in choosing a less-trafficked road.

• Assists in finding a parking spot by providing information on available parking

locations.

• Demonstrate the application of deep learning technologies for advanced traffic

flow prediction including unpredictable conditions like weather, delays and

accidents.

For this UC three KPIs shall be satisfied, which have already been defined in D1.1 and are

presented in Table 39. The QoS with regards to UC1 will be based on the specific KPIs, where

parameters such as the performance of the monitoring devices with respect to system
quality, lifetime, bandwidth etc. are evaluated and compared against the requirements and

needs of the KPIs.

Table 39: KPIs for UC1.

KPI ID Name Description
Method of

measurement
Target

KPI_UC1_1 Real-time

monitoring

Improve efficiency and traffic

congestions in twin smart cities
Logs and analysis >=20%

KPI_UC1_2 Cross-border

data models

Number of proposed cross-

border data models

Number of data

models

>4

KPI_UC1_3 Data sources

analysis

Number of different types of

sensors’ data to be analysed

Number of

different sensors
used

>6

On the other hand, as mentioned earlier QoE does not consider the performance of the

product from a technical point-of-view, but rather focuses on the experience and
satisfaction of the end-user. Hence, questions in the form of a questionnaire or an online Q&A

will be implemented, in order to capture the experience of the end-user. The format of the
test report for QoE in the form of a questionnaire is shown in Table 40, where example

questions for UC1 are presented.

Table 40: Example of test report format for QoE.

1. Please rate the reduction experienced in traffic.

1

□

2

□

3

□

4

□

5

□

6

□

7

□

8

□

9

□

10

□

2. Please rate the time reduction you experienced in finding a parking spot.

1

□

2

□

3

□

4

□

5

□

6

□

7

□

8

□

9

□

10

□

3. Please rate the less-trafficked proposed routes.

1

□

2

□

3

□

4

□

5

□

6

□

7

□

8

□

9

□

10

□

80 of 88

4. Please rate the reduction of traffic at unpredictable conditions (e.g. weather,

delays, accidents etc.)

1

□

2

□

3

□

4

□

5

□

6

□

7

□

8

□

9

□

10

□

The rating of the experience could be based on a rating system with scores from poor to

excellent. Finally, any material related to the QoE will be compliant to the Data Management

policies of the IoT-NGIN project. In summary, the methodology presented in this section for
the benchmarking of the verification framework, once applied, will be reassessed and thus,

parameters will be revaluated in order to be updated with developments. Therefore, in case
where new requirements need to be established within the framework or existing

requirements need to be altered, the benchmarking will be readjusted to include all
changing factors.

81 of 88

8 Conclusions
This document constitutes Deliverable “D1.2: IoT meta-architecture, components and
benchmarking” of the European H2020-ICT-2018-20 “IoT-NGIN: Next Generation IoT as part of
Next Generation Internet” project. The document defines the initial version of IoT-NGIN meta-

architecture, supporting a multitude of use cases across domains, and validated in the IoT-
NGIN Living Labs.

The aim of meta-architecture work in IoT-NGIN is to provide a research-informed framework

for designing and implementing IoT solutions in different usage scenarios. The IoT-NGIN meta-

architecture is based on thorough analysis of current state-of-the-art IoT platforms and
standards, combined with requirements and expert knowledge provided by partner
organizations. The analysis of current state-of-the-art approaches covers key open-source

and commercial IoT platforms and has been further extended by EU research perspective
covering most relevant EU research projects in recent years.

The meta-architecture presented in this document collects key quality requirements,

architectural patterns and high-level system components aiming to provide an overall

framework for individual system implementations. The motivation is to enable reuse of existing
IoT technologies and solutions to new domains and assist structured, informed IoT platform
design. The IoT-NGIN meta-architecture is designed around four key artifacts, namely the IoT

Architectural Pattern Vertical, the Domain Horizontal, the Quality Vertical, and the Element
View. The Element View provides a general technological view to the meta-architecture,

including technological components organized in functional groups, thus indicating the role
and interrelations among IoT functionalities.

Moreover, the IoT-NGIN architecture is presented as a reference instantiation of the IoT-NGIN

meta-architecture. This architecture includes fine-grained definition of the functional
components within the respective functional groups, and defines their distribution in IoT and

Edge/Cloud nodes. The IoT-NGIN architecture will be instantiated in five IoT-NGIN LLs and is
expected to be further extended with the contributions of new partners selected via the IoT-

NGIN Open Calls.

It should be noted, that the IoT-NGIN meta-architecture is not static. As IoT and related

technologies mature, some elements may get outdated, and as more implementation

experience and further requirements are gathered from use cases and living labs over time,
the meta-architecture also needs to evolve over time. Consequently, the meta-architecture

has been designed to be open and extensible to make room for new technologies and
computing paradigms. The continuous evolution and improvement of the meta-architecture

will be part of IoT-NGIN project work in the future.

82 of 88

9 References

[1] Fortune Business Insights , “Internet of Things (IoT) Market Worth USD 1463.19 Billion by

2027 Backed by Rising Awareness Regarding Precision Farming to Aid Market Growth,
says Fortune Business Insights,” 2021. [Online]. Available:

https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-
market-100307.

[2] International Data Corporation, “European IoT Spending to Exceed $200 Billion in 2021

as Companies Start Moving to the Next Stage of Recovery, According to IDC,” 2021.
[Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prEUR147929621.

[3] P. Pierleoni, R. Concetti, A. Belli and L. Palma, “Amazon, Google and Microsoft

Solutions for IoT: Architectures and a Performance Comparison,” IEEE Access, vol. 8,
pp. 5455-5470, 2019.

[4] FIWARE, “Components,” 2021. [Online]. Available:

https://www.fiware.org/developers/catalogue/.

[5] W3C, “Web of Things (WoT) Thing Description,” 2020. [Online]. Available:

https://www.w3.org/TR/wot-thing-description/.

[6] DeviceHive, “Documentation,” 2021. [Online]. Available:

https://docs.devicehive.com/docs.

[7] ThingsBoard, “ThingsBoard Cloud Documentation,” 2021. [Online]. Available:

https://thingsboard.io/docs/paas/.

[8] T. KaaIoT, “Kaa IoT Platform Features for Enterprise IoT Projects,” 2021. [Online].

Available: https://www.kaaiot.com/overview.

[9] OpenRemote, “Product,” 2021. [Online]. Available: https://openremote.io/product/.

[10] M. Labs, “Overview,” 2021. [Online]. Available:

https://mainflux.readthedocs.io/en/latest/.

[11] A. Microsoft, “Azure IoT,” 2021. [Online]. Available: https://azure.microsoft.com/en-

us/overview/iot/.

[12] S. Amazon Web, “AWS IoT,” 2021. [Online]. Available:

https://aws.amazon.com/iot/?nc2=h_ql_prod_it.

[13] Google, “Google Cloud IoT Core documentation,” 2021. [Online]. Available:

https://cloud.google.com/iot/docs.

[14] P. ThingWorx, “ThingWorx Connect Product Brief,” 2021. [Online]. Available:

https://www.ptc.com/en/resources/iiot/product-brief/thingworx-connect.

[15] IBM, “Internet of Things on IBM Cloud,” 2021. [Online]. Available:

https://www.ibm.com/cloud/internet-of-things.

83 of 88

[16] Software AG, “Interfacing Devices,” 2021. [Online]. Available:

http://www.cumulocity.com/guides/concepts/interfacing-devices/.

[17] Particle, “Device OS,” 2021. [Online]. Available:

https://docs.particle.io/tutorials/device-os/device-os/.

[18] European Commission, “IoT European Large-Scale Pilots Programme,” 2018. [Online].

Available: https://european-iot-pilots.eu/projects/. [Accessed 2021].

[19] CREATE-IoT Project, “CRoss fErtilisation through AlignmenT, synchronisation and

Exchanges for IoT,” 2021. [Online]. Available: https://european-iot-
pilots.eu/project/create-iot/.

[20] SynchroniCity, “SynchroniCity | A universal approach to developing, procuring and

deploying IoT- and AI-enabled services,” 2021. [Online]. Available:
https://synchronicity-iot.eu/.

[21] MONICA Project, “MONICA - MONICA - Sound and security applications for large,

open-air events,” 2021. [Online]. Available: https://www.monica-project.eu/.

[22] AUTOPILOT, “Homepage - Autopilot,” 2021. [Online]. Available: https://autopilot-

project.eu/.

[23] ACTIVAGE Project, “ACTIVAGE Project : Internet of Things (IoT) for ageing well,” 2021.

[Online]. Available: http://www.activageproject.eu/.

[24] IoF2020, “Internet of Food and Farm 2020 - IoF2020,” 2021. [Online]. Available:

https://www.iof2020.eu/.

[25] GAIA-X, “Gaia-X: A Federated Secure Data Infrastructure,” 2021. [Online]. Available:

https://www.gaia-x.eu/.

[26] GAIA-X, “GAIA-X: Technical Architecture,” Jun 2020. [Online]. Available:

https://www.data- infrastructure.eu/GAIAX/Redaktion/EN/Publications/gaia-x-
technical-architecture.pdf?__blob=publicationFile&v=5.

[27] AGILE Project, “AGILE – Aircraft 3rd Generation MDO for Innovative Collaboration of

Heterogeneous Teams of Experts,” 2021. [Online]. Available: https://www.agile-
project.eu/.

[28] AGILE, “D3.1 requirements specification sw architecture, V1.0,” Jun 2016. [Online].

Available: https://cloud.google.com/iot/docs.

[29] U4IoT, “User Engagement for Large Scale Pilots in the Internet of Things,” 2021.

[Online]. Available: https://u4iot.eu/.

[30] SOFIE Project, “Secure Open Federation for Internet Everywhere,” 2021. [Online].

Available: https://www.sofie-iot.eu/.

[31] N.-5. Project, “Home - 5GPPP,” 2021. [Online]. Available: http://www.nrg5.eu/.

84 of 88

[32] OPEN DEI Project, “Aligning Reference Architectures, Open Platforms and Large-

Scale Pilots in Digitising European Industry,” 2021. [Online]. Available:

https://www.opendei.eu/.

[33] SOGNO Project, “Service Oriented Grid for the Network of the Future | SOGNO

energy,” 2021. [Online]. Available: https://www.sogno-energy.eu/.

[34] INTER-IoT Project, “INTER-Iot - Interoperability Internet of Things,” 2021. [Online].

Available: https://inter-iot.eu/.

[35] INTER-IoT, “Final Reference IoT Platform Meta-architecture and Meta-data Model,

D4.2,” 2018.

[36] AI4EU Project, “Home | AI4EU,” 2021. [Online]. Available: https://www.ai4europe.eu/.

[37] R. Mark, Software Architecture Patterns, O'Reilly Media, Inc., 2015.

[38] S. G. Tzafestas, “The Internet of Things: A Conceptual Guided Tour,” European Journal

of Advances in Engineering and Technology, vol. 5, no. 10, pp. 745-767, 2018.

[39] R. Stackowiak, “Modern IoT Architecture Patterns,” in Azure Internet of Things

Revealed: Architecture and Fundamentals, Apress, 2019.

[40] S. Bera, S. Misra and A. V. Vasilakos, “Software-Defined Networking for Internet of

Things: A Survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994-2008, 2017.

[41] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool and W. Dou, “Complementing IoT

Services Through Software Defined Networking and Edge Computing: A

Comprehensive Survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp.
1761-1804, 2020.

[42] M. Behzad, M. Abdullah, M. T. Hassan, Y. Ge and M. A. Khan, “Performance

Optimization in IoT-Based Next-Generation Wireless Sensor Networks,” in Transactions

on Computational Collective Intelligence XXXIII. Lecture Notes in Computer Science,
2019.

[43] 3GPP, “Technical Specification Group Services and System Aspects; Management

and Orchestration; 5G Network Resource Model (NRM); Stage 2 and Stage 3 (Release
16),” Jun. 2019. [Online]. Available:

https://www.3gpp.org/ftp/TSG_SA/WG5_TM/TSGS5_125/SA_84/28541-g10.doc.
[Accessed Sep. 2021].

[44] Microsoft, “Microsoft Azure IoT Reference Architecture,” 2018.

[45] R. Neisse, J. L. Hernández-Ramos, S. N. Matheu-García, G. Baldini, A. Skarmeta, V. Siris,

D. Lagutin and P. Nikander, “An Interledger Blockchain Platform for Cross-Border

Management of Cybersecurity Information,” IEEE Internet Computing, vol. 24, no. 3,
pp. 19-29, 2020.

[46] A. Pérez, G. Moltó, M. Caballer and A. Calatrava, “Serverless computing for

container-based architectures,” Future Generation Computer Systems, vol. 83, pp.
20-59, 2018.

85 of 88

[47] A. Preukschat and D. Reed, Self-Sovereign Identity: Decentralized digital identity and

verifiable credentials, Manning, 2021.

[48] Industrial Internet Consortium, Digital Twins for Industrial Applications, 2020.

[49] J. Autiosalo, J. Vepsalainen, R. Viitala and K. Tammi, “A Feature-Based Framework for

Structuring Industrial Digital Twins,” IEEE Access, vol. 8, 2020.

[50] E. Cavalcante, M. P. Alves, T. Batista, F. C. Delicato and P. F. Pires, “An analysis of

reference architectures for the internet of things,” in 2015 1st International Workshop

on Exploring Component-based Techniques for Constructing Reference
Architectures (CobRA), Montreal, QC, Canada, 2015.

[51] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. van Kranenburg, S. Lange and S. Meissner,

Enabling Things to Talk: Designing IoT solutions with the IoT Architectural Reference
Model, Springer, 2013.

[52] A. Poniewierski, “How the IoT and data monetization are changing business models,”

Ernst& Young Global Limited, 20 Feb. 2019. [Online]. Available:

https://www.ey.com/en_gl/consulting/how-the-iot-and-data-monetization-are-
changing-business-models. [Accessed 08 Sep. 2021].

[53] Cloud Native Computing Foundation (CNCF), “CNCF Cloud Native Definition v1.0,”

11 Jun. 2018. [Online]. Available:
https://github.com/cncf/toc/blob/master/DEFINITION.md. [Accessed 08 Sep. 2021].

[54] “Unikernels: Rise of the Virtual Library Operating System,” , . [Online]. Available:

http://queue.acm.org/detail.cfm?id=2566628. [Accessed 8 9 2021].

[55] “Production-Grade Container Orchestration,” The Linux Foundation, Sep. 2021.

[Online]. Available: https://kubernetes.io/. [Accessed 08 Sep. 2021].

[56] Cloud Native Computing Foundation, “Cloud Native Interactive Landscape,” 08

(dynamic) Sep. 2021. [Online]. Available:
https://landscape.cncf.io/?project=graduated. [Accessed 08 Sep. 2021].

[57] “Containerd: An industry-standard container runtime with an emphasis on simplicity,

robustness and portability,” Sep. 2021. [Online]. Available: https://containerd.io/.

[Accessed 08 Sep. 2021].

[58] “Policy-based control for cloud native environments,” Sep. 2021. [Online]. Available:

https://openpolicyagent.org. [Accessed 08 Sep. 2021].

[59] “Linkerd: A different kind of service mesh,” Sep. 2021. [Online]. Available:

https://linkerd.io/. [Accessed 08 Sep. 2021].

[60] “The Update Framework,” Sep. 2021. [Online]. Available:

https://theupdateframework.io/. [Accessed 08 Sep. 2021].

[61] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao, “A Survey on Internet of Things:

Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1125-1142, 2017.

86 of 88

[62] M. Noura, M. Atiquzzaman and M. Gaedke, “Interoperability in Internet of Things

Infrastructure: Classification, Challenges, and Future Work,” in International

Conference on Internet of Things as a Service, 2017.

[63] A. Javed, A. Malhi, T. Kinnunen and K. Främling, “Scalable IoT Platform for

Heterogeneous Devices in Smart Environments,” IEEE Access, vol. 8, pp. 211973-

211985, 2020.

[64] A. Shukla and Y. Simmhan, “Benchmarking Distributed Stream Processing Platforms for

IoT Applications,” in Technology Conference on Performance Evaluation and
Benchmarking, 2017.

[65] H2020 IoT-NGIN Consortium, “Deliverable D3.1: Enhancing Deep

learning/reinforcement learning,” 2021.

[66] Microsoft, “Ambassador pattern,” 23 Jun. 2017. [Online]. Available:

https://docs.microsoft.com/en-us/azure/architecture/patterns/ambassador.
[Accessed Sep. 2021].

[67] Microsoft, “Choreography pattern,” 24 Feb. 2020. [Online]. Available:

https://docs.microsoft.com/en-us/azure/architecture/patterns/choreography.

[Accessed Sep. 2021].

[68] ETSI, “Open Source MANO (OSM),” [Online]. Available:

https://www.etsi.org/technologies/open-source-mano. [Accessed Sep. 2021].

[69] “Rust is a systems programming language,” , . [Online]. Available: https://www.rust-

lang.org. [Accessed 21 9 2021].

[70] The Linux Foundation, “Rook: Open-Source, Cloud-Native Storage for Kubernetes,”

[Online]. Available: https://rook.io/. [Accessed Sep. 2021].

[71] Ceph Foundation, “Ceph: The Future of Storage,” [Online]. Available:

https://ceph.io/en/. [Accessed Sep. 2021].

[72] E. . Bisong, “Deploying an End-to-End Machine Learning Solution on Kubeflow

Pipelines,” , 2019. [Online]. Available: https://link.springer.com/chapter/10.1007/978-
1-4842-4470-8_47. [Accessed 21 9 2021].

[73] M. . Salvaris, D. . Dean and W. H. Tok, “Generative Adversarial Networks,” arXiv:

Machine Learning, vol. , no. , pp. 187-208, 2018.

[74] S. Bourou, A. El Saer, T.-H. Velivassaki, A. Voulkidis and T. Zahariadis, “A Review of

Tabular Data Synthesis Using GANs on an IDS Dataset,” Information, p. 14, 14 Sep.
2021.

[75] “Apache Kafka at GitHub,” , . [Online]. Available: https://github.com/apache/kafka.

[Accessed 21 9 2021].

[76] The Linux Foundation, “Kubernetes API,” [Online]. Available:

https://kubernetes.io/docs/reference/kubernetes-api/. [Accessed Sep. 2021].

87 of 88

[77] ETSI OSM, “Welcome to Open Source MANO’s documentation,” 2020. [Online].

Available: https://osm.etsi.org/docs/user-guide/. [Accessed Sep. 2021].

[78] The Linux Foundation, “Prometheus: Monitoring system & time series database,”

[Online]. Available: https://prometheus.io/. [Accessed Sep. 2021].

[79] M. Muñoz, J. D. Gil, L. Roca, F. Rodríguez and M. Berenguel, “An IoT Architecture for

Water Resource Management in Agroindustrial Environments: A Case Study in
Almería (Spain),” Sensors, vol. 3, 2020.

[80] E. G. C. 009, “Context Information Management (CIM),” ETSI Industry Specification

Group, 2019.

[81] Y. Y. Jusoh, S. Abdullah, I. M. Ali, M. H. M. Noh, M. H. Mazlan, C. S. Bouh and T. Z. Sheng,

“Adoption of Agile Software Methodology Among the SMEs Developing IoT
Applications,” in 6th International Confere4nce on Research and Innovation in

Information Systems (ICRIIS), 2019.

[82] M. S. a. G. Baranwal, “Quality of Service (QoS) in Internet of Things,” in 3rd

International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU),
2018.

[83] E. T. 1. 6. V1.0.2, “Human Factors (HF); Quality of Experience (QoE) requirements for

real-time communication services,” Sophia Antipolis, 2010.

[84] O. A. a. J. M. L.G.M. Ballesteros, “Quality of Experience (QoE) in the smart cities

context: An initial analysis,” in 2015 IEEE First International Smart Cities Conference
(ISC2), 2015.

[85] IoT-NGIN, “D9.1 - Project Handbook,” H2020-957246 IoT-NGIN Deliverable Report,

2020.

[86] P. C. a. R. K. L. Bass, Software Architecture in Practice, vol. 4, Addison-Wesley

Professional, 2021.

[87] N. Rozanski and E. Woods, Software Systems Architecture, New Jersey: Pearson, 2012.

[88] S. Z, K. Hartke and C. Bormann, The Constrained Application Protocol (CoAP), 2014.

[89] S. Vinoski, “Advanced Message Queuing Protocol,” IEEE Internet Computing, vol. 10,

no. 6, pp. 87-89, 2006.

[90] OASIS, “MQTT: The Standard for IoT Messaging,” 2020. [Online]. Available:

https://mqtt.org/.

[91] M. Singh, M. Rajan, V. Shivraj and P. Balamuralidhar, “Secure MQTT for Internet of

Things (IoT),” in 2015 Fifth International Conference on Communication Systems and

Network Technologies, Gwalior, India, 2015.

[92] Open Mobile Alliance, “Enabler Release Definition for Lightweight M2M v1.2,” Nov

2020. [Online]. Available:
https://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-
A/OMA-ERELD-LightweightM2M-V1_2-20201110-A.pdf.

88 of 88

[93] oneM2M, “Functional Architecture, TS-0001-V3.15.1,” May 2020. [Online]. Available:

https://www.onem2m.org/images/files/deliverables/Release3/TS-0001-

Functional_Architecture-V3_15_1.pdf.

[94] Object Management Group, “OMG Data Distribution Service (DDS), Version 1.4,” Apr

2015. [Online]. Available: https://www.omg.org/spec/DDS/1.4/PDF.

[95] “RUST: A language empowering everyone to build reliable and efficient software.,”

[Online]. Available: https://www.rust-lang.org/.

[96] ETSI, “Industry Specification Group (ISG) cross cutting Context Information

Management (CIM),” Oct. 2019. [Online]. Available:

https://www.etsi.org/committee/cim.

[97] ETSI GS CIM 009 V1.2.1, “Context Information Management (CIM);,” ETSI, Oct. 2019.

[Online]. Available:

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.02.01_60/gs_CIM009v01020
1p.pdf.

[98] [Online]. Available: https://www.elaad.nl/.

[99] [Online]. Available: https://www.openchargealliance.org/protocols/ocpp-201/.

	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 Intended audience
	1.2 Relation to other activities
	1.3 Document Overview

	2 Existing IoT platforms
	2.1 Open-source perspective
	2.2 Commercial perspective
	2.3 EU research perspective

	3 IoT architectural patterns overview and analysis
	3.1 Layered architecture
	3.2 Microservices-oriented architecture
	3.3 Event-driven architecture
	3.4 Lambda architecture
	3.5 Software-defined networking (SDN)
	3.6 Edge computing
	3.7 Wireless sensor networks architectures
	3.8 5G network exposure
	3.9 5G network slicing
	3.10 Gateways
	3.11 Distributed ledger technologies (DLT)
	3.12 Serverless computing
	3.13 Self-sovereign identities (SSI)
	3.14 Data federation
	3.15 Digital twins
	3.16 Reference models

	4 The IoT-NGIN meta-architecture
	4.1 Definition
	4.2 Key meta-architecture viewpoints
	4.3 Element view
	4.3.1 Things functional group
	4.3.2 Fog-Edge functional group
	4.3.3 Analytics functional group
	4.3.4 Automation functional group
	4.3.5 Infrastructure functional group
	4.3.6 Cloud subgroup
	4.3.7 Container as a Service subgroup
	4.3.8 5G networking subgroup
	4.3.9 Federation functional group
	4.3.10 Workloads functional group
	4.3.11 Services subgroup
	4.3.12 Middleware subgroup
	4.3.13 Data subgroup

	4.4 Architectural Patterns Vertical
	4.5 Quality Vertical
	4.5.1 Security
	4.5.2 Interoperability
	4.5.3 Data sovereignty
	4.5.4 Scalability
	4.5.5 Flexibility
	4.5.6 Performance
	4.5.7 Reliability
	4.5.8 Manageability

	4.6 ML and AI layer
	4.7 Compliance to the IoT-NGIN meta-architecture

	5 The IoT-NGIN architecture
	5.1 Mapping the IoT-NGIN architecture to the meta-architecture

	6 Common IoT data models
	6.1 International Data Spaces
	6.2 W3C Web of Things (WoT)
	6.3 FIWARE and ETSI Context Information Management: NGSI-v2 and NGSI-LD
	6.3.1 FIWARE NGSI
	6.3.2 ETSI NGSI-LD

	7 Benchmarking and test reports
	7.1 Methodology
	7.1.1 Quality of Service
	7.1.2 Quality of Experience

	7.2 Implementation of methodology for benchmarking

	8 Conclusions
	9 References

