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Executive Summary 
After years of research, hype and steady growth, the Internet of Things (IoT) has lived up to 
expectations and has entered into mainstream business use. The anticipated growth in the 

next years is high, with Fortune Business Insights™ in its report, titled “Internet of Things (IoT) 
Market, 2020-2027” [1] projecting the global IoT market size to reach USD 1463.19 billion by 

2027. The same report suggests that significant push in the IoT market is expected by the 
increasing demand for artificial intelligence and twin technology and precision farming 
worldwide. Europe is leading the IoT market with IoT spending in Europe estimated to reach 

USD 202 billion in 2021and continue to experience double-digit growth through 2025, 
according to International Data Corporation's (IDC) Worldwide Semiannual Internet of Things 

Spending Guide [2]. 

The Next Generation IoT as part of Next Generation Internet (IoT-NGIN) project introduces 

novel research and innovation concepts, acting as the “IoT Engine” which will fuel the Next 
Generation of IoT as a part of the European Next Generation Internet.  A key project 
objective is to uncover a patterns based meta-architecture that encompasses evolving, 

legacy, and future IoT architectures.  

This document constitutes Deliverable “D1.2: IoT meta-architecture, components and 

benchmarking”, which is an output of Work Package (WP) 1, entitled “Next Generation IoT 
Requirements & Meta-Architecture. The main achievements towards the definition of the IoT-

NGIN meta-architecture analyzed in the present document include: 

• Identification and analysis of the state-of-the-art IoT platforms and frameworks, 

covering open-source, commercial and EU research level perspectives. 

• Identification and analysis of 16 distinct IoT architectures. 

• An initial concept and technical specifications of the IoT-NGIN meta-architecture has 

been defined around four key artifacts, namely IoT architectural pattern vertical, 

domain horizontal, quality vertical, and element view. 

• Detailed analysis of the individual components within the meta-architecture has been 

conducted and compliance to the IoT-NGIN meta-architecture has been discussed. 

• The IoT-NGIN architecture, complying to the meta-architecture, has been presented, 

identifying fine-grained components across functional blocks for both the IoT and 

Edge/Cloud nodes. 

• Common IoT data models and standardization approaches have been identified to 

ensure platform’s interoperability and adaptability. 

• Initial test reports format and benchmarking methodology have been defined based 

on Quality of Service to assess the performance of the system through already defined 

KPIs, and on Quality of Experience to quantify the user experience. 

Following the current IoT technological trends, as well as key project findings as they become 

available, the IoT-NGIN meta-architecture is being continuously updated. The next version of 
the IoT-NGIN meta-architecture, featuring such updates, is expected to be released in the 
last quarter of 2022.  
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1 Introduction 
An architecture of a system is the structured set required to proficiently reason about the 
system. The structures consist of elements, relations, interactions and properties of the system 

under study. Traditionally in software engineering, architecture refers to software systems and 
its elements. Architecture plays a vital role in complex system development and in the 

system’s capability of inter system communication or of changing its hierarchy. 

The meta-architecture takes a higher-level view and collects together architecturally 

significant choices, patterns, components, viewpoints and quality attributes that need to be 

considered when designing and implementing individual systems. The meta-architecture 
provides a foundation for the architecture strategy and system design.  

The aim of the meta-architecture work in IoT-NGIN is to provide a research-informed 

framework for designing and implementing IoT solutions in different usage scenarios. The 

meta-architecture collects key quality requirements, architectural patterns and high-level 
system components. The meta-architecture provides an overall framework for individual 
system implementations. The motivation is to enable reuse of existing IoT technologies and 

solutions to new domains and assist structured, informed IoT platform design. Consequently, 
the meta-architecture is designed to be extensible to make room for new technologies and 

computing paradigms and allow the effective and seamless exploitation and exploration of 
both historical and real-time IoT data. 

The IoT-NGIN meta-architecture is based on analysis of current IoT platforms and standards. 

The analysis of current approaches covered key open-source and commercial IoT platforms 
and was further extended by EU research perspective covering most relevant EU research 

projects in recent years. The architectural patterns included into the meta-architecture are 
based on expert advice and knowledge identified in previous open-source, commercial and 

EU research projects complemented by the research conducted within IoT-NGIN. 

An architectural view represents the design of software system from a specific point of view. 

The architectural views commonly used in software design are listed in Table 1. Viewpoints, 

on the other hand, include reusable information, design patterns, templates, and 
conventions to build and read a specific view. Viewpoints are valuable because one can 

reuse architecturally valuable information in designs. This approach allows for better 
management of complexity because viewpoints can be used to instantiate the views. 

Following the ideas of views and viewpoints, the developed meta-architecture aims to build 
and visualise a specific strategic viewpoint for IoT-specific applications. 

Table 1: Common architectural views. 

View Description 

Context view Environment and stakeholder dynamics. 

Functional view Functional architecture and critical component/elements. 

Development view Source code, class structure, dependencies. 

Information view Information flow and static information. 

Item Deployment view Infrastructure and physical distribution. 
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Item Operational view Operation, management, support of a system in production 

environment. 

Item Concurrency view Processes and threads. 

1.1 Intended audience 

The document could be especially useful to IoT stakeholders interested in adopting the IoT-
NGIN meta-architecture. IoT and edge hardware manufacturers, IoT solution providers, but 
also 5G and AI-related stakeholders could get insights on the architectural patterns for their 

fields of interest. Moreover, the document provides technical specifications, analyzes 
architectural viewpoints and data models and introduces methodology for benchmarking 

and testing, which could help IoT solution providers, technology providers and developers 
enhance their IoT solutions, developments or products, adapting them into or extending the 

IoT-NGIN meta-architecture. 

Policy makers and regulation bodies are also among the interested stakeholders, since the 

IoT-NGIN meta-architecture could be exploited for cross-domain applications at municipal, 

national or regional level. 

Finally, the report is useful internally, to the members of the development and integration 

team of the IoT-NGIN consortium, along with the Open Call winners, but also to the whole 
Consortium for validation and exploitation purposes. Useful feedback could be also received 
from the Advisory Board, including both technical and impact creation comments. 

1.2 Relation to other activities 

Since this document collects the requirements and ratifies the technological and design 

perspectives of the IoT-NGIN meta-architecture and the IoT-NGIN project architecture, it is 
relevant to the majority of the technical project activities. 

Indeed, with reference to Figure 1, depicting the project PERT chart, the work of WP1 (and 

the meta-architecture in particular) directly affects the definition of activities in the technical 
WPs of the project, implicitly hinting over design and technology implementation decisions, 

offering guidelines regarding the network design (WP2), requirements regarding the global 
use of Artificial Intelligence (AI) and Machine Learning (ML) in WP3, the introduction of 

Augmented Reality (AR) and tactility to the IoT landscape (WP4), as well as the cybersecurity 
and data privacy aspects ruling the IoT-NGIN operations (WP5). At the same time, the 
requirements for the meta-architecture stem from the actual needs of the Living Labs and 

their associated Use Cases (WP7) as well as from the overall technology integration work of 
the project (WP6), particularly when it comes to addressing the needs of the manageability 

perspective of the IoT-NGIN activities and deployments, and vice-versa.  

 



H2020 -957246    -   IoT-NGIN  

 
D1.2 - IoT meta-architecture, components, and benchmarking 

 

15 of 88 

 

 

Figure 1: IoT-NGIN PERT chart. 

Being a WP1 deliverable, this document is also relevant to the internal WP1 activities. Task 1.1 

posed several functional and non-functional requirements to be covered by the meta-
architecture definition, whereas the Task1.2 activities formulated most of the deliverable 
content. The verification framework was developed in the context of Task 1.3. Finally, Task 1.4 

identified the relevant existing technologies, frameworks, products and projects that are 
relevant to the scope of the meta-architecture definition and design. This document should 

be considered as a living document, its contents being affected by the inherent 
advancements of technology per se (identified in the context of Task 1.4) and of the IoT-
NGIN Living Labs (LLs) requirements evolution. 

1.3 Document Overview 

The present deliverable is divided into seven chapters, as follows. 

Chapter 1 introduces the motivation and objectives of the deliverable. Moreover, it explains 

the inter-relationships of this deliverable with other Work Packages of the project since the 

defined meta-architecture will form the basis that the rest of the project will be built upon. 

Chapter 2 provides an overview of several IoT technologies, platforms and solutions covering 

all three perspectives, commercial, open-source and EU projects and it further presents 

technological specifications of each platform.  

Chapter 3 describes architectural patterns observed in the analysed platforms in detail 

showing strengths and weaknesses of each one and suitability for various applications. 

Chapters 4 is the main output of this deliverable. It explains the concept of meta-architecture 

and gives a detailed explanation of the derived IoT-NGIN meta-architecture based on the 

architectural pattern analysis described in chapters 2 and 3. This is the initial concept of the 

meta-architecture that will be used in the implementation of the IoT-NGIN use cases. It also 

presents the element view of the meta-architecture, which provides a general technological 
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view with a focus on its functional groups and individual components. Moreover, it presents 

the non-functional architectural patterns vertical which discusses common quality attributes 

included in the architecture. It also discusses the overarching machine learning and artificial 

intelligence layer that is developed as a part of IoT-NGIN Machine Learning as a Service 

platform. This chapter posits a preliminary set of criteria for IoT-NGIN meta-architecture 

compliance. As IoT-IGIN uses existing and mature networks, compliance with several 

standards was the main perspective of the discussion in order to ensure interoperability and 

adaptability of the IoT-NGIN platform. 

Chapter 5 presents the modular IoT-NGIN architecture, describing its components in every 

functional group. The chapter also discusses the compliance of the IoT-NGIN architecture to 

the meta-architecture defined in Chapter 4. 

Chapter 6 describes various data models implementation options that are potential 

candidates being compatible with the IoT-NGIN requirements whilst they are relevant to 

data sovereignty and federated communications.  

Chapter 7 provides the initial perspective towards benchmarking of the IoT-NGIN results by 

defining test reports formats and benchmarking for the validation of the Key Performance 

Indicators (KPIs). The chapter provides the methodology for the verification of the results and 

focuses on two metrics, the Quality of Service, which assesses the performance of the 

platform through the KPIs and the Quality of Experience, which quantifies the user 

experience. 

Chapter 8 concludes with the main findings and outputs of the report as well as an initial 

perspective on the next steps towards the implementation of the meta-architecture in the 

IoT-NGIN platform. 
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2 Existing IoT platforms 
To assess current state of the art in IoT architectures, this section analyses various identified 
IoT technologies, solutions and approaches. The IoT-NGIN meta-architecture is constructed 

based on these identified IoT platforms and standards. The architectural patterns included 
into the meta-architecture are based on expert advice and knowledge identified in previous 

open-source, commercial and EU research projects complemented by information provided 
by IoT-NGIN project partners. 

Most of the analysed entities in open-source and commercial perspectives can be labelled 

as cloud-based IoT platforms, which complement their offering with on-premise and hybrid 
services. Cloud IoT platforms offer versatile connectivity and device management, while 

simultaneously providing capabilities for data ingestion and processing. Many cloud 
platforms form bi-directional communications, enabling communication between the 

devices and the cloud back-end services. IoT applications can be implemented with a 
diverse set of heterogeneous IoT devices, which push sensor and event data to the cloud 
through a network. In this task, the analysis of IoT solutions is focused on the following 

characteristics [3]: 

• Data communication and connectivity are requirements for remote orchestration of 

devices and transferring of data. There is a profound need to have secure and high-

quality communication between the devices, applications and the cloud infrastructure. 
The communication types are often referred to as different abbreviations: Device to 
Cloud (D2C), Cloud to Device (C2D), Device to Device (D2D) also frequently referred to 

(M2M), Device to Application (D2A) and Device to Gateway (D2G). The set of 
communication types enhances the notion of complex communication in IoT. Data can 

be collected, transmitted and stored in various layers and parts of the system. To answer 
the challenge, cloud IoT platforms often contain a message broker for sending and 

receiving events and messages from devices and gateways. 

• Rules and business processing is mandatory in the event-based IoT environments. The 

logical flow of data and information depend on the application and use case. A rule 
engine or similar function is often embedded in the system to integrate the technical 

flows with business logic and create useful action triggers. 

• Integration with other platforms, devices, services and development tools unleash the 

power of cloud IoT platforms and are the key reasons for their dominance. In this context, 
integration is discussed as the general connector of the high-level components. Many of 

the analysed technologies offer development performance and various business 
interfaces through SDKs and APIs. 

• Potential solution-specific features are analysed on a case-by-case basis. No technology 

is identical and as a sub-objective of this analysis is not only to identify the recurrent 
architectural approaches but also discover valuable solutions that can be applied to 

the IoT-NGIN project. While the developed meta-architecture does not address the 
specific technologies, the discoveries will be useful in other parts of the project. 

• Security is one of the most important characteristics across other analysis categories. 

Security is one of the cornerstones of IoT-NGIN, thus it is considered as a standalone 

characteristic. The security features are highlighted especially in the device level, data 
and communications and infrastructure security. In addition, some special cryptography 

features with industry-wide adoption are included in the analysis. 

• As in any business, cost is an important factor, but it is delimited out of the scope of this 

analysis. It is still a crucial notion that design, building and operating costs differ largely 
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depending on the application, scale and the whole operation environment, such as 
service providers and licensing. 

Based on a review of state-of-the-art IoT platforms and other prior works, a number of 

platforms presented in Table 2 were selected for further influencing the design of the IoT-

NGIN meta-architecture.  

Table 2 shows an overview of the existing IoT approaches and platforms. 

Table 2: IoT approaches and platforms selected for further study 

Type Existing relevant projects 

Open source FIWARE [4], W3C Web of Things (WoT) [5], DeviceHive [6], ThingsBoard 

[7], Kaa [8], OpenRemote [9], Mainflux [10]. 

Commercial Azure IoT [11], AWS IoT [12], Google Cloud IoT Core [13], PTC 

Thingsworkx [14], IBM Watson IoT [15], Cumulocity IoT [16], Particle 
[17]. 

EU Research The IoT European Large-Scale Pilots (LSP) Programme [18] (CREATE-

IoT, SynchroniCity, MONICA, AUTOPILOT, ACTIVAGE), GAIA-X, INTER-

IoT, AGILE, other related projects identified by IoT-NGIN (SOFIE, NRG-
5, OPEN DEI, SOGNO, AI4EU, MATILDA, 5GCity, PRIMO 5G) 

2.1 Open-source perspective 

There are various drivers for open-source development, but the most significant are velocity 
of innovation, focus on interoperability and vendor lock-in avoidance, and easier 

experimenting. Open-source technologies often combine other open standards and robust 
open-source implementation. 

Table 3 below shows the analysed open source architectures and their general description. 

Table 3: Open source platforms. 

Name Description 

FIWARE FIWARE is an open-source framework and platform that features to 

build its components for smart solutions across the domains of Smart 

AgriFood, Smart Cities, Smart Energy, and Smart Industry. FIWARE 
provides IoT capabilities through cloud-based context information 

management and big data services and is built around a FIWARE 
Context Broker. FIWARE Generic Enablers (GEs) enable rapid 
development of applications and services. GEs are often interfaced 

with REST APIs, which allow third-party components to build complex 
solutions, such as real-time data analysis and processing, predictive 

maintenance, and language interpreters [4]. 

W3C Web of 

Things (WoT) 

WoT focuses on harmonizing the IoT landscape by developing and 

extending existing and already standardised technologies. WoT is 

based on building blocks that describe IoT devices and services, 
referred to as the Things, at various levels. 
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DeviceHive DeviceHive is an open-source IoT cloud service management 

platform, licensed under the Apache License Version 2.0. It consists of 

the communication layer, control software and multi-platform libraries 
and clients. DeviceHive positions itself as a platform with versatile 

deployment options in public, private and hybrid clouds [6]. 

ThingsBoard ThingsBoard is an open-source IoT platform for specializing in data 

processing, and device orchestration. ThingsBoard is designed to be 
scalable, robust and efficient. Yet, it minimises trade-offs in fault-
tolerance, durability and customization options. It offers connectivity 

via standard IoT protocols and supports cloud and on-premises 
deployments [7]. 

Kaa Kaa is an end-to-end IoT platform applicable to IoT projects of any 

scale. It provides a wide offering of features for developers to build 

applications such as smart products, flexible cloud-based device 
management, or end-to-end data processing. Kaa Cloud operates on 
the Platform-as-a-Service (PaaS) model. Kaa operates through distinct 

endpoints that feed to Kaa protocol communication. Depending on 
the application, the transferred information can be for example 

command execution, data collection operation, or configuration 
instructions [8]. 

OpenRemote OpenRemote is an open-source IoT platform that integrates a variety 

of devices, assets and other data sources into a single asset and data 
management solution. It allows designing applications and workflows 

specific to customer problems. Visualizing and analyzing the managed 
data is convenient and OpenRemote offers tools for reporting and 

progress measurement and has easily accessible web user interfaces 
and consoles [9]. 

Mainflux Mainflux is a microservice-based, high-performance and secure open-

source IoT platform with end-to-end development capacity of IoT 
solutions, applications and smart products. With Apache 2.0 license, 

Mainflux offers transparency, control, and support community for 
testing, bug fixes and more [10]. 

 

Table 4 through to Table 8 below discuss in more detail, the characteristics and common 

features of the platforms presented in Table 3.  
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Table 4: OpenRemote Specifications 

Feature Detail 

General architecture Agent-based architecture 

Rules Processing Rules Engine for automation: JSON and Flow Rules Object 

Model. Prediction and Optimisation Models. Messaging 
and streaming service. 

Asset management Configuration, Location tracking, status manager. 

Connectivity Protocol Support Agent. TCP/HTTP, MQTT, REST API 

Manager, WebSocket endpoint. Edge Gateways, KNX, 
ArtNET/DMX, Z-wave 

Infrastructure & Deployment Cloud and on-premises. Docker images. Hosting as a 

Service. Edge Gateways on ARM. 

Security Multi-tenant solution. Multiple users and roles. Access 

rights: public, private or restricted. Security OAuth. Web 
component for Identity service. 

 

Table 5: Mainflux Specifications 

Feature Detail 

General architecture Microservices with high-performance, scalability and 

fault-tolerance. Domain model: Users, Things and 
Channels. Scalable NATS broker for internal message 
exchange. 

Integrations Third-party integrations with enterprise systems (e.g. ERPs, 

BI, CRM, SQL/noSQL databases, and other cloud services 

such as analytics. 

Connectivity Pub/sub multiprotocol messaging bridge, MQTT, HTTP, 

WebSocket, CoAP, NATS. 

Development & Deployment Mainflux Security server written in Golang. SDKs and client 

libraries in C/C++, JavaScript, Python. Microservices 

containerised by Docker and orchestrated with 
Kubernetes. 

Security Authentication and authorization with API keys and 

scoped JWT. OpenID Connect with OAuth 2.0. Mutual TLS 

Authentication (mTLS) with X.509. Nginx HTTPS reverse 
proxy. TLS and DTLS load-balancing / termination. Vault 
data encryption. 

Edge capabilities Optimised hardware, Solid Run HummingBoard CBi - 

Edge1 IoT Edge Gateway. Low memory footprint, low 
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latency, high performance, tolerance for temperature 
range (-40° to 85° C). 

 

Table 6: Thingsboard Specifications 

Feature Detail 

General architecture Microservice-based instances for ThingsBoard clusters. 

Gateway for legacy connectivity. 

Rules Processing Rule engine with event-based workflows. Main 

components Messages, Rule Nodes, Rule Chains. 

Connectivity HTTP, TCP, MQTT. REST API calls, WebSocket subscriptions. 

Monitor device connectivity states. gRPC potentially 
shifting to Kafka. 

Integrations LORIOT, AWS IoT, IBM Watson, Azure IoT, SigFox, and 

custom. 

Security OAuth2 support, MQTT over SSL. Device authentication: 

access tokens, MQTT credentials X.509 certifications. 

Deployment On-premises and cloud. 

 

Table 7: Kaa Specifications 

Feature Detail 

General architecture Flexible microservices architecture. Any component is 

replaceable or customizable. 

Data processing Structured/unstructured data. Data processing pipelines. 

Integrated with databases such as Cassandra, MongoDB, 

InfluxDB, and more 

Connectivity MQTT, Sigfox, LoRa, NB-IoT, WiFi, BLE, Z-Wave, 

2G/3G/4G/(5G), ethernet, gateways, custom. 

Integrations REST APIs and NATS. Support for business tools like SAP, 

Salesforce and more. Hardware: sensors, gateways, 
industrial PLC, wearables. 

Security Device communications are secured with TLS or DTLS. 

Flexible credentials lifecycle management. 

Table 8: DeviceHive Specifications 

Feature Detail 

General architecture Microservices. 
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Connectivity REST API, WebSockets or MQTT protocol. 

Integrations REST APIs and NATS. Support for business tools like SAP, 

Salesforce and more. Hardware: sensors, gateways, 
industrial PLC, wearables. 

Security HTTPS, WebSockets. TLS for devices and apps. Separate 

Auth service. Authentication is secured by JSON Web 

Tokens (JWT). 

Deployment Public, private or hybrid cloud resources. Docker and 

Kubernetes deployment support. Kafka service 

communication and load-balancing. 

2.2 Commercial perspective 

The major commercial IoT platforms included in review are presented in Table 9. These 
platforms are provided by the biggest digital companies in the world and their feature set 
evolves rapidly, so the description of the characteristics and features are based on the 

information available at the time of review. 

Table 9: Commercial IoT Platforms. 

Name Description 

Azure IoT Azure IoT is a large and complex end-to-end IoT portfolio. The three 

most relevant platforms regarding the analysis are Azure IoT Hub, 
Azure IoT Edge and Azure Digital Twins. IoT Hub is a PaaS message 

hub for bi-directional communications between an IoT application 
and related devices. Microsoft also offers Azure IoT Central, which is 
a fully managed Software-as-a-Service (SaaS) for easy design but 

less customization. Azure Digital Twins is a platform capable of 
building digital representation of real things, locations, business 

workflows, and people processes. The managed services offer a 
variety of building blocks for building customised solutions in different 

scenarios [11]. 

AWS IoT AWS has broad and deep IoT services, from the edge to the cloud. 

AWS IoT offers AI integration, meaning efficient model creation and 

deployment. AWS IoT is built on a secure and proven cloud 
infrastructure and scales to billions of devices and trillions of 

messages. AWS IoT integrates with other AWS services and solutions. 
Based on AWS documentation, its offering is divided in three main 
categories Device Software, Control Services and Analytics Services 

[12]. 

Google Cloud IoT 

Core 

The key Google solution for IoT is Google Cloud IoT Core. Like Azure 

IoT and AWS IoT, Google Cloud IoT is a managed service that 
enables secure connection, management and data operations in 

distributed device configurations. It is easily combined with the 
functionality of Google Cloud Platform (GCP). Google Cloud IoT 
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Core and GCP offer together world-class ML and big data analytics 
features for IoT applications [13]. 

PTC Thingsworkx ThingWorx Industrial IoT Solutions Platform promotes a diverse set of 

capabilities that enable powerful solutions for design, 

manufacturing, service, and industrial operations. Thingsworkx has a 
special focus on Industrial IoT (IIoT), and it provides pre-defined 

building elements for the IIoT use cases. The pre-configured solutions 
cut time-to-market, provide flexibility and deliver value rapidly for 
enterprise customers of all size. ThingWorx offers capabilities that can 

be divided in five focus areas: connectivity, deployment, analytics, 
device management and visualization. Their approach is slightly 

distinct from other service providers, since the product offering is 
divided. For example, other commercial products often join the 

connectivity and device management in same elements [14]. 

IBM IoT portfolio IBM have three technologies of interest for the IoT domain, IBM Edge 

Application Manager, IBM Maximo Application Suite and IBM 

Watson IoT Platform. IBM Edge Application Manager presents an 
autonomous management solution for edge applications that 

require qualities such as scalability, variability and evolution. IBM 
Maximo is platform for asset management, monitoring, predictive 

maintenance, and computer vision. IBM Watson IoT Platform utilises 
the AI and cognitive abilities of Watson AI. It included capabilities for 
real-time data analysis, insight production through AI and ML. 

Watson IoT can govern applications and device statuses: usage and 
performance, anomaly detection, and data validation [15]. 

Cumulocity IoT Cumulocity IoT from Software AG is built to enable open, rapid 

deployment and distributed processing. Cumulocity tackles 
architectural complexity by promoting a singular architecture that 

covers the infrastructure from edge of the cloud to the on-premises 
assets. Cumulocity IoT differentiates itself with a special focus on 

industrial equipment. The focus is highlighted by the support for field-
bus protocols such as Modbus, Can bus and OPC-UA. Additional 

distinction is that Cumulocity IoT promotes no-code and self-service 
approaches [16]. 
 

Particle Particle offering is a combination of IoT platform and hardware. The 

product ecosystem of particle includes asset tracking, hardware for 

prototyping and mass production, development tools and various 
software APIs and libraries. The functional focus of IoT platform 

includes IoT devices management, data pipelines, and tracking 
systems. A special product is the EtherSIM, which is a global, scalable 
and self-learning cellular connectivity. In the analysis of Task 1.2, the 

most relevant products are Particle Device OS and Device Cloud. 
Particle frequently is more data-efficient than its competitors. With 

the CoAP over DTLS approach, they can hold up connection in 
worse networks. For example, a MQTT connection over TLS/SSL 
requires full 5K TLS handshake for a device re-connection [17]. 
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Table 10 to Table 16 below discuss in more detail, the characteristics and common features 

of the platforms presented in Table 9.  

Table 10: Azure IoT Hub Specifications 

Feature Description 

General architecture Message broker and micro-service architecture. Device-

to-cloud telemetry, Per-device identity, IoT devices and 
cloud 

gateways. Lambda architecture (warm and cold paths) 

for data processing. 

Integration/interfaces  Azure Event Hubs, Azure IoT Edge, 

Custom third-parties connectors such as Thingsboard and 

ThingWorx. 

Data communication and 

connectivity 
HTTPS, AMQP, MQTT, WebSockets. 

Security Device Provisioning Service (DPS) and 

authorization. X.509/TLS-based Handshake 

and encryption. Azure Active Directory for IAM. Key Vault. 

Policy-based access control. 

Infrastructure and 

deployment 

Public, private or hybrid cloud resources. Docker and 

Kubernetes deployment support. Kafka service 
communication and load-balancing. 
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Table 11: AWS IoT Core Specifications 

Feature Description 

General architecture Publish/subscribe message broker 

Rule/business processing MQTT topic stream for rule analysis and execution. Passed 

through the pub/sub broker with device communication 
protocols or Ingest feature to optimise data streams by 

deleting the pub/sub message from the ingestion path). 

Integration/interfaces  Amazon Sidewalk, Alexa Voice Service, other Amazon 

services such as AWS Lambda and S3. 

Data communication and 

connectivity 
MQTT, MQTT over WSS, and HTTP, LoRaWAN 

Security IAM roles and policies. Amazon Cognito Identity. AWS 

security credentials. Authentication at TLS layer with X.509 

certificate chain. Support for custom authentication. Data 
protection with multi-factor authentication, SSL/TLS for 

communication with AWS resources, logging with AWS 
CloudTrail. 

 

Table 12: Google Cloud IoT Specifications 

Feature Description 

General architecture Publish/subscribe architecture, complemented by GCP 

pub/sub features. Main components are device manager 

and protocol bridges for MQTT and HTTP 

Integration/interfaces Google Big data analytics and ML services, BigQuery, 

Bigtable, and thirdparty services. 

Data communication and 

connectivity 

HTTPS, MQTT. Gateway (over the HTTP andMQTT) support 

for example ZigBee and Bluetooth. 

Security JWTs for short-span authentication between devices. 

Public/private key authentication for verifying device 

credentials over TLS 1.2. IAM with Cloud Identity, Google 
Cloud’s built-in managed identity. Two-factor 
authentication. 

Infrastructure and 

deployment 

AWS cloud environment. AWS IoT Device Client, a device-

side reference implementation. AWS SDK and AWS IoT. 

Device SDK provide APIs and tools. Google Cloud. REST 
APIs for device registration, deployment, and operations. 
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Table 13: PTC ThingWorkx Specifications 

Feature Description 

General architecture ThingWorx Connection Server, a monolithic server 

application for device connections and message routing. 

Integration/interfaces ThingWorx Flow: Microsoft Azure, SAP, Salesforce, Windchill, 

Box. Separate Azure IoT Hub Connector for Azure IoT Edge. 

Data communication and 

connectivity 
HTTP, SOAP, SQL, OData, Swagger, RAML, and OSLC. 

Security Encrypted communications with SSL and TLS. Authorization 

with agent-based communications. Support for plug-in 
authentication, such as LDAP, active directories, and 

custom solutions. 

Infrastructure and 

deployment 

On-premise servers, cloud resources, and hybrid 

environments. ThingWorx offers role based and user-
friendly IoT web applications. Users can view, analyse, and 

react to IoT data in real-time. 

 

Table 14: Particle Specifications 

Feature Description 

General architecture Pub/sub architecture. Webhooks. 

Integration/interfaces  GCP, Azure IoT Hub, InfluxData, QuestDB. 

Data communication and 

connectivity 

Cellular 2/3/4G, Wi-FI REST APIs, CoAP. Server-Sent-Events: 

Heroku, Amazon EC2, Google AppEngine etc. 

Security RSA public-key pairs. DTLS over UDP, or AES over TCP. 

Infrastructure and 

deployment 

Particle’s hardware, Device OS and Device OS OTA 

updates. 
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Table 15: IBM IoT Specifications 

Feature Description 

General architecture Publish/subscribe-like Broker. 

Integration/interfaces  IBM Cloud services such as Db2 Warehouse, Cloudant 

NoSQL DB, Object Storage, Secure Gateway, or non-IBM 
services with custom interfaces. 

Data communication and 

connectivity 
HTTPS, MQTT, custom protocols. 

Security Platform Service manage device connections and 

security. OAuth server. Data security and integrity are 
embedded in the IBM Cloud storage solutions. 

Infrastructure and 

deployment 

IBM Cloud. APIs to manage device registration, 

deployment, and operations. Distinct Analytics and 

Blockchain services. 

 

Table 16: Cumulocity IoT Specifications 

Feature Description 

General architecture Agent-based model Applications are either web-based 

UIs or server-side microservices. 

Integration/interfaces  webMethods.io Integration, cloud integration solution 

from Software AG. Through webMethods.io possible 
integration examples are Marketo, Salesforce, Gmail and 

more. 

Data communication and 

connectivity 

MQTT (over WebSockets support), HTTP, REST, Modbus, Can 

bus and OPC-UA. 

Security Encrypted communications. HTTPS connections from 

devices to applications. 

Infrastructure and 

deployment 

Standard tenants hosted at AWS. Custom hosting 

depending on the subscription. Microservices deployed as 

Docker images. 

2.3 EU research perspective 

IoT-NGIN draws information from the EU research projects and applies it in various formats. 
The research projects develop state-of-the-art technology that is not feasible for smaller 
open-source projects or is not yet commercially exploitable. The researched technologies 

might still have substantial effect on the future development of IoT. The IoT European Large-
Scale Pilots Programme (LSP) consist of several innovation consortia that conduct research 

and development in the IoT domain. 
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The projects work in IoT integration across value chains, enhancing scalability and focusing 

on use-case contexts. Demonstrating in operational environments is also a crucial part of the 

Programme and significant part of the projects listed in Table 17. 

Table 17: European Research Projects relevant to IoT-NGIN. 

Project Description 

CREATE-IoT [19] CRoss fErtilisation through AlignmenT. CREATE-IoT focuses on the 

synchronisation of projects and technologies, with an additional focus 
on IoT Exchanges. CREATE-IoT aligns the innovation ventures with, for 

example, the Alliance for Internet of Things Innovation (AIOTI). In 
general, the objective is to advance collaboration between IoT 
initiatives and promote IoT ecosystems based on open innovation. 

SynchroniCity 

[20] 

Delivering an IoT-enabled Digital Single Market for Europe and Beyond. 

SynchroniCity research on reference architectures and a framework 

regarding “minimal interoperability mechanisms” or MIMs. The MIMS 
take a neutral stance on service providers and technologies. The 

project currently revolves around three MIMS: context information 
management (CIM), common data models, and ecosystem 
marketplaces. Future development includes concepts such as 

personal data management and fair artificial intelligence. 

MONICA [21] Management Of Networked IoT Wearables – Very Large Scale 

Demonstration of Cultural Societal. MONICA demonstrates large scale 
IoT in the domain of smart living. The technologies are using wearable 

and interoperable sensors. The things are embedded into cloud 
platforms that provide a variety of functionalities to build applications. 

AUTOPILOT [22] AUTOmated driving Progressed by Internet Of Things. AUTOPILOT 

develops new services and models for the mobility industry. The new 
applications use autonomy as the base principle and build on top of 

autonomous vehicles. Other autonomous driving applications such as 
automated parking and dynamic digital maps. 

ACTIVAGE [23] ACTivating InnoVative IoT smart living environments for AGEing well. 

Effective use of existing technology is extremely important for large-
scale applications. Similar to IoT-NGIN, ACTIVAGE reuses and scales 

open-source and proprietary IoT technologies. In addition, it develops 
new interfaces to integrate the existing solutions and provide 

interoperability between systems in smart living, especially in health 
technology related to activity and ageing. 

IoF2020 [24] Internet of Food and Farm 2020. IoF2020 focuses to enlarge IoT 

adoption across the farming and food value chains. Sufficient, 
efficient, and safe delivery of healthy food can be secured with the 

newest technologies, even in harsh conditions. The project exploits a 
symbiotic ecosystem of farmers, food producers, technology vendors, 

and academia. IoF2020 is based on open architecture and 
infrastructure bases on reusable elements, following the latest 
standardization and security concerns. 
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GAIA-X [25] GAIA-X is set to be an Infrastructure and Data Ecosystem according to 

European values and standards. The core concepts of GAIA-X are 

Digital and Data Sovereignty. In the GAIA-X project, the concept of 
digital sovereignty is defined as "the power to make decisions about 

how digital processes, infrastructures and the movement of data are 
structured, built and managed". GAIA-X has three main technical 

approaches: (1) Federation, (2) Self-Description and Policies, and (3) 
Identity and Trust. IoT-NGIN closely aligns with the concepts and aims 
to implement similar high-level objectives, all according to the 

European Strategy for Data [26]. 

AGILE [27] AGILE (Adaptive Gateways for dIverse muLtiple Environments) is a 

consortium that builds an extensible and versatile IoT gateway. The 
gateway supports interoperability, IoT device and data management, 

diverse IoT applications, and interfaces for third-party cloud services. 
The most important design principle is modularity. AGILE is open-source, 
and it will be embedded within an IoT project of the Eclipse Foundatio 

[28].. AGILE has an emphasis on new developer communities. The 
objective is that an intense collaboration leads to agile prototyping 

opportunities and ultimately increases the adoption rate of the project. 

U4IoT [29] User Engagement for Large Scale Pilots in the Internet of Things. The 

objective of U4IoT is to build tools for the LSP projects for user adoption 
and engagement. The tools include online resources, crowdsourcing, 
various best practices and a privacy themed game for learning. In 

addition, U4IoT examines societal, ethical and ecological perspectives 
and makes recommendations on how to tackle barriers that hinder IoT 

adoption. Education and sustainability requirements are along with the 
key obstacles. 

 

In addition to IoT projects listed above, some other EU research project might not be directly 
related to IoT but there is a significant and interesting relationship between them and IoT-

NGIN. Those projects and their relation to the IoT-NGIN have been further analysed in Table 
18 below. 

Table 18: IoT-NGIN relevant research projects and their relationship with IoT-NGIN. 

Project Relation to IoT-NGIN 

SOFIE [30] 

SOFIE (Secure Open Federation for Internet 

Everywhere) develops a federated 

blockchain platform. The platform offers 
integrity, confidentiality and auditability of 

data and actions through ledger- 
independent transactions. 

IoT-NGIN can adapt data privacy and data 

sovereignty through the federated 
blockchains and ledger-independent 

transactions of SOFIE. IoT-NGIN can then 
share its concepts and tools, digital services 
data in a secure and open way. 

NRG-5 [31] 

NRG-5 is a leading project on the energy 

vertical of 5G PPP/5G initiative. The project 

IoT-NGIN benefits from NRG-5 expertise in 5G 

and adapts the learnings in testing setups 

and new services. 
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advances the path of energy producers 
and service providers into decentralised 

energy systems and renewable energy, 
paired with preventive maintenance. 

OPEN DEI [32] 

OPEN DEI project contributes to the EU 

Digital Transformation strategy by providing 
synergies, best practices, and increased 
collaboration of regional and national 

actors. OPEN DEI takes part in creating 
common data platforms through unified 

architecture design and applying the latest 
industry standards. 

IoT-NGIN harnesses the experiences of Open 

DEI work on digitalisation of the energy 

vertical. Also, OPEN DEI is a project partner 
on data sovereignty with International Data 

Spaces Association (IDSA) which benefits IoT-
NGIN. 

SOGNO [33] 

SOGNO is developing new cloud-native 

technology for data-intense energy and 

control systems. It exploits concepts such as 
low-cost hardware, ML and 5G. In parallel, 

RESERVE develops frequency and voltage 
control for renewable energy. 

Service implementations in IoT-NGIN based 

on the SOGNO approach of low- cost 
hardware, ML and 5G. The insights of 
RESERVE project lay out the basis for electric 

vehicle charging optimisation and smart grid 
use case requirements. 

INTER-IoT [34] 

INTER-IoT focuses on reference meta-

architecture and reference meta-data 

model to form guidelines and base for 
interoperability system across IoT use cases. 
The designed reference model and 

architecture are both based on the 
Lighthouse project IoT-A. INTER-IoT 

introduces Functional Groups and 
Functional Components as means to define 
relevant structure and details. Examples of 

the Functional Groups are Security, 
Communication and IoT Service. Each 

Functional Group consist of more detailed 
Functional Components [35]. 

INTER-IoT provides a reference model, meta 

data model and reference architecture that 

align with the research interests of IoT-NGIN. 
The structure of INTER-IoT inspires meta-

architecture development. 

AI4EU [36] 

AI4EU promotes a sharing platform for 

various AI assets, such as high-level services, 

components, learning and testing datasets 
and high-speed computing resources. The 

platform is based on the Acumos AI 
platform developed by the Linux 
Foundation. 

IoT-NGIN applies the existing knowledge in 

federated ML and data privacy. In addition, 

partners involved in both projects can bring 
insight to running use case pilots. 
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3 IoT architectural patterns overview and 
analysis 

This section provides a list of identified IoT architectural patterns, combining the ones 
identified in the review phase described in Chapter 3 and the new IoT-NGIN specific ones. 

IoT-NGIN provides unique addition of patterns such as Distributed Ledger Technologies (DLTs) 
and 5G capabilities in IoT communications. These patterns are not meant to be exclusive or 
exhaustive. Different patterns can be combined in actual implementations to achieve a 

solution for a product or service in questions. Also, as technologies and solution architectures 
evolve, the meta-architecture will accommodate these changes in future versions.  

3.1 Layered architecture 

Layers of isolation are an abstract architectural concept similar to separation of concerns in 
software engineering. The core idea is that changes in one layer do not affect other layers. 

Even in the worst case, the changes should be isolated to associated layers. As an abstract 
concept, layer is a selected analysis viewpoints and different reference architectures consists 

of different layers. An example of layering is presented in Figure 2.  

Each layer should be independent and handle other layers as "black-boxes", only having the 

information about the required interfaces and data formats. For example, the isolation 
concept allows to switch between different protocols for increased performance in network 
layer, but the change does not affect higher level services or the user interfaces. 

Overall, the layered architecture pattern is a valid general-purpose solution and serves as an 

excellent starting point for many applications. One of its benefits is that other more specific 

patterns can be attached into the layered model, making it easier to derive detailed 
conclusions and actions. The downside of the pattern is that it tends to point towards 

monolithic applications [37].  

3.2 Microservices-oriented architecture 

Microservices architecture is a common software architectural pattern, often interpreted as 

part of service-oriented architecture (SOA). Today however, microservices are such a 

dominant pattern in software and system development that it is interpreted as distinct from 

SOA.  

Microservices are independent services that can operate on various system levels. Each of 

these has its specific purpose or task and microservices can be seen as single self-contained 

deployable entities. Complex systems can thus be built by composing a multitude of such 

services (Figure 3). The service should then only serve a single functionality with a defined 

interface. This has the practical impact, that a small development team can create and 

maintain such a service with only minimal dependencies to other business units. This also 

alleviates the replacement of such services with a better-suited implementation without 

affecting the whole system.  
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Figure 2: IoT Layers [38]. 

The requirement for self-containment usually requires the service to be stateless as well. 

Shared state is achieved via databases, which are connected to the services. 

Communication with microservices often happens through APIs or message queuing based 

on common protocols such as http or mqtt. 

This architecture pattern can enable massive horizontal scaling, as the services can run on 

(even locally) independent hardware. Load balancers and content delivery networks can 

effectively distribute the load onto the services, which can also be dispatched quickly to 

react to variances in demand.  

On the other hand, the encapsulation increases the complexity, which this makes 

debugging, and system overview harder. Managing a scalable deployment of a system 

build from a multitude of independent services is therefore not an easy task. As the services 

communicate via network protocols, a reduced performance and increased latency 

compared to monolithic software has to be considered. 
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Figure 3: Microservices Architecture. 

Comparing to the layered IoT architectures, microservices can be discovered from almost 
every layer, but are often part of the core application infrastructure and deployed in cloud 
environments. For example, AWS facilitates architecture migration to cloud-based 

microservice infrastructure. Concurrently, the wide adaption of Linux containers and virtual 
machines enable to maintain customised execution environments. The microservice 

development has also paved the way for different software deployment services, such as 
Docker and more high-level container management systems such as Kubernetes. 

3.3 Event-driven architecture 

The entire IoT industry is built around different events, action triggers and asynchronous 
communication. Event-driven architecture embeds the characteristics into an architectural 

pattern that offers scalability and flexibility. The building blocks of event-driven architecture 
are distributed, single-purpose components that produce, process and receive various types 

of events.  

The pattern frequently builds on top of two core elements, mediator and the broker. 

Mediator concept is used in applications that require complex process steps or 

management that benefits from central event processing. It can implement supporting 
components such as event ques or event processing pipelines. 

Yet, the communication between the services and applications is more often performed by 

a broker (or a message broker). Often the message broker implements a pub/sub 
architecture, which is seen across the open-source and commercial solution. The broker 

handles event-based requests from connected sensors, devices and other sources and vice 
versa, enabling transmitting actions and messages back to the event sources. Event chaining 

in the message broker then orchestrates the message to the right microservice, function or 
interface. Feasible implementation models include centralised and federated designs. The 

broker also contains required event channels that handle the data transfer and information 
flow. The event channel can consist of message queues, message topics, or both. MQTT has 
become almost the de facto standard in message brokering and it is implemented in various 

services [37]. 
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Figure 4: Event Broker components. 

3.4 Lambda architecture 

Many of the IoT-related use cases share characteristics that drive the need for new data 

processing capabilities and components. Lambda architecture is new architecture that 
consists of real-time data processing and batch data processing. The capabilities of Lambda 

architecture include: 

• Process streaming data generated by sensors and edge devices. 

• Scalability and elasticity: handle a growing number of edge deployment reliably, in 

real-time or in frequent batches. 

• Enable storage and management for big data, enable pattern analysis and selection 

of optimal machine learning models. 

• These requirements differ from the requirements that drove the development of 

traditional data warehouses based on relational database technologies.  

The division into speed and batch layers and focus on the data processing is distinctive for 

this pattern. The concrete lambda architecture consists of various typical IoT components, 

such as devices, gateways and event hubs. The pattern is subject to different variants and 
selecting the specific elements depends on the domain and environment. Existence of 

legacy components and limited network coverage. It is important to note that often the 
elements are architectural or design patterns themselves [39]. Figure 5 illustrates the elements 
of a Lambda architecture. 
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Figure 5: Lambda architecture elements 

 

In the context of IoT-NGIN, edge devices are examined as the key component in 

architecture pattern. Gateways and Hubs (event-driven brokers) are also stand-alone 
patterns. In addition, Machine Learning (ML) in IoT is often analysed either as a separate 
domain itself, or as a specific design pattern of architectural patterns. 

3.5 Software-defined networking (SDN) 

SDN is a solution for effective network management and deployment that is based on a 

centralised network perspective. The number of stakeholders and users in the core network 
infrastructure is increasing alongside the growing number of heterogeneous devices in the 
network. SDN provides network operators and users with new resource control methods that 

help to develop use case specific solutions. 

SDN focuses on separating the responsibility of the control plane from the data plane, 

enabling custom and real-time configuration of network control at the device level. A 
general view to SDN includes infrastructure, control and application layers. The layered 

architecture is complemented with API definitions of northbound and southbound APIs. 
Control and application layer are interfaces with the northbound API, and the southbound 
API connects the infrastructure and control layers. Eastbound and westbound APIs do exist 

for interfacing between network controllers, but these horizontal APIs are rarely used in 
architecture design.  

SDN embeds well to the general layered-architecture pattern, and it includes monolithic 

tendencies since its object includes enforcing centralised control. However, in the network 
infrastructure context SDN is already being applied in the ultra-distributed edge cloud 

environments because it provides excellent flexibility and manageability. SDNs can also be 



H2020 -957246    -   IoT-NGIN  

 
D1.2 - IoT meta-architecture, components, and benchmarking 

 

36 of 88 

 

leveraged at the aggregation of unstructured data, global network monitoring, optimizing 
the efficiency and management [40]. 

3.6 Edge computing 

Edge computing architecture consists of networking hardware, edge devices, and client 

software that power computing and processing at the edge of a cloud. The edge resides in 
between centralised servers and end-user clients. The main advantage of edge computing 
is that data is processed at the network edge, and more centralised cloud server 

infrastructure, e.g. data center only receive the processed data. Transferring data back and 
forth causes a heavy load to the network and introduces security and privacy concerns. 

Thus, the approach will save network bandwidth and reduce the amount of energy lost in 
the transmission. 

The distributed nature of the edge brings it close to the end-user and can provide lower 

latency because the time to access data storage and perform data transfer is shorter. Edge 
computing can also ensure an increased level of end-to-end security since it has more 

control over the device connectivity, which is often vulnerable to several types of attacks. In 
general, edge computing is a more potent option for IoT applications than traditional 

centralised cloud computing services. The largest cloud vendors have identified the current 
development and most of them offer mature edge computing capabilities. Valid examples 

include AWS IoT Greengrass, IBM Edge Application Manager or Cumulocity IoT. 

There are other perks such as location awareness that can be built into the edge application. 

Since the devices are located on the network edge, the applications are already aware of 

the location information and context, which makes development easier. There is also a rapid 
need for extensive, high-performance and application specific IoT infrastructure. Network 

infrastructure and edge computing paradigms are at the center of solving the challenge. In 
parallel with 5G development, network management needs to be further developed. In this 

context, software-defined networking (SDN) and network function virtualisation (NFV) are 
potential concepts. To summarise NFV, it can offer tools for edge implementation in 
distributed or constrained conditions. Through resource virtualisation, NFV provides 

mechanisms for mobility management, device authentication, fault-tolerance, and 
management of data and mobility [41]. NFV is linked closely to IoT-NGIN, and it is presented 

as a key pattern in the meta-architecture of the project. 

3.7 Wireless sensor networks architectures 

Wireless sensor networks (WSNs) are built out of compact, portable and power-restricted 

sensor nodes. In the IoT domain, the sensor nodes are the connected “things”. The nodes 
include information that can be transmitted across radio links and gateways into various 

locations, Internet servers, or client devices (Figure 6). The sensor networks are the base for 
many applications that include interaction between an environment and user through any 
kind of sensor or actuator. WSN development includes work in sensor, microcontroller and 

transceiver technologies. It inspires a set of real-time application scenarios such as 
environmental control, military surveillance or healthcare systems. 

The sensor nodes can monitor the collected data that is then transmitted forward with 

actions called hopping. The prevalent communication mechanisms include single-hopping 

(or direct hopping) and multi-hopping. In multi-hopping, sensor nodes are not required to 
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establish direct communication with base stations. Rather, the data is transmitted in several 
steps, reducing the responsibility of a single node which in turn results in a more stable 

network connection. Multi-hopping is more power-efficient than single-hopping and offers 
more potential for IoT applications [42]. 

Design alternatives for WSNs are proactive or reactive communication. For a proactive 

approach, sensor nodes are continuously listening and periodically sending signals, 

regardless of the actual need. The proactive approach requires more power and is not as 
efficient as the reactive mode, which only reacts to certain predefined events and signal 
thresholds. The notion of proactive and reactive WSN design resonates well with the 

development of microservices. The proactive mode can be linked to more complex 
applications through analogies of event-driven architecture, message brokers, and NFV. 

 

Figure 6: Wireless Sensor Networks overview. 

 

3.8 5G network exposure 

Increasing digitalisation is occurring in many vertical sectors. For example, industry 

manufacturing processes need to be automatised in order to increase productivity and 
reduce delays/faults. Besides, the consumers require improved user experience for online 

gaming. These and other use cases can be enhanced by exposing 5G resources. 

Exposure means that new applications will benefit from the abstraction of underlying 

resources. In this way, the complexity of telecom networks can be hidden, and application 

developers can focus on the application logic development, which makes it possible to bring 
applications or new services faster to the market. It is foreseen that edge computing 

applications will especially benefit from the 5G resource exposure. The following 5G 
resources can be exposed to non-telco applications and services: 
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• 5G network exposes connectivity and mobility network capabilities traditionally 

available to the network operator solely. 

• Communication services such as messaging, audio and video calling can support 

services in different verticals. 

• Operational and business support system functions that handle operational and 

commercial management aspects of exposed network services and capabilities 
can be exposed to applications. 

• Telecom networks provide runtime execution environments that may host virtual 

network functions (VNF) and non-telco applications. Accordingly, applications may 

require different edge computing platform elements such as cloud computational, 
networking and storage resources. 

3.9 5G network slicing 

5G network slicing is a critical IoT-capability that enables optimisation of IoT and 5G networks. 
SDN and NFV are important concepts that support scalable and flexible network slicing.  

The Network Slice Management is done through an Application Function, which in 3GPP 

specifications is called Network Slice Management Service (NSMS) or Network Slice Subnet 

Management Service (NSSMS) that support different use cases defined in TS 28.531. A slice 
subnet is considered different segment of the end-to-end system e.g. Radio-access network 

(RAN) subnet, Transport subnet (TS), Core subnet (CN). NSMS provides an interface to create, 
activate, terminate slices in the network and perform feasibility checks before creating new 
slices. The NSMS will interact with different modules in order to create, delete and modify the 

network slices. Each subnet module (RAN, TS, CN) will utilise different technologies such as 
CN might utilise network orchestrator based on OpenStack and Kubernetes to create new 

5GC instances. 

The NSMS will allow the network operator to create slices for isolating IoT-NGIN traffic and 

assign different resources. 3GPP has defined in TS 29.641 the data structure to define the 
features supported by the slice. Moreover, the QoS and other parameters that will require 
resource allocation will be defined when creating the slice as part of the slice data structure. 

Thus, the slice information is maintained by the data structure that includes nested structures 
described in TS 28.541 that includes nested and inherited data structures as shown in Figure 

7 [43]. 
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Figure 7: 5G network slicing structure. 

3.10 Gateways 

IoT gateways are closely linked to edge and cloud computing and enable communication 
between sensors, controllers, devices and cloud. Edge devices can be labelled as field 

gateways. The field gateways are specialised devices or general-purpose server hardware. 
Responsibilities of field gateways include device control and management of data 

processing and M2M communication. In general, gateways act as a building block and 
other devices can be attached to it to build larger systems. A field gateway is often located 

in a fixed environment and close to sensors and actuators. There is a distinction between 
traffic routers and field gateways since the gateway actively manages information processes 
in the network [44]. 

Field gateways can connect to external surfaces, often through cloud gateways. Cloud 

gateways orchestrate the two-way communication from devices and edge to the wider 

network infrastructure. The network space can be private or public, depending on the 
application. The cloud gateway can be a distinct physical device, or a virtual version 

embedded in the cloud infrastructure. In this context, the cloud is perceived as the 
distributed computing, data storage, and network infrastructure that is not in the immediate 
reach of the operating environment and independent of the connected devices. NFV can 

be applied for cloud gateway to isolate the cloud gateway and connected entities from 
other network traffic, thus increasing security and privacy. 

Gateways enable connectivity through standard and custom protocols, including MQTT and 

HTTP, Zigbee or Bluetooth.  Many platforms support design with gateways, for example, 
OpenRemote and Azure IoT. Mainflux offers its own MFX-1 IoT Edge Gateway. Gateway 

technology is also an ongoing research interest to many projects, such as AGILE. 

3.11 Distributed ledger technologies (DLT) 

Distributed ledger technology (DLT), such as blockchains, is an emerging paradigm that is 
getting increasing public and research attention. DLTs form distributed peer-to-peer networks 
in which non-trusted users are able to interact and perform transactions without controlling 

intermediaries. A number of blockchains, especially cryptocurrencies and other digital assets 
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are based on public ledgers, but also private ledger services developed by enterprises do 
exist. DLTs are not yet widely adopted in the IoT industry, but the research of the topic is 

accelerating as the technologies mature. 

Then main features of DLTs include data immutability, distributed consensus mechanisms and 

data replication. Public DLTs are, in general, secure and offer high availability.  It is important 
to note that DLTs have a lot of variances in terms of achieved functionality. DLTs take differing 

approaches on the technology and common trade-offs include latency, type of consensus 
algorithms, security, and performance (transactions per second). An interledger or inter-DLT 
method can then be helpful in building complex systems as it allows data exchange 

between DLTs. Multiple (different) DLTs, each with their own strengths, can then be used 
together in a single system, thus improving the security, performance, and other properties 

of the system. Hash-locks and time-locks are among the cryptographic mechanisms that can 
be used together with the interledger approach to ensure that operations successfully 

complete in all the linked DLTs. As effective M2M communication is becoming more common 
along 5G and autonomous devices, DLTs offer potential in securing and federating 
transactions performed by heterogeneous smart devices [45]. 

3.12 Serverless computing 

Serverless is a computing and architecture model where compact pieces of code are 

executed in a cloud environment without the need to control the resources on which the 
code runs (Figure 8). The executed application logic can include functions such as are data 
ingestion, queries, device updates, or message alerts. The computing runtimes are often 

referred to as Function as a service (FaaS). Despite the name, serverless does not indicate 
an absence of servers. It focuses on the fact that operational concerns such as resource 

provisioning, monitoring, maintenance, scaling, and fault-tolerance are sourced to a cloud 
provider. Serverless architecture is compatible with many other patterns, such as event-

driven architecture and lambda pattern features such as stream processing [46]. 

Serverless computing is not yet widely adopted across the analysis perspectives. For 

example, successful open-source projects focusing on serverless are infrequent. One 

explanation is that efficient and scalable serverless computing requires a vast amount of 
infrastructure resources. The largest cloud providers are competing on the domain with AWS 

Lambda, Azure Functions, and Google Cloud Functions. It is often more cost-effective to 
design solutions based on proprietary solutions with the necessary tools. For example, AWS 
Lambda implements functions that can run special runtime environments in language 

customised containers. Competing with highly refined computing resources such as AWS 
Lambda is difficult, but many of the approaches can be adopted in custom solutions. 
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Figure 8: Serverless computing architecture. 

3.13 Self-sovereign identities (SSI) 

The goal of the self-sovereign identities [47] is to give user control over its identities, allowing 
identities to be generated without a reliance on the external party. This allows the users to 

generate and use the identities without any external party monitoring this activity over 
multiple service, a huge improvement to the privacy of the users. Decentralised Identifiers 

(DID) are self-sovereign identifiers which are user generated and usually derived from the 
user’s public key. Verifiable Credentials (VCs) are related technology, which allows 
expression of claims about the subject, in a similar manner as the traditional attribute 

certificates. In contrast to traditional identifier and certificate solutions, however, DIDs and 
VCs emphasise self-sovereignty and are machine readable, allowing automation. 

3.14 Data federation 

IoT-NGIN federation methods enable on-the-fly adaptation and processing of 
heterogeneous data and control messages. The federated approach for secure cloud 

framework and on-device ML processes are a core part of the federation activities. In 
general, only necessary communication data should be transmitted and the original sensor 

and source data is held at local data storage. Secure, trusted, and open data sharing will 
be achieved through Inter-DLT technologies. In addition, zero-knowledge techniques for ML 
models verification without conveying any information apart from the model data 

ownership. 

3.15 Digital twins 

The Digital Twin Consortium (DTC) defines a digital twin as: “A digital twin is a virtual 

representation of real-world entities and processes, synchronised at a specified frequency 
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and fidelity”. There is no exact definition or consensus on what features such a digital twin 

should entail. The features offered by a specific digital twin implementation is largely use 

case dependent. The definitions provided by different standardization bodies also reflect this. 

The Industrial Digital Twin Association defines digital twins as: “A digital twin is a digital 

representation of a physical or nonphysical asset or process from the real world in the digital 

world”. In practice this could mean any information including, but not limited to, physics-

based models, analytical models, time-series data and historians, transactional data, visual 

models, and computations [48].  

A collection of typical features that make up a digital twin is given in Figure 9. Each of these 

features may be implemented as its own component i.e., a microservice or a monolithic 

application. It can be argued that the core problem involving digital twin systems is the 

question of how to efficiently link these components together to facilitate the creation of a 

distributed and decentralised system of interconnected digital twins which would support 

new use cases enabled by advances in 5G, IoT, and ML/AI technologies. 

 

Figure 9: Digital Twins Architecture [49]. 

IoT-NGIN is taking a meta-level digital twin approach to this problem which can be 
deployed on top of existing digital twin implementations. The additional meta-level 

layer abstracts the implementation details, providing a unified interface for higher 
level operations, for example applications utilizing decentralised security aspects 
such as DIDs and verifiable credentials. Similar ideas can be found in existing ‘digital 
twin’ standards such as the Asset Administration Shell (AAS) and the Web of Things 
(WoT) Thing Description (TD). 

3.16 Reference models 

Reference models or reference architecture is a high-level architectural abstraction that 
includes essential building blocks and design rationales. The reference architecture should 

link functional requirements, quality attributes, and the design activities in system 
development, standardization, interoperability, and architecture evolution. An example of 
IoT Reference Architecture is presented in Figure 10. 
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Meta-architecture is highly related to the concept of reference architecture. The key 

difference is that as meta-architecture is a second-order meta-framework, it builds out of 

architectural patterns, instead of design patterns. Including the design patterns in the 
development process lowers the abstraction level by one. When architecture design shifts 

focus to the implementation of functionalities, the meta-architecture can transform into a 
reference model. The meta-architecture in includes conceptual analogies from reference 

architecture design, such as developing different functional groups and sets of software, 
hardware, and system components [50]. 

 

Figure 10: Early model of IoT ARM and its functional view [51]. 
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4 The IoT-NGIN meta-architecture 
The aim of meta-architecture work in IoT-NGIN is to provide a research-informed framework 
for designing and implementing IoT solutions in different usage scenarios. The meta-

architecture collects together key quality requirements, architectural patterns and high-level 
system components. The meta-architecture provides an overall framework for individual 

system or solution architectures realised in actual implementations. 

The IoT-NGIN meta-architecture is based on analysis of current IoT platforms and standards. 

The analysis of current approaches covered key open-source and commercial IoT platforms 

and was further extended by EU research perspective covering most relevant EU research 
projects in recent years. The architectural patterns included into the meta-architecture are 

based on expert advice and knowledge identified in previous open-source, commercial and 
EU research projects complemented by information provided by IoT-NGIN project partners. 

4.1 Definition 

An architecture of a system is the structure set required to proficiently reason about the 
system. The structures consist of elements, relations, interactions and properties of the system 

under study. Traditionally, in software engineering architecture refers to software systems and 
its elements. Architecture possesses a vital role in complex system development and in the 

system’s capability for inter system communication or to change its hierarchy. 

The meta-architecture takes a higher-level view and collects together architecturally 

significant choices, patterns, components, viewpoints and quality attributes that need to be 

considered when designing and implementing individual systems. The meta-architecture 
provides a foundation for the architecture strategy and system design. In a sense, a meta-

architecture can be considered as a strategic architecture construct that acts as a starting 
point for architecture design, aiming at reducing the overall complexity of the process, while 

hinting over good design principles.  

The meta prefix indicates an architecture of a second order or kind, namely an architecture 

of architectures. Thus, a meta-architecture is a living collection of architectural patterns, that 

are paired with expandable application domains and related quality attributes. In other 
words, a meta-architecture is an orchestration of architecturally significant approaches. 

Derived concrete technical architecture instances must conform with the principles, 
constraints and elements of the meta-architecture and do not need to be mapped explicitly. 

4.2 Key meta-architecture viewpoints 

The four aspects characterizing meta-architecture are scalability, openness, security, and 
monetization: 

• Scalability: Standalone IoT-focused 5G optimisation through a secure edge cloud 

micro-services platform achieves scalability by design. Secure by design federation of 
communications and data support the objective. 

• Openness: The meta-architecture is open to further extensions and architectural 

patterns as technologies mature and new patterns and components emerge. 

Technically, any IoT platform could be joined to the federation scope through 
compatible and open interfaces. Implementation will base on Self-Sovereign 
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Identities (SSI), that divide technical participation, trust anchors and business 
relationships into distinct entities. 

• Security: Security is a cornerstone of any viable IoT implementation. Security measures 

can be implemented using different approaches, such as inter-DLT traceability. 
Regardless of technical implementation, security should be seen as of paramount 

importance. 

• Monetization: The concept of data sovereignty builds improved tools to control 

security boundaries and privacy policies. In combination with regulations and legal 
constraints, the meta-architecture should embrace new business models, for example 

in smart contracts and contractual data sharing. 

Technology objectives of the meta-architecture include defining a scalable, secure, open, 

federated and decentralised IoT meta-architecture that can be applied in varying use 
cases, including sensing, actuation, and smart behaviour of intelligent devices. Support for 

monetization and new business models is also integral part of the IoT-NGIN project. The meta-
architecture supports domain horizontals providing actual IoT-NGIN use cases realizing 
actual architectural patterns. 

The meta-architecture artifact is designed around four key artifacts: IoT Architectural Pattern 

Vertical, Domain Horizontal, Quality Vertical, and Element View. Each of the artifacts can be 

customised according to the architectural design needs and context. The elements of the 
meta-architecture are selected based on state-of-the-art prior work in the IoT domain. The 

meta-architecture provides a foundational framework for further development and there is 
room for evolution as technologies and implementations mature. For example, the quality 
attributes represent a large variety of possible non-functional quality requirements at the 

highest level. The quality features do not presumably need a lot of customization, rather the 
framing gives room for application-specific details. 

Notably, in the meta-architecture view depicted in Figure 11, the Elements view is vertically 

supported by ML-powered AI technologies. This is of particular importance to the meta-
architecture; with the number of interfacing platforms, devices and computational 

environments (e.g. near- and far-edge, fog, cloud) constantly rising, the next generation of 
IoT platforms and services is expected to arrange means for the operation of intelligent 

services based on ML capabilities. To this end, we consider that almost every composing 
element of the meta-architecture should be provided with the ability to make use of relevant 

AI services. In this context, ML as a Service operations are expected to emerge as necessary 
abstractions of such a modality, allowing for distinctive ML-related technologies to operate 
transparently in the physical-digital continuum on one hand (e.g. abstracting the link 

between physical and digital twins) and on the edge-fog-cloud continuum on the other.
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Figure 11: IoT-NGIN Meta-architecture. 
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4.3 Element view 

The Element View provides a general technological view to the meta-architecture, with a 

focus on functional groups and components. Indeed, the functional groups are used to 
aggregate the functionality of the related components and, implicitly, provide an indication 
related to the objective of the group. The various elements have been further grouped with 

the use of labels, depending on the element’s context. As also depicted in Figure 11, five 
distinct labels have been, thus far, identified, tailored to different element functionalities, 

namely Management, Data, Device capabilities, Infrastructure and Security. Note that the 
labels are color-coded to improve the readability of the meta-architecture and simplify its 
visualization. The approach of combining the functional grouping and component labels 

aims to bring the technology objectives to a more tangible level, also directly linking the 
technological or implementation design decisions closer to the quality attributes. 

Indicatively, security is important at every level of architecture but in IoT-NGIN there is special 
consideration in network security and secure edge framework. Similarly, under a data 

perspective, security is highly reflected in data sovereignty and integrity. 

In the context of the meta-architecture and with reference to Figure 11, the following 

sections detail the identified functional groups and their composing elements. It is worth 

highlighting, again, that in all cases, it is assumed that AI services could (and should wherever 
possible) potentially be used to optimise the operation of all the functional groups, subgroups 

and elements presented below, as well as of the IoT platform-hosted application services. As 
the optimisation could be considered as an ubiquitous concern, spanning from 5G resources 

optimisation to predictive maintenance of the supporting hardware; the importance of 
ubiquitous AI is pertinent to almost all IoT platform scopes. 

4.3.1 Things functional group 

The Things functional group contains the elements related to the management, 

orchestration and proper application support of the far-edge IoT devices. In general, the 
latter may comprise a vast variety of devices, spanning from tiny sensors or semi-autonomous 
gateways to on-premises private infrastructures. Table 19 tabulates the elements that have 

already been identified as parts of the meta-architecture. 

Table 19: Elements of the Things functional group. 

Icon Element Label Description 

 
Device provisioning Infrastructure 

The platform should be able to 

bootstrap the devices that are 
going to be interfacing with it. 

 
Smart devices Device capabilities 

The platform should be able to 

properly identify the capabilities of 
the interfacing IoT devices. 

 
Digital twins Device capabilities 

The platform should be able to 

support digital twins’ functionality, 

to enable high-availability and 
what-if scenarios. 

 
Communications Device capabilities The platform should be able to 

support the various communication 
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channels exposed and supported 
by the IoT devices 

 
IAM Security 

The platform should embed IAM 

functionalities to prevent 
unauthorised access and (re)use of 

resources. 

 
Data Sources Data 

The platform should be able to 

support a variety of data sources, 
depending on the hosted 

applications use cases. 

4.3.2 Fog-Edge functional group 

The Fog-Edge functional group refers to the ability of a platform to support, at edge or fog 
level, the execution of computationally (CPU- or GPU-wise) expensive applications on behalf 

of the platform-interfacing IoT devices. This typically implies the ability, at both device and 
platform level, to offload computing tasks from the devices to the edge/fog infrastructures 
in a secure and transparent way, then receiving and exploiting the processes results at 

device/far-edge level. 

Table 20: Elements of the Fog-Edge functional group. 

Icon Element Label Description 

 

Edge 

processing 
Data 

The platform should be able to support edge processing 

(at compute level), lightening up the far-edge devices 
from the execution of heavy computational operations, 

via off-loading. 

 

ML / Deep 

learning 
Data 

Same as edge processing but related to supporting 

(possibly GPU-requiring) intensive machine learning 
operations (e.g. model training with data sovereignty 
considerations). 

The ability to support this functional group in a secure, transparent, trusted and reversible 

manner will, eventually, deepen the integration among the devices, the edge, the fog and 

the cloud, leading to the emergence of a continuum of processes at the spatiotemporal 
domain, abstracting the IoT applications from their supporting infrastructure. Ideally, support 
for edge processing should be also accompanied by a simultaneous upgrade of the 

underlying wireless networking technology interconnecting the far-edge with the near-edge 
devices, ideally implying the existence of a slicing-enabled 5G network, towards reducing 

roundtrip communication delay and increasing the available bandwidth in order to be able 
to accommodate various types of network traffic, depending on the use cases to be served 

by the IoT platform. 

4.3.3 Analytics functional group 

Arguably, the data offered by IoT infrastructures and services are widely considered to give 
rise to new business models and opportunities, particularly when combined with network 

edge processing [52]. The same holds for the data stemming from the platform operation; 
logs and error reports processing could give rise to predictive maintenance, sizing and 
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resource management considerations that are essential for the healthy operation of a next-
generation, large scale IoT platform.  The analytics functional group is meant to support the 

ingested data refinement and transformation into valuable information insights through data 
analytics processes and assistive technologies. To assist the relevant data value unveiling, 
support for business intelligence operations and interactive dashboards are considered, as 

briefly presented in Table 21. 

Table 21: Elements of the Analytics functional group. 

Icon Element Label Description 

 

Business 

Intelligence 
Management 

The platform should be able to offer controlled 

business intelligence services regarding the 
incoming data with respect to the core platform 

per se.  

 
Dashboards Management 

The platform should be able to offer graphical 

user interfaces in the form of dashboards to assist 
the data value discovery processes. 

It should be noted that, in general, application-specific analytics services are expected to 

be served at application level (in the context of the Edge processing element of the Fog-
Edge functional group as well as the Cloud and Container as a Service subgroups of the 

Infrastructure functional group described in 4.3.5) rather than at platform level. 

4.3.4 Automation functional group 

In the era of microservices, cloud native computing and 5G, it is essential to automate 
infrastructure and application provisioning, integration, and management. Indeed, 

considering the urge for rapid and scalable service deployments and granted the inherent 
management and platform integration requirements of the Edge-Fog functional group 

elements, the need to automate the platform operations and configuration is pertinent. The 
elements of the Automation functional group, briefed in Table 22, are related to enabling 
this automation perspective of a next-generation, edge-friendly IoT platform, catering on 

one hand on the proper operated services exposure and, on the other, on the management 
of the platform, per se, and of its hosted applications. In all cases, a container-like operation 

runtime is assumed, in line with the cloud native foundation definition [53], even though the 
container runtime could be relative to other, more edge-friendly technologies such as 
unikernels [54]. 

Table 22: Elements of the automation functional group. 

Icon Element Label Description 

 

Service 

Broker 
Management 

The platform should be able to provide simple 

integration of its services directly within the 

supported application platform. 

 

Container 

Orchestration 
Infrastructure 

The platform should expose management 

interfaces towards its easy setup, configuration 
and maintenance, but also towards simplifying 

the deployment of new applications and 
services. 
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The most well-known open source container orchestration framework at the time of writing 

this document is Kubernetes [55] which, at the same time, also offers service brokerage. 

4.3.5 Infrastructure functional group 

The infrastructure functional group contains elements related to the entirety of the 

infrastructure supporting the IoT platform bootstrapping, configuration, management and, in 
general, operation. An edge-oriented next generation IoT platform obviously needs to 

manage and build upon a variety of infrastructures including (usually virtualised) compute, 
storage, and network as well as other existing systems and infrastructures. Considering, 

further, the need for container-based operations (as per the Automation functional group) 
and the networking requirements implicitly imposed by the Fog-Edge functional group 
(essentially 5G with slicing support), the coordinated orchestration is as pertinent as ever. 

Table 23: Elements of the Infrastructure functional group 

Icon Element Label Description 

 

Existing 

systems 
Management 

The platform should be able to integrate with 

existing systems and infrastructure components. 

 

Infrastructure 

Services 
Infrastructure 

The platform should be able to adopt new and 

manage existing infrastructure elements at the 

computing, network, and storage domains. 

 

Existing 

codebase 
Infrastructure 

Like the existing systems, the platform should be 

able to integrate with existing codebase. 

N/A Cloud Subgroup 

The platform should be able to interface not only 

with (far- or near-) edge, but also with cloud 
components and applications hosted on the 

cloud. The Cloud subgroup contains the relevant 
elements. 

N/A 
Container as 

a Service 
Subgroup 

Tightly interconnected with the Container 

Orchestration element of the Automation 
functional group, the Container as a Service 

subgroup allows for the API-based exposure of 
container-based IaaS services. 

N/A 
5G 

Networking 
Subgroup 

The platform should be able to integrate and 

seamlessly support 5G capabilities such as 5G 
network slicing, Time Sensitive Networking and 

optimal 5G resource allocation. 

In the following sections, the elements of the Cloud, Container as a Service and 5G 

Networking subgroups are discussed. 

4.3.6 Cloud subgroup 

An Edge IoT platform is, by definition, meant to be interoperable with more powerful cloud 
infrastructures, the computationally (in terms of GPU or CPU) intensive tasks being offloaded 

to the cloud, if the accompanying latency requirements allow such an offloading process. 
Instead, in the cases where the latency requirements of a service are too strict, then the 
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applications execution should stay at fog/edge level. Table 24 summarises the elements of 
the Infrastructure/Cloud subgroup that caters for such modalities. 

Table 24: Elements of the Infrastructure/Cloud subgroup. 

Icon Element Label Description 

 
Applications Infrastructure 

The platform should be able to interconnect with 

cloud platforms at application level.  

 
Services Management 

The platform should be able to transparently 

manage their cloud parts, in the exact same way 

as the (near- or far-) edge ones.  

In essence, the elements of the cloud subgroup imply the emergence of an edge-fog-cloud 

continuum, according to which, the applications should be able to be functionally operable 
regardless of the hosting execution infrastructure; in this way, load migration is rendered 
transparent, and the applications are granted with scalability and dynamicity (as to their 

performance) features.  

4.3.7 Container as a Service subgroup 

In tandem with the Container Orchestration element of the Automation functional group 

(see section 4.3.4), the Container as a Service subgroup elements ensure that effective 
infrastructure resources management and coordination is rendered possible, including 
Cluster management per se, Container operations (hosting and deploying containers), 

Container security and, of course, image repositories, as depicted in Table 25. 
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Table 25: Elements of the Infrastructure/Container as a Service subgroup. 

Icon Element Label Description 

 

Cluster 

Management 
Management 

The cluster supporting the platform should be 

manageable, in an easy, comprehensive, and 

predictable manner. 

 

Container 

security 
Security 

The cluster should be able to reduce the attack 

surface of the containerised applications to the 
minimum (at least under a firewall perspective) 
and ensure policy-based security of the 

containers. 

 
Containers Infrastructure 

The platform should be able to operate under a 

containerised (including unikernels and relevant 
lightweight resource abstraction technologies) 

manner, only. 

 

Image 

repositories 
Infrastructure 

The platform should have access to a set of 

image repositories so that the deployment of 

containers and their updates are possible. 

It is worth mentioning that the Container as a Service subgroup comprises functionalities that 

are common in cloud-native environments as well. Indeed, among the most prominent 
projects graduated by the Cloud Native Computing Foundation [56] there exist several 
projects related to the aforementioned elements, such as Kubernetes (for container 

orchestration and cluster management), Containerd [57] (as a minimal Container runtime), 
OpenPolicyAgent [58] and Linkerd [59] (as policy based security and service mesh, 

respectively), TUF [60] (for managing container updates) etc, validating the need for such a 
subgroup. 

4.3.8 5G networking subgroup 

Networking lies at the core of every edge-oriented platform, interconnecting the physical 

world (devices, things) with the digital one (edge infrastructures). As real-time data is the 
driving force behind the vision of IoT, we need to make sure that this data is handled in a 

secure and trusted manner to be processed, while, at the same time, minimizing the end-to-
end communication delays. 

Table 26: Elements of the Infrastructure/5G networking subgroup. 

Icon Element Label Description 

 

5G 

capabilities 
Infrastructure 

The platform should have access to 5G 

networking capabilities, ideally accompanied 
with slicing and time-sensitive networking 

features, particularly to be able to satisfy the strict 
requirements of industrial IoT applications. 

 
IoT gateways 

Device 

capabilities 

To enable IoT communications, usually device-

to-device or device-to-cloud, the platform 

should integrate IoT gateways with support for 
simple data filtering towards enabling 
visualization and complex analytics are required. 
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Network 

Security 
Security 

The platform should be able to exploit the entire 

set of 5G network security features such as end 

to end encryption, active cyberattacks 
prevention (effectively mitigating security and 
privacy threats under 5G), etc. 

 

Secure Edge 

Framework 

Device 

capabilities 

In tandem with the Edge-Fog functionality group 

elements, at network level, the devices should 

have the ability, to consume such services. 

In any case, the existence of the infrastructure/5G networking subgroup elements, reassure 

that the edge-centric vision of IoT-NGIN regarding next-generation IoT platforms is, actually, 
plausible. 

4.3.9 Federation functional group 

The Federation functional group, targets at ensuring scalability, availability, and stability of 

the next generation of IoT services as well as sovereignty and transparent control of data 
and data streams. Data access should be, on one hand, controlled but, on the other, data 
are exploited to unveil their maximum potential. The elements and subgroups of the 

Federation functional group ensure that access to services and data is offered to the end-
users regardless of their location or the time-of-service request and that the quality of 

experience (QoE) they enjoy is acceptable at all times. Table 27, below, tabulates the core 
elements and subgroups of the Federation functional group. 

 

Table 27: Elements of the Federation functional group  

Icon Element Label Description 

 
Monitoring  Management 

The platform should provide enough tools and 

services enabling real-time active monitoring so 
that optimisation actions may be performed as 
soon as possible, and downtime/degraded 

performance periods are minimised. 

 
DLT Infrastructure 

To support data non-repudiation and support the 

ledger and inter-ledger processes, the platform 
should feature DLT support, e.g. in the form of 
blockchains-flavoured applications. 

 

Identifiers 

and Identities 
Data 

The platform should be able to either provide 

identity management services or catalyse the 

secure use of self-sovereign identities, at 
federation level. 

 

Data Storage 

services 
Data 

The platform should provide, at federation level, 

data storage services towards increasing 
efficiency, reliability, and performance. 

 
Data Sharing Data 

The platform should offer structured services 

towards data sharing in an open, transparent 

manner. The data sharing features should be 
available at federation level. 
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Federation 

Interfaces 
Management 

The platform should support the federation by 

appropriate federation management interfaces. 

 

It should be highlighted that the Federation functional group and subgroup elements are 

meant to orchestrate data/control flows, data streams, services, and infrastructure at 
federation level. However, at the same time, multiple levels of control contexts should be 

available, so that (data or identity) sovereignty is respected at all times, e.g. data sharing 
services should be available at federation level, however one should be able to apply more 

restricting sharing policies for accessing certain data contexts e.g. though the definition of 
edge-level access. 

4.3.10 Workloads functional group 

The term “Federation” implies platform consistency across the entirety of the operations of 

the platform at computational level, also known as workloads. Since data operations play a 
central role in next-generation IoT platforms, platform workload consistency spans not only 
the offered web services but, also, the handling of the data operations, in general, including 

data management lifecycle, in particular. Under that perspective and considering the 
diversity of devices and protocols formulating the current (and future) IoT landscape, 

protocol management towards effective interoperability is of paramount importance. The 
subgroups of the Workloads functional group that ensure the aforementioned “platform 

consistency” from a workload perspective are tabulated in Table 28. 

Table 28: Elements of the Workloads functional group.  

Icon Element Label Description 

N/A Services Subgroup 

The platform should be able to operate and 

expose application services and manage their 

integrations at federation level. 

N/A Middleware Subgroup 

Should support multiple middleware-based 

adaptation services, so that different protocols 
and technologies may be supported, at 

federation level, boosting the platform 
interoperability. 

N/A Data Subgroup 

The platform should be able to securely manage 

and offer services related to data and metadata 
streams management, in various contexts and 

modalities. 

 

As expected, due to their inherent federation-oriented nature, the various subgroups of the 

Workloads functional group directly interface with the Federation functional group elements, 
in an attempt to achieve graceful, orchestrated coordination of the offered services. In the 

following sections, the elements of the above subgroups are briefly described. 
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4.3.11 Services subgroup 

The first consideration of a workload federation are the exposed services, building up the 
core of the IoT platform computational environment, including the core platform services 
and the hosted (user-oriented) ones. Apart from the services operations, the integration 

potential scope is crucial so that an ecosystem around the IoT platform can boom. Table 29 
highlights the elements of the Services subgroup.  

Table 29: Elements of the Workloads/Services subgroup. 

Icon Element Label Description 

 
Apps Data 

The platform should be able to host, operate and 

expose the functionality of applications and 

services in a transparent manner, catering for 
their performance optimisation. 

 
Microservices Management 

The platform should be able to operate on top of 

and support microservices-oriented 
architectures. 

4.3.12 Middleware subgroup 

In tandem with the data-oriented character of the Federation/Workloads subgroup and the 
Integrations element of the Federation/Workloads/Services, the ability to interact with the IoT 
environment in a variety of ways (implying the use of different protocols) is critical. The 

Workloads/Middleware subgroup elements focus on the interoperability potential of the 
platform, considering not only the classical client-server, HTTP-based protocols but, also, 

other technologies, friendlier to IoT scopes relevant to self-organization and data security 
and sovereignty. Table 30 summarises the elements of the subgroup. 
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Table 30: Elements of the Workloads/Middleware subgroup 

Icon Element Label Description 

 

Application 

Servers 
Infrastructure 

The platform should be able to run application 

servers hosting arbitrary technologies and 

protocols. 

 
Blockchains 

Device 

Capabilities 

To support the DLT (Blockchains) services 

potentially offered by the platform (e.g. for SSI or 
to ensure data non-repudiation in mission-critical 
operations), the devices interfacing with the 

platform should feature hardware and software 
able to support (preferably hardware 

accelerated) blockchain operations. 

 
Connectivity Data  

In order for the IoT devices to interface with the 

platform and vice-versa, compatible 
communication capabilities should be featured 
in both ends. Ideally, this element should be 

linked with 5G capabilities, hinting towards the 
Fog-Edge functional group and the 

infrastructure/5G Networking functional group. 

 
M2M Services 

Device 

Capabilities 

Since the interfacing among the devices and the 

edge/cloud nodes should be automated, 

machine-to-machine communications should 
be, mutually, supported. 

4.3.13 Data subgroup 

Having considered the communications and services part of the federation workloads, the 
final step towards achieving operation is to, actually, enable low-level data operations, per 
se, both from an infrastructural point of view but also from the data and metadata 

management perspective. The Workloads/Data subgroup elements, briefly described in 
Table 31, outline the relevant functionalities that should be considered. 

Table 31: Elements of the Workloads/Data subgroup. 

Icon Element Label Description 

 
Data Storage Data  

The platform should expose federated data 

storage services, ensuring that the data is always 

available, in the modality required (e.g. block 
storage services, object storage services). 

 
Data Security Security 

The platform should be able to assure that the 

data is secured throughout their entire lifetime, 
including transmission, manipulation, storage 

and, in general, access. 

 
Data Streams Data 

The platform should be able to cope not only 

with batches of data but, also, with a variety of 
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data streaming technologies, to support the 
vision of real-time computing.  

 

Metadata 

management 
Data 

The platform should be able to offer services 

related not only to data but, also, to metadata, 
so that data preselection, selection and 

processing is accelerated, and feature 
extraction is facilitated. 

4.4 Architectural Patterns Vertical 

The Architectural Patterns Vertical part of the IoT-NGIN meta-architecture summarises several 
architectural viewpoints that have been identified and can be applied, at design level, to 

drive the deployment of effective, efficient, adaptive, performant, secure and private IoT 
platform services and applications. The identified architectural patterns cover all the possible 

aspects of a next-generation IoT platform, effectively leading to the introduction of several 
of the functional groups, subgroups, and elements of the meta-architecture’s Element view. 

Further, all the identified architectural patterns contribute, in many ways to the satisfaction 
of the Quality Vertical elements, documented in section 4.5. 

The already identified architectural patterns are shown in Figure 11 and have been detailed 

in section 3. 

4.5 Quality Vertical 

The quality attribute vertical illustrates the generic functional and non-functional 
requirements of the IoT-NGIN meta-architecture. These attributes can be prioritised through 
different means and in function to the selected combination of patterns and use cases. The 

Quality Vertical is of great significance since it summarises architectural design needs that 
are common to many of the use cases.  

4.5.1 Security 

The essence of IoT is in the connectivity and data transmission between a diverse set of 

devices and services. While the IoT field helps to build a smart and digital world, it means that 
the technology is exposed to many adversaries. The core security themes of IoT are [61]: 

• Confidentiality. Confidentiality guarantees that only authorised entities are allowed to 

view, edit and use data throughout its life cycle. 

• Integrity. The data is not tampered with by any non-authorised entity. Integrity is 

critical in IoT because tampered or malicious data can affect operational activities 
and cause large-scale disruption or danger to end-users. Mechanisms such as access 

control and false data filtering schemes aid in ensuring data integrity. 

• Availability. IoT data, devices and services should be available when requested. 

Depending on the application, high availability of “five nines”, or 99.999 percent 

could be required, translating to 5.26 minutes of downtime per year. Many 
applications depend on real-time communication or data processing, and if the real-
time principle is under threat, the effect can be severe. Denial of service (DoS) attack 

is a general method used by adversaries. 

• Identification and Authentication. By using identification, unauthorised thing entities s 

cannot connect to IoT devices or networks. Authentication then ensures the validity 
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of transmitted data and the validity of the client or device requests. Many open-
source and commercial IoT platforms offer embedded IAM tools. 

• Privacy. Only the owner of the data can control the data or services, other entities 

cannot access or process the related information. Privacy is important in IoT since 
many users share the same devices, services and general infrastructure. 

• Trust. Trust is a characteristic that bases on the other security features. The trust takes 

place between the IoT devices, between devices and applications, and between 

end-users and services. IoT-NGIN can build trust in its technology platforms by 
adapting inter-DLT technologies and applying industry standardisation in the 

federation infrastructure. 

4.5.2 Interoperability 

Interoperability is one of the most vital topics across the IoT field. Traditionally interoperability 
has been defined as a ability of two or more systems or components to exchange information 

and to use the information that has been exchanged. As the concept is broad, 
interoperability can be categorised into several levels: device, network, syntactic, semantic, 
cross-platform, and cross-domain levels. The architectural patterns partly address the 

interoperability problem space. For device level, gateways and communication protocols 
solve connectivity challenges. SDN and edge processing focus on the network level. 

Technologies such as REST, semantic web services, or WoT attempt to build enhances 
syntactic and semantic interoperability [62]. Cross-platform and cross-domain 

interoperability can be achieved with combination of methods, such as open interfaces, 
inter-DLTs, and ultimately adopting governance guidelines using, for example IDS. 

4.5.3 Data sovereignty 

Traditionally sovereignty is linked to authoritative and institutional claims, and thus data 

sovereignty frequently addresses different kinds of data flows through national regulations 
and laws. Data sovereignty is perceived as a concept where individuals, organizations, 
communities, and other groups should be able to have control over their data.  

Data sovereignty is a complex and essential requirement in the next generation of the 

Internet and IoT. The complexity arises from the fact that data sovereignty can be applied 

to any applications that transport data across geographic locations. It includes concepts 
such as the role of national governments and their influence on data that is stored in 

domestic or foreign clouds, geographic and Indigenous data sovereignty, and patient 
health data sovereignty. 

4.5.4 Scalability 

Applications in the IoT domain should scale up horizontally and vertically. Horizontal 

scalability is adding the number of devices to a network and vertical scalability increases the 
performance of a single device or application. Infrastructure must also allow a growing 
number of user requests and actions. More complex data ingestion, transmission, processing 

and analysis is causing heavy pressure for solutions in data storage, communications, and 
analytics. Furthermore, scalability in IoT is restricted by factors such as lack of open and 

coherent standardization, protocols, and device and service discovery [63]. The ultimate 
goal of IoT-NGIN is to provide means for full horizontal scalability with stateless applications 

and full vertical scalability at the cloud level.  
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Federation of ML and deep learning models and performing training operations locally and 

on the network edge can considerably increase the scalability of applications related to 

predictive and behavioural analytics.  

Utilizing Inter-DLT instead of a single DLT or blockchain can also increase the scalability of DLT 

applications. In addition, the new federation models might have an indirect scalability 

impact on use cases unrelated to DLTs. The reasoning is that through the openness of the IoT 
platforms, more collaborators can participate in the ecosystem, which accelerates adaption 

rates for certain technologies, for example, more efficient data communication protocols. 

4.5.5 Flexibility 

Flexibility is a quality attribute that can be linked to many other attributes. In IoT-NGIN context, 
flexibility has close relations with semantic interoperability, performance and manageability. 

IoT applications should withstand changing environments, for example, technologies, 
interfaces, constraints and development methods, among others. 

The meta-architecture artifact contains innate flexibility since the building blocks are not 

locked into static sets of use cases or architectural patterns. IoT-NGIN creates a DLT-enabled 
meta-level Digital Twin (MLDT) that allows on-usage interpretation and application of data 

and information. 

4.5.6 Performance 

Performance is a complex topic in IoT because the field consists of many different 

technologies. Performance evaluation can target devices, networks, protocols, middleware, 
platforms or more specific building blocks such as service integration.  

Other common IoT data processing characteristics are message parsing, statistical and 

predictive analysis. IO operations are also a significant part of IoT data flow, and many 
applications need external access to data storage or messaging services. Frequently used 

performance metrics for Distributed Stream Processing Systems (DSPS), such as Storm, Flink or 
Spark, are: latency, throughput, jitter and CPU/memory utilization. Similar metrics are 
applicable to IoT-NGIN since many use cases are related to real-time stream data processing 

[64]. 

4.5.7 Reliability 

Reliability is a system design challenge arising from various factors. In IoT, the unpredictability 

of the environment is one of the biggest factors, alongside inconsistent end-user input and 
usage. Key reliability requirements are the heterogeneity of the IoT nodes and network, in 
parallel with resource-awareness and environment dynamism. 

The reliability requirement must address errors in hardware, software, and data. Especially 

the data component regularly contains detection, transmission and analysis errors that lead 

to false information. One additional dimension is that the severeness of the errors differs in 
magnitude. Some are errors are minor, while other faults can lead to system failures or poor 
user experience. Open challenges are to efficiently address both correlated and 

unpredictable failures. 

IoT-NGIN focuses on network reliability and provides standalone 5G networks for massive 

Machine Type Communications (mMTC). In mMTC data and control signals are re-
transmitted to improve reliability in packet reception. 
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4.5.8 Manageability 

Manageability in IoT is commonly related to device management challenges. From the 
meta-architecture viewpoint, the manageability aspect highlights only general and 
technology-agnostic approaches. On the application level, implications and direction for 

certain technologies need to be considered on individual bases. The manageability 
challenge is also linked to the domain horizontal, where use cases differ on the scope and 

management needs. 

4.6 ML and AI layer 

ML and AI verticals in IoT-NGIN meta-architecture (Figure 11), conforms to the Artificial 

Intelligence and Big Data services provided by the project. Machine Learning as a Service 
(MLaaS) platform will enable the application of AI in different use cases, living labs, and any 

IoT platform planning on leveraging Machine Learning and/or Big Data technologies on its 
use cases. This MLaaS platform will run on Edge Cloud nodes and it will be able to deploy ML 

models on IoT Devices seamlessly as presented in the left hand side of Figure 11. 

The presence of AI in the IoT-NGIN meta-architecture is ubiquitous and its functionality may 

be shared among the rest of the components in the meta-architecture. Even though the 

execution of ML tasks is bounded to fog-edge nodes, the infrastructure shall be able to 
escalate the operations to (i) the 5G network as part of the Secure-Edge framework, to (ii) 

the cloud as an application, or (iii) as a container managed by the CaaS (Container as a 
Service), depending on the requirements of the ML tasks and the target environment. Thanks 
to this infrastructure interoperability, the ML tasks can be connected to other components of 

the meta-architecture. This means that the ML operations will be able to access the data 
storage and the data streams that are federated, as well as to access the data sources 

themselves. It is important to mention that these ML operations will be supported by Edge 
processing capabilities when they are available. In this regard, the infrastructure shall be in 

charge of giving access to processing power to the ML tasks at any time, leveraging on fog-
edge nodes the execution when possible.  

IoT-NGIN has already made progress on the MLaaS platform, which are described in 

Deliverable D3.1 [65]. The first version of the architecture for this platform is presented in Figure 
12. The MLaaS architecture design is compliant with IoT-NGIN’s meta-architecture. First, the 

MLaaS edge nodes, which represent the fog-edge nodes in the meta-architecture, are 
where most ML-related operations will take place. What’s more, the edge nodes of the 

MLaaS are designed to work in a federated manner, as described in the meta-architecture, 
supporting the development of a federated ML framework. In addition, even though it is not 
represented in the figure, the MLaaS edge nodes operations are supposed to be either 

enclosed within the Secure Edge Framework of the 5G network. An anouther option is to 
utilise a container managed by the “Container as a Service” component of the infrastructure 

in the meta-architecture. Secondly, the edge nodes are directly connected to the IoT 
Devices for (i) deploying ML models and (ii) accessing data sources directly, a representation 

similar to the “fog-edge nodes” connection to the “Things” component in the meta-
architecture. Thirdly, the MLaaS architecture may access cloud resources of the network, just 
as represented in the “Infrastructure” component of the meta-architecture. Further 

information regading details, actors, platform use cases, requirements, logical view and data 
management procedures, in UML shape, is collected in D3.1. 
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Figure 12: MLaaS Architecture, first version 

All in all, the MLaaS architecture design not only is compliant with the meta-architecture, but 

it also provides an innovative model of the next generation of IoT Intelligence, where Artificial 
Intelligence capabilities are federated and distributed among the edge nodes, providing 

new means for the application of machine learning models across different environments. 

4.7 Compliance to the IoT-NGIN meta-

architecture 

The inherently generic nature of the IoT-NGIN meta-architecture allows modelling practically 
all IoT-relevant architectures, in a consistent manner. Under a more contextualised 

perspective, though, the meta-architecture should, eventually, guide the design of next-
generation IoT platforms, networks and applications, also hinting towards the steps required 
to transform a “traditional” IoT platform approach into a next-generation one.  

Indeed, several of the IoT-NGIN meta-architecture notions and technology spaces (mostly in 

the form of elements), as presented above, are drawn from existing, traditional IoT platforms. 

In IoT-NGIN, we argue that, to ensure compliance with the identified meta-architecture 
principles, elements from all three different meta-architecture views should be adopted, 

though the level of adherence differs among the various views.  

Table 32 gives an overview of the compliance matrix of the IoT-NGIN meta-architecture and 

which elements of the meta-architecture should be adopted by an IoT platform so that it 

may be considered compatible with the meta-architecture.  
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Table 32: IoT-NGIN meta-architecture compliance matrix. 

Meta-Architecture view Compliance baseline 

Quality vertical ALL elements/requirements should be satisfied.  

Architectural patterns vertical At least one should be adopted1. 

Element View All security elements should be present. For each one of 

the first-level functional groups, at least one element 

should be adopted.  

Underlying ML/AI Desirable, not necessary. 

As per Table 32, all key elements should be adopted at design level from the Quality vertical 

(see section 4.5). Indeed, the Quality vertical dictates the principal values that every next-
generation IoT architecture should build on, so that is relativity under both a technical and a 

business perspective may be claimed. Elements such as security and data sovereignty are 
always pertinent, particularly in the era of GDPR, and should not be overviewed. Similarly, 

scalability, flexibility and performance considerations should be considered to guarantee 
viability at business level, in tandem with interoperability, reliability and manageability. 

Dissimilar to the Quality vertical case, the Architectural pattens vertical comprises several 

design patterns and notions, each one introduced to address different IoT designs and 
specifications. Granted the heterogeneity of the IoT use cases and the diverse landscape of 

the application requirements that would need to be served by a framework compliant to 
the IoT-NGIN meta-architecture principles, it is not possible to distinguish a concrete set of 
architectural patterns that should be adopted. However, at least one should be employed, 

to ensure that the design of the IoT platform at hand relies on existing, verified patterns that 
have been previously employed. Notably, granted that the list of patterns is not exhaustive 

and more will be added as a result of the Technology watch activities of the project, it is 
possible that another pattern (e.g. a cloud-oriented design pattern like the Ambassador [66] 

or the Choreography [67]) is considered by the IoT platform at hand. In such a case, omitting 
the already identified patterns in favour of a non-acknowledged one is considered 
acceptable. 

Finally, with respect to the Elements view, at least all first-level functional groups should be 

adopted, namely at least one element from each of the functional groups should be 

employed, the security-related elements being necessary. Indeed, the IoT-NGIN meta-
architecture first-level functional groups and their necessity is tabulated below. 

Table 33: The meta-architecture functional groups 

Functional Group Necessity 

Infrastructure 
Infrastructure provisioning, bootstrapping and management is 

necessary for allowing applications to properly operate. 

Federation 

Granted the (horizontal) scalability requirement stemming from the 

Quality vertical, support for federated orchestration at compute and 
data level is deemed necessary. 

 

1 With the exception of the identification of new patterns that have not been (implicitly or explicitly) 

considered by the relevant work. See below for details and discussion. 
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Workloads 

In tandem with the Infrastructure and the Federation functional 

groups, the workloads functional group represents the necessity to 

optimally manage the hosted application and data workloads. 

Things 

The Things functional group functionalities cover the necessity to 

manage not only the platform-oriented workloads, but also the device 

ones.  

Fog-Edge 

The Fog-Edge functional group is necessary to achieve effective 

communication and secure task offloading (towards lowering the cost 
and increasing the capabilities of the supported IoT devices) 

Automation 

Granted the expected rise in the design complexity of the offered IoT 

platform services, the Automation functional group represents the 
needs to easily install and dynamically (automatically) manage the 

provided platform instances. 

Analytics 
To uncover the value of the underlying platform-collected/generated 

data, it is important to feature analytics toolboxes. 

 

Regarding the underlying ML/AI layers serving not only the platform functionalities but also 

the potentially hosted applications, their employment is desirable but not entirely necessary. 
However, the vision of IoT-NGIN regarding next-generation IoT platforms accompanied by 

self-optimizing functionalities clearly hints towards their global adoption.  



 

64 of 88 

 

5 The IoT-NGIN architecture 
The IoT-NGIN architecture follows the path laid by the meta-architecture, exhibiting an 
extensible, modular design that allows the decoupled deployment of functionalities and 
services under a semi-orchestrated manner. Moreover, its design allows provisioning either in 

the form of Software as a Service (SaaS) or Platform as a Service (PaaS). Figure 13, below, 
depicts the IoT-NGIN architecture. 

 

Figure 13: The high-level architecture of IOT-NGIN. 

As shown in Figure 13, the IoT-NGIN high-level architecture may be split into the following 

groups of components: 

• Federated Communications (brown colour): realisation of communication and 

resources management functionalities, consisting of a set of IoT/5G optimisation 

functions (e.g. 5G relays optimisation, slicing, integration of TSN components), M2M 
and Further Enhancement to Device-to-Device (FeD2D) enhancement by reducing 
CCI between devices which share the same uplink, along with network resource 

management and self-aware IoT resources. Instead of a single communication 
technology, independent and different communication protocols may be used in 

parallel and, where it is possible, to replace one technology with another, offering 
dynamic network connectivity. IoT-NGIN integrates virtual networking management 

tools (e.g. Management and Orchestration – MANO – frameworks aligned with the 
ETSI NVF specifications [68]) to directly manage dedicated network slices, with specific 
characteristics to meet highly demanding digital services requirements.  

• Micro-services and VNFs (turquoise colour): a “living” collection of functionalities, 

implemented as container-based micro-services or unikernels. IoT-NGIN works on a 
novel Secure Micro-Services Execution Framework implementing operational tasks in 
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close interaction with the micro-services. The framework comes with native thread-
safety considerations, its implementation being ongoing using the RUST programming 

language [69]. This unique framework will enable migration and hosting of both 
unknown/potentially malicious and fully trusted/digitally signed micro-services 
instances. Of course, the management of the relevant micro-services and VNFs is laid 

upon the responsibility of the adopted MANO framework, using Kubernetes as the 
virtual infrastructure manager (VIM) of choice. This approach allows IoT-NGIN to 

operate using the latest standards at the level of network management, coupled with 
state-of-the-art, cloud-native technologies with respect to data and container 

orchestration. Particularly when it comes to data management, the project has 
already considered the employment of cloud-native data storage solutions (via the 
combination of the rook [70] and ceph [71] frameworks) to ensure reliability, 

replicability and scalability as to the data lifetime management. 

• Federated Data Sovereignty (orange colour): To make the IoT-NGIN architecture as 

scalable as possible, IoT-NGIN adopts some of the emerging Decentralised Identifier 

(DID) and Self-Sovereign Identity (SSI) technologies and applies them to enhance 
data sovereignty and privacy. The security of data sharing federation will be based 
on DLTs. However, instead of using a single DLT, the IoT-NGIN federation uses an inter-

DLT approach, where multiple independent and different distributed ledgers may be 
used in parallel and where it is possible to gradually replace one ledger technology 

with another, if needed. At the same time, by exploiting the SSI technologies (either 
coupled with DLTs or not), IoT-NGIN allows effective identity management without 

depending on external identity management systems, essentially giving the end-users 
with control not only of their data, but also of their identity. Interestingly, within the 
context of IoT-NGIN, the SSIs are co-designed together with the meta-level Digital 

Twins, so that on one hand the control of the identity of the physical twins does not 
change hands, at the same time guaranteeing (virtual) device identity uniqueness at 

federated level. 

• Federation of Big Data Analytics & ML (purple colour): In the context of IoT-NGIN, a ML 

as a Service (MLaaS) framework is being designed and developed, offering ML/AI 
services to the entirety of the IoT-NGIN platform components, but also the hosted 

applications. The IoT-NGIN MLaaS framework is based on state-of-the-art open-source 
frameworks (Kubeflow [72]), essentially implementing common ML operations such as 

pre-processing, training, model serving and inference, on demand. The ML pipelines 
are employing a continuous integrated approach towards the emergence of “live” 

models, even in batch learning cases.  Beyond the state of the art semi-supervised 
and unsupervised deep learning/reinforcement learning techniques and privacy 
preserving federated ML transfer learning are implemented to train ML models while 

keeping the IoT data in their original locations, and unsupervised cross-context transfer 
learning (e.g. cross-context AI by design), with inline adaptive self-learning is studied 

in order to improve the resulting machine learning models. Moreover, ML- and zero-
knowledge proof-based cybersecurity components based on Generative Adversarial 

Networks (GANs, [73]) are developed to identify malicious IoT nodes and data 
poisoning attacks, as well as timely identify intrusion detection [74]. 

• Human-Centred Augmented Reality Tactile IoT (dark red colour): IoT-NGIN has a 

special focus on the enhancement of human-centred IoT devices discovery, 

recognition, and novel ambient intelligence-based control, combining physical 
access, user rights/groups and IoT ownership. To this end, IoT NGIN strives towards the 

generation and maintenance of a repository sharing IoT-AR enhanced UX/UI SW 
components, tools and libraries to 3rd Parties.  

When it comes to compliance with the meta-architecture, the adopted architecture re-uses 

many of the architectural patterns, as tabulated below. 
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Table 34: Compliance of the IoT-NGIN architecture with the meta-architecture; architectural 

patterns. 

Architectural Pattern IoT-NGIN architecture consideration 

Microservices-

oriented architecture 

IoT-NGIN architecture foresees a cloud-edge execution 

framework supporting container- and unikernel-based loads in a 
secure and trusted manner. The microservices are adopting the 

emerging paradigm of CaaS (Container-as-a-Service) 

Event-driven 

architecture 

The IoT-NGIN MLaaS framework employs event-driven 

architectures and technologies (such as Apache Kafka [75]) to 
orchestrate in real-time the various ML pipelines and 
management operations. 

SDN IoT-NGIN relies on the use of container- and unikernel-based 

technologies, orchestrating them with the help of Kubernetes. The 

internal communications of the various components are heavily 
relying on SDN, as do the network interfaces exposed by the 5G 

network slicing framework developed by IoT-NGIN. 

5G network exposure In the context of IoT-NGIN, the following 5G resources will be 

offered for experimenting in the laboratory: network and 

operational management capabilities and cloud infrastructure 
resources. 

5G network slicing IoT-NGIN works on the emergence of an open 5G network slicing 

framework able to dynamically manage the end-user 

requirements in terms of performance or reliability (at network or 
service level) and match them with the available resources at 
operator level. 

DLTs From IoT-NGIN point of view, DLTs are important for many reasons. 

IoT-NGIN has a vision for systems open to everyone. DLTs allow 

parties that do not fully trust each other to collaborate in a single 
system without requiring a (costly) trusted third party to facilitate 

the cooperation. DLTs also provide a high degree of automation 
through smart contracts and similar technologies. 

Self-Sovereign Identities (SSI) provide a technology to separate 

technical participants from other trust elements and relationships. 
Security by design is fulfilled with inter-DLT traceability and 

demonstrated with a DLT-based meta-level digital twin (MLDT). 

SSI SSI is used as an identifier solution to improve privacy, security, 

automation, and to give users more control of their identifiers. In 

particular, they are used as identifiers and credentials for the 
Digital Twins. 

Data federation IoT-NGIN relies on state-of-the-art technologies and frameworks to 

ensure consistent data availability at the spatiotemporal domain, 

also catering for data storage reliability employing virtual storage 
replicasets and associated infrastructure allocation rules.  

Digital twins In the context of IoT-NGIN, digital twins are employed to facilitate 

interaction of the platform with their physical twins (and vice 
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versa), increase service reliability and boost the performance of 
data services provisioning. Coupled with DLTs and SSIs, meta-level 

Digital twins are employed to increase lifetime trackability and 
traceability.  

 

Similarly, the IoT-NGIN architecture is compliant to the Quality Vertical requirements, as per 

Table 35. 

Table 35: Compliance of the IoT-NGIN architecture with the meta-architecture; Quality Vertical. 

Requirement IoT-NGIN architecture consideration 

Security In the framework of its security considerations, IoT-NGIN employs 

beyond the state-of-the-art approaches (GANs) to identify 

intrusion detection at network level and, also, to identify 
fraudulent behaviours at the level of local ML models poisoning. 

To further fortify the next-generation IoT platforms, IoT-NGIN 
employs ML-powered “perimeter defence” in the form of dynamic 
honeypots deployment and auto-configuration, in tandem with a 

network-level vulnerability crawler targeting at uncovering 
possibly vulnerable IoT nodes or services, then feeding the 

dynamic honeypots deployment service to trap the attack agents 
into attacking the wrong IoT nodes/services and exposing 
themselves. 

Interoperability Interoperability is one of the key considerations of IoT-NGIN 

technology design when it comes to interfaces specification and 

data models selection. Section 6 presents an indicative set of data 
models and interfaces that have been considered at project 

level. 

Data sovereignty IoT-NGIN employs DLTs and SSIs to ensure that end-users have 

control of their data. By means of the inter-DLT technologies 

adopted and advanced in the context of the project, end-users-
based, dynamic rules for data sharing at local or global level will 

be rendered possible. 

Scalability The design of IoT-NGIN heavily relies on cloud-native principles, 

deeply adopting a carefully designed stateless, micro-services-
oriented architecture governed by state-of-the-art, open-source 
container-orchestration technologies (Kubernetes). This allows IoT-

NGIN to scale not only horizontally but, also, vertically, being able 
to consume more resources when the computational load is high 

and less resources, otherwise.  

Flexibility The IoT-NGIN architecture is flexible since practically all IoT-NGIN 

components may be removed and substituted with others, if 

needed. Interoperability at interface and data model level should 
ensure that integration of the newly introduced components is 

seamless. 

Performance As per the scalability requirement, at compute level, IoT-NGIN is 

able to horizontally scale and make use of all the available 
computational resources. At the same time, the IoT-NGIN 
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architecture prioritises 5G when it comes to networking; combined 
with network slicing, the architectural considerations regarding 

network performance are state-of-the-art. Finally, when it comes 
to the MLaaS IoT-NGIN framework, GPU acceleration is natively 
supported at both design and implementation level. 

Reliability The technology stack on which the IoT-NGIN architecture is built 

allows for the determination of replicasets (with configurable 

minimum, normal and maximum instance number) at the level of 
both service provisioning and data storage (at both block and 

object level). Combined with the high-availability features of 5G 
networks in the context of slicing, we consider that the reliability 
requirement is, by design, satisfied. 

Manageability The IoT-NGIN architecture and technology basis heavily depends 

on open-source, open-API-based frameworks, known for their 

manageability (e.g. [76], [77]). The same goes for the direction of 
the project’s 5G network exposure API research as per §3.8. 

5.1 Mapping the IoT-NGIN architecture to the 

meta-architecture 

Finally, when it comes to compliance with the Elements View, Table 36 highlights the relevant 

considerations at architectural level. 

 

Table 36: Compliance of the IoT-NGIN architecture with the meta-architecture; Elements View. 

Functional Group IoT-NGIN architecture consideration 

Infrastructure The IoT-NGIN architecture is flexible and can accommodate existing 

platforms and services and exhibits cloud-native support at 
technology level to host and optimally manage and services 

applications. Supported elements: 

• Existing systems 

• Infrastructure services 

• Existing codebase 

• Cloud/Applications 

• Cloud/Services 

 

Federation The IoT-NGIN architecture treats DLTs as first-class citizens when it 

comes to data management and sovereignty. Further, by supporting 
SSI, it fully complies to the Identifiers and Identities element. The use of 

the cloud-native technology stack for the compute and data 
management (Kubernetes, rook and ceph), satisfies the requirements 
posed by the Monitoring (with the help of Prometheus [78]), Data 

storages, Data sharing and Federation interfaces elements. Elements 
supported: 

• Monitoring 

• DLT 
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• Identifiers and Identities 

• Data storages 

• Data sharing 

• Federation interfaces  

 

Workloads At service level, IoT-NGIN relies on a microservices-oriented 

architecture to offer its services. Further, several DLT (blockchains) 

protocols are considered (particularly in the context of inter-DLT-based 
communications).  Further, at the level of federated communications, 

M2M services are considered. Last, at data level, the architectural 
support for the emergence of a data federation managing the entire 
lifecycle of data starting from the physical storage perspective (e.g. 

distributed block storage) and concluding on multi-faced data 
security considerations (e.g. via DLT employment, detection of 

network intrusions, detection of fraudulent ML model poisoning 
activities etc.) and metadata management (based on the ontology-

based meta-level digital twins’ data interfaces). Practically, all 
elements are supported: 

• Workloads/Services 

• Workloads/Microservices 

• Middleware/App server 

• Middleware/Connectivity 

• Middleware/Blockchains 

• Middleware/M2M 

• Data/Storages 

• Data/Data Security 

• Data/Data streams 

• Data/Metadata 

 

Things IoT-NGIN relies on digital twining, employing various data sources as 

input. Further, it supports IAM at OAuth2.0 level and supports various 
type of access communication technologies, with an explicit focus on 
5G. Elements supported: 

• Smart devices 

• Digital twin 

• Communication 

• IAM 

• Data sources 

Fog-Edge The IoT-NGIN architecture performs research towards an edge-

friendly, ML-powered 5G network configuration management stack, 
assisted by the MLaaS framework. Further, it caters for the existence of 

a secure edge cloud execution framework tailored for containers and 
unikernels. Elements supported: 

• Edge processing 

• ML/Deep learning 
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Automation IoT-NGIN relies on Kubernetes as a resource orchestration framework 

to manage the secure edge cloud execution framework. Elements 

supported: 

• Container orchestration 

 

Analytics IoT-NGIN features (in its application development context), 

dashboard support for monitoring the platform components and the 
hosted applications performance. Elements supported: 

• Dashboards  

 

Concluding, the IoT-NGIN architecture fully adheres with the requirements of the meta-

architecture and could, therefore, be considered as compliant. 
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6 Common IoT data models  
Cross-organizational and cross-platform data sharing requires common data models which 
define the syntax and semantics for data exchange. There are several existing data model 
implementation options that are compatible with the IoT-NGIN requirements and relevant to 

federated data sovereignty and federated communications.  

In IoT-NGIN domain, probably the most important framework to consider is the International 

Data Spaces Association (IDSA) and its standards as the IDSA is creating a secure and 
sovereign data economy for Europe and global markets. In context information 

management frameworks, FIWARE NGSIv2 and ETSI NGSI-LD are potential options for IoT-
NGIN. WoT can also be applied by using its building blocks and standardised approach to 
metadata. 

6.1 International Data Spaces 

The International Data Spaces (IDS) is a virtual data space that utilises mature standards and 

technologies in the data economy. According to IDS, a data space is a set of IDSA governed 
relationships between trusted partners that can be used for secure and sovereign data 
exchange, certification and governance across diverse organizations. IDS enables cross-

organization business processes and transactions and secures the data sovereignty of the 
owners of the data.  

The strategic requirements of IDS are trust, security, data sovereignty, data ecosystems, data 

apps and standardised interoperability. Research and development based on guidelines 

such as open development processes, re-use existing components and standardization work. 
The objectives and activities of IoT-NGIN align with IDS, thus many of the guidelines and 
solutions of IDS can be adopted by the project. 

IDS has developed a reference architecture model, which consists of business, functional, 

process, information and system layers. In addition, the reference architecture model has 

three main perspectives of security, certification and governance. The process and 
information layers combined with certification and governance perspective complement 

the technologies in IoT-NGIN. For example, the information layer consists of an Information 
Model with several representations, illustrated in Figure 14. 
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Figure 14: IDS Information Model. Adapted from IDS 

The Conceptual Representation is a high-level, conceptual, and technology-agnostic 
overview analogous to the meta-architecture artefact. The Declarative and Programmatic 

Representation provide more details. IDS Ontology offers analysis and requirements which 
are based on W3C Semantic Web standards and other modelling vocabularies such as DCAT 

or ODRL. Programmatic Representation focuses to provide linkage between commonly used 
software tools, practices and technologies, and the IDS Ontology. 

6.2 W3C Web of Things (WoT) 

WoT focuses to harmonise the IoT landscape by developing extending existing and already 
standardised technologies. WoT is a protocol independent-technology and consists of 

various building blocks, illustrated in the Figure 15. 

WoT Things Description (TD) is an information model and representation format for semantic 

metadata. The objective for TD is to become "the HTML for smart things". WoT is a protocol 

independent technology. Binding templates provide a build-in mechanism to define how 
prevalent protocols such as HTTP, MQTT, HTTP, CoAP can be mapped to the WoT abstractions 

and interactions in the level of the Thing properties, actions and events. WoT Security and 
Privacy Guidelines are for general security guidance at the level of the public networks. The 
guidelines vary from implementation to secure configuration of Things. WoT Scripting API is 

JavaScript runtime environment for IoT applications, like web browsers. In the context of this 
study and the developed meta-architecture, WoT is a promising technology that can 

connect abstract architectural concepts to concrete things and is as a technology-agnostic 
option [5]. 
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Figure 15: WoT Building Blocks 

 

6.3 FIWARE and ETSI Context Information 

Management: NGSI-v2 and NGSI-LD 

6.3.1 FIWARE NGSI 

FIWARE NGSI API integrates platform components within any platform marked as “Powered 

by FIWARE”. It permits the complying applications to edit or ingest context information. Using 
GEs is optional, but the Context Broker is required in all FIWARE applications. The Context 

Figure FIG visualises the GE landscape at high-level. Regarding interfaces, FIWARE NGSI API 
aligns with the ETSI NGSI-LD standard. 

Managing context information is the main objective of FIWARE [4]. In this case, context refers 

to the operating environment of IoT system and information about its entities, which produce 
applicable information for system development. The context information consists of varying 

data sources such as a sensors networks, actuators, services and third-party applications. The 
following list is an example set of GEs in a Smart Agriculture project [79]: 

• Orion Context Broker (OCB): Orion is a C++ implementation of the NGSIv2 REST API. 

The context information management includes functions for context elements such 
as build, update, queries, device registration and more. OCB have a lot of useful 
features, for example cross origin resource sharing (CORS), multi tenancy, and 

transparent metadata attachment. 

• Cygnus is a GE that persists data sources from third-parties and creates historical views 

of the data. It is based on Apache Flume, a technology that is responsible for design 

and execution of data collection. A persistence agent operates the data flow 
through listener receiving data, channel transmitting the data after Flume event 

transformation, and a sink which stores the Flume events. Examples of supported NGSI-
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like context data: HDFS, MySQL, MongoDB, Kafka, DynamoDB, PostreSQL, 
Elasticsearch, Arcgis. 

• Intelligence Data Advanced Solution (IDAS) GE offers an interpreter between the IoT 

communication protocols and NGSI standard. The available interfaces include 
LWM2M over CoaP, JSON, UltraLight over HTTP/MQTT, and object linking for OPC-UA. 

• Wilma is a PEP Proxy that manages access control in application back ends. Only 

permitted users can access the GEs. It is often combined with other security 

components such as Keyrock which is OAuth2.0-based users and devices identity 
manager, with Single Sign-On and Identity Federation functions. 

6.3.2 ETSI NGSI-LD 

European Telecommunications Standards Institute (ETSI) defines the NGSI-LD information 

model which provides context information format and interfacing for NGSI-LD-based 
applications.  The information model defined data representations, APIs and common 

vocabularies for the API. The context information can map a term string into concept 
identifiers of URIs. NGSI-LD is capable of several representations, such as entity, property, 
relationship, context source, and subscription representations. The LD notation of the NGSI 

protocol stands for linked data since NGSI-LD is built on top of JSON-LD, which is a linked data 
format of JSON.  Linked data applications frequently utilise a concept called "triples". A triple 

consists of a subject, property, and value. Data graphs can be built out of the triple sets and 
processed with various graph-based methods or graph processing APIs. JSON-LD offers a 

formalised representation of linked data through JSON. One effective way to process graphs 
in general, that applies to JSON, is tree structures. Many dominant programming languages 
offer built-in tree traversal algorithms that can be extremely efficient. An essential capability 

of JSON-LD is appending data with context information and transforming the values in a 
format that allow simple and efficient processing. An optimal outcome is a JSON-like data 

graph structure, in which conversion between linked data and editable JSON data is trivial 
[80]. 

The NGSI-LD Information Model links to high-level Core Meta-model and Cross-Domain 

Ontology. The lower-level domain-specific ontologies are a point of interest for meta-
architecture. For example, IoT-NGIN can potentially use the Smart Appliances REFerence 

Ontology (SAREF) Ontology and map it to the NGSI-LD Information Model. Conveniently, 
SAREF incorporates extensions for the domains of Smart City, Smart Agriculture, Smart Energy 

and Smart Industry 4.0. 

NGSI-LD API can be adapted into versatile architectures and in general, the NGSI-LD includes 

minimal architectural assumptions. A suitable example regarding the meta-architecture is 
federated architecture with NGSI-LD. For example, applications that aim to federate existing 
technologies and domains can exploit the method. In a smart city scenario, distinct 

departments in an organization of a major city operate unique Context Broker-based NGSI-
LD infrastructures. However, smart city applications need to retrieve information from a single 

source of truth. Entire application domains can be defined as access points through Context 
Brokers, instead of requiring a separate Context Source for every application entity. 
Information domains are appended to Context Registry and provide the context that can 

be matched with queries regarding specific topics. As an example, rather than registering 
individual buildings to the registry, the added information could represent specific building 

types in a city district. The Federation Broker identifies the domain Context Brokers offering 
accurate information and forwards the queries and requests. Figure 16 demonstrates the 

NGSI-LD building blocks of a federated architecture. 
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Figure 16: NGSI-LD and federated architecture. Adapted from NGSI-LD. 



 

76 of 88 

 

7 Benchmarking and test reports 
In this section, the format of the test reports, as well as the benchmarking methodology to 
be followed in IoT-NGIN project for the validation of the KPIs will be defined. The 
benchmarking of the verification framework is heavily based on Quality of Service (QoS) and 

Quality of Experience (QoE); two metrics that can be utilised to validate the project 
outcomes in terms of user experience and performance. This section provides the initial 

approach for the verification framework benchmarking of IoT-NGIN, however, a more 
elaborated version of the methodology, which will also be fine-tuned to the UCs’ 

requirements, will be provided in D1.3, at a later stage. 

The verification framework benchmarking considers technical parameters within the scope 

of QoS, which assess the performance of the system through the KPIs, and quantifies the user 

experience via QoE. Other methodologies, such as resource scaling, cross-domain 
interaction and IoT-NGIN platform testing as a whole, will also be investigated to satisfy Task 

1.3 objectives and in light of future developments. 

7.1 Methodology 

The methodology for the benchmarking of the verification framework is based on the scope 

and objectives of the project, with particular emphasis been given on each specific UC. The 
development process considers the Agile model, which consists of multiple cycles of 

designing, building, testing, and reviewing a product or service continuously. Agile 
development has numerous advantages, including the nature of the process which is made 

to constantly adapt and improve the product and the continuous user engagement and 
feedback [81]. The development of the system is finalised once successful scoring is 
achieved on User Acceptance Tests (UATs). 

 

Figure 17: Agile methodology for product evaluation. 

7.1.1 Quality of Service 

QoS is the tool for measuring the overall performance of a service, with particular focus on 

the attributes that can be observed by the end-user of the network. Thus, to successfully 
quantify QoS, parameters such as packet loss, bit rate, transmission delay, and jitter are 

monitored. Moreover, QoS is utilised for controlling and handling network resources by setting 
priorities within the network based on the type of data. In essence, QoS can be defined as a 
set of actions that allow for the management of network resources and the tool for 

managing the network with respect to the application, the user, and data flows. Finally, it 
can be used as a mechanism that ensures a certain level of performance for a data flow. 
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QoS can provide the network administrator with the ability to manage the system effectively, 
by performing actions such as adjusting the order of handling packets or managing the 

traffic flow [82]. 

In this project, the QoS can be evaluated through a number of metrics by assessing the 

quality of the provided service in system and device levels. Specifically, metrics that can be 

utilised for the assessment of QoS on a system level are the following: 

1. System quality: the quality of the sensor network can be evaluated as a whole based 

on the quality of the data provided after a query. 
2. Delay: measured during data collection from nodes. 

3. Bandwidth: Assessing the capacity of a sensor network in sending data over a link. 
4. System lifetime: Indicates the longevity of the system. 
5. Resource optimisation: A metric that is defined by the ability of the system to efficiently 

allocate its limited resources within a society and thus optimise its resource utilisation 
by maximising the social welfare. 

On a device level, the following metrics can be used: 

1. Quality of IoT devices: Assessment of the accuracy and sensitivity of the 

measurements provided by the IoT devices. 
2. Energy consumption: Assessment of the energy consumption of the system, which is 

particularly important for wireless sensor networks (WSN), as the lifetime of the devices 

is dependent on it. 
3. Bandwidth: Measurement of the bandwidth usage of the IoT devices. 

4. Data volume: Amount of data generated by IoT devices. 
5. Trustworthiness: Assesses the reliability of the sensor in the scope of delivering 

accurately and timely measurements. This metric is associated with the quality metric 
mentioned earlier. 

An example template for QoS evaluation is presented in Table 37. For IoT-NGIN, the QoS 

parameters will be defined once all the components for each UC have been identified and 
characterised. 

Table 37: Sample QoS metrics. 

Traffic 

class 

Technology 

attributes 

Time Preciseness Accuracy 

Response 

time 

expected 
by users 

Delay Jitter 
Data 

rate 

Required 

bandwidth 

Loss 

rate 
Error rate 

 

 

        

7.1.2 Quality of Experience 

QoE is a metric based on the user satisfaction or annoyance, which focuses on the overall 
service experience holistically. According to the European Telecommunications Standard 

Institute (ETSI), QoE is defined as a method for measuring performance according to users 
based on subjective and objective phycological measurement, for the use of a product or 

a service [83]. The concept of QoE has emerged from the field of telecommunications, in an 
effort to quantify the user experience while using a service and therefore, to understand the 

user’s overall quality requirements. Although QoS remains a powerful tool for evaluating a 
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service in terms of performance, current services and functionalities thar are offered within 
the IoT domain are user centric. Thus, QoE becomes essential for obtaining feedback by the 

end-user [84]. 

The following factors can be evaluated through QoE: 

1. Usability: The rate at which users can use the product and achieve their goals 

effectively and efficiently. 
2. Usefulness: The ability of the product to fulfil the user’s needs and/or preferences. 

3. Transparency: The ability of users to view the performed actions. 
4. Effectiveness: The ability of users to complete their tasks. 

5. Efficiency: The effort that is required by the users to complete their tasks. 
6. Accessibility: The ability of multiple groups of people to use the product. 
7. Personalisation: Individualisation of the product based on user’s needs and 

predefined preferences. 
8. Learnability: The effort required by the end-user to use the product. 

7.2 Implementation of methodology for 

benchmarking 

Table 38 lists all the UCs that will be examined under IoT-NGIN project, as they have been 

defined in D1.1. The UCs are spread across four verticals, namely smart cities, smart 
agriculture, Industry 4.0 and smart energy. In spite of the common goal the project has on 

the aforementioned areas, each vertical has its own particularities and hence, the 
benchmarking has to be designed to fulfil the needs of each one and in some cases, to be 
tailored for a specific UC. Moreover, it also depends on the specific group of people involved 

in each UC, as the actors and users for each case could be regulatory authorities or 
companies, managerial personnel and employees, general public, or a combination of 

these categories. 

Table 38: UCs of IoT-NGIN. 

Use case Title Vertical 

UC1 Traffic Flow Prediction & Parking prediction Smart cities 

UC2 Crowd management 

UC3 Co-commuting solutions based on social networks 

UC4 Crop diseases prediction. Smart irrigation and precision 

aerial spraying 

Smart agriculture 

UC5 Sensor aided crop harvesting 

UC6 Human-centred safety in a self-aware indoor factory 

environment 
Industry 4.0 

UC7 Human-centred augmented reality assisted build-to-

order assembly 

UC8 Digital powertrain and condition monitoring 

UC9 Move from reacting to acting in smart grid monitoring 

and control 
Smart energy 
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UC10 Driver-friendly dispatchable EV charging 

 

UC1 is considered as an example in this section, which aims at efficient traffic flow prediction 

and parking availability, in order to decrease traffic jams and bottlenecks. To this end, in this 
UC a model will be developed that: 

• Aids the driver in choosing a less-trafficked road. 

• Assists in finding a parking spot by providing information on available parking 

locations. 

• Demonstrate the application of deep learning technologies for advanced traffic 

flow prediction including unpredictable conditions like weather, delays and 

accidents. 

For this UC three KPIs shall be satisfied, which have already been defined in D1.1 and are 

presented in Table 39. The QoS with regards to UC1 will be based on the specific KPIs, where 

parameters such as the performance of the monitoring devices with respect to system 
quality, lifetime, bandwidth etc. are evaluated and compared against the requirements and 

needs of the KPIs. 

Table 39: KPIs for UC1. 

KPI ID Name Description 
Method of 

measurement 
Target 

KPI_UC1_1 Real-time 

monitoring 

Improve efficiency and traffic 

congestions in twin smart cities 
Logs and analysis >=20% 

KPI_UC1_2 Cross-border 

data models 

Number of proposed cross-

border data models 

Number of data 

models 

>4 

KPI_UC1_3 Data sources 

analysis 

Number of different types of 

sensors’ data to be analysed 

Number of 

different sensors 
used 

>6 

On the other hand, as mentioned earlier QoE does not consider the performance of the 

product from a technical point-of-view, but rather focuses on the experience and 
satisfaction of the end-user. Hence, questions in the form of a questionnaire or an online Q&A 

will be implemented, in order to capture the experience of the end-user. The format of the 
test report for QoE in the form of a questionnaire is shown in Table 40, where example 

questions for UC1 are presented. 

Table 40: Example of test report format for QoE. 

1. Please rate the reduction experienced in traffic. 

1 

□ 

2 

□ 

3 

□ 

4 

□ 

5 

□ 

6 

□ 

7 

□ 

8 

□ 

9 

□ 

10 

□ 

2. Please rate the time reduction you experienced in finding a parking spot.  

1 

□ 

2 

□ 

3 

□ 

4 

□ 

5 

□ 

6 

□ 

7 

□ 

8 

□ 

9 

□ 

10 

□ 

3. Please rate the less-trafficked proposed routes.  

1 

□ 

2 

□ 

3 

□ 

4 

□ 

5 

□ 

6 

□ 

7 

□ 

8 

□ 

9 

□ 

10 

□ 
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4. Please rate the reduction of traffic at unpredictable conditions (e.g. weather, 

delays, accidents etc.) 

1 

□ 

2 

□ 

3 

□ 

4 

□ 

5 

□ 

6 

□ 

7 

□ 

8 

□ 

9 

□ 

10 

□ 

The rating of the experience could be based on a rating system with scores from poor to 

excellent. Finally, any material related to the QoE will be compliant to the Data Management 

policies of the IoT-NGIN project. In summary, the methodology presented in this section for 
the benchmarking of the verification framework, once applied, will be reassessed and thus, 

parameters will be revaluated in order to be updated with developments. Therefore, in case 
where new requirements need to be established within the framework or existing 

requirements need to be altered, the benchmarking will be readjusted to include all 
changing factors. 
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8 Conclusions 
This document constitutes Deliverable “D1.2: IoT meta-architecture, components and 
benchmarking” of the European H2020-ICT-2018-20 “IoT-NGIN: Next Generation IoT as part of 
Next Generation Internet” project. The document defines the initial version of IoT-NGIN meta-

architecture, supporting a multitude of use cases across domains, and validated in the IoT-
NGIN Living Labs. 

The aim of meta-architecture work in IoT-NGIN is to provide a research-informed framework 

for designing and implementing IoT solutions in different usage scenarios. The IoT-NGIN meta-

architecture is based on thorough analysis of current state-of-the-art IoT platforms and 
standards, combined with requirements and expert knowledge provided by partner 
organizations. The analysis of current state-of-the-art approaches covers key open-source 

and commercial IoT platforms and has been further extended by EU research perspective 
covering most relevant EU research projects in recent years.  

The meta-architecture presented in this document collects key quality requirements, 

architectural patterns and high-level system components aiming to provide an overall 

framework for individual system implementations. The motivation is to enable reuse of existing 
IoT technologies and solutions to new domains and assist structured, informed IoT platform 
design. The IoT-NGIN meta-architecture is designed around four key artifacts, namely the IoT 

Architectural Pattern Vertical, the Domain Horizontal, the Quality Vertical, and the Element 
View. The Element View provides a general technological view to the meta-architecture, 

including technological components organized in functional groups, thus indicating the role 
and interrelations among IoT functionalities.  

Moreover, the IoT-NGIN architecture is presented as a reference instantiation of the IoT-NGIN 

meta-architecture. This architecture includes fine-grained definition of the functional 
components within the respective functional groups, and defines their distribution in IoT and 

Edge/Cloud nodes.  The IoT-NGIN architecture will be instantiated in five IoT-NGIN LLs and is 
expected to be further extended with the contributions of new partners selected via the IoT-

NGIN Open Calls. 

It should be noted, that the IoT-NGIN meta-architecture is not static. As IoT and related 

technologies mature, some elements may get outdated, and as more implementation 

experience and further requirements are gathered from use cases and living labs over time, 
the meta-architecture also needs to evolve over time. Consequently, the meta-architecture 

has been designed to be open and extensible to make room for new technologies and 
computing paradigms. The continuous evolution and improvement of the meta-architecture 

will be part of IoT-NGIN project work in the future.  
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